Добірка наукової літератури з теми "Phase spinelle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phase spinelle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phase spinelle"
ALEKSEEV, Aleksandr Valer’evich, and Tat’yana Andreevna SHERENDO. "Composition, structure and magnetic properties of ore chrome spinels of the Klyuchevsky massif (Middle Urals)." NEWS of the Ural State Mining University 1, no. 1 (March 23, 2020): 73–85. http://dx.doi.org/10.21440/2307-2091-2020-1-73-85.
Повний текст джерелаAnderson, Ian M., Arnulf Muan, and C. Barry Carter. "Microstructural observations of the “Wustite-Spinel” coexistence following quenching of cation-excess spinels, Ni2(1+x)Ti1-xO4." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 1058–59. http://dx.doi.org/10.1017/s0424820100178422.
Повний текст джерелаSaveliev, D. E. "Morphological and Compositional Features of Chromian Spinel from Mantle Ultramafic Rocks of The Nurali Massif (South Urals)." МИНЕРАЛОГИЯ (MINERALOGY) 5 (December 27, 2019): 3–18. http://dx.doi.org/10.35597/2313-545x-2019-5-4-1.
Повний текст джерелаJastrzębska, Ilona, Wiktor Bodnar, Kerstin Witte, Eberhard Burkel, Paweł Stoch, and Jacek Szczerba. "Structural properties of Mn-substituted hercynite." Nukleonika 62, no. 2 (June 27, 2017): 95–100. http://dx.doi.org/10.1515/nuka-2017-0013.
Повний текст джерелаZaitseva, O. V., Vladimir E. Zhivulin, and D. E. Zhivulin. "The Creation of Multicomponent Octahedral Crystals with Spinel Structure Using Solid-Phase Synthesis in the Al2O3-BaO-CuO-Fe2O3-Mn2O3-NiO-SrO-TiO2- ZnO and Al2O3-BaO-CuO-Fe2O3-NiO-SrO-TiO2-WO3- ZnO Systems." Materials Science Forum 989 (May 2020): 341–46. http://dx.doi.org/10.4028/www.scientific.net/msf.989.341.
Повний текст джерелаTalanov, V. M., V. B. Shirokov, and M. V. Talanov. "Unique atom hyper-kagome order in Na4Ir3O8and in low-symmetry spinel modifications." Acta Crystallographica Section A Foundations and Advances 71, no. 3 (April 25, 2015): 301–18. http://dx.doi.org/10.1107/s2053273315003848.
Повний текст джерелаKostuch, Aldona, Joanna Gryboś, Szymon Wierzbicki, Zbigniew Sojka, and Krzysztof Kruczała. "Selectivity of Mixed Iron-Cobalt Spinels Deposited on a N,S-Doped Mesoporous Carbon Support in the Oxygen Reduction Reaction in Alkaline Media." Materials 14, no. 4 (February 9, 2021): 820. http://dx.doi.org/10.3390/ma14040820.
Повний текст джерелаZhang, Zhibin, Fei Huang, Yongli Li, Kaijun Liu, and Fude Zhao. "Nano-Micron Exsolved Spinels in Titanomagnetite and Their Implications for the Formation of the Panzhihua Fe–Ti–V Oxide Deposit, Southwest China." Journal of Nanoscience and Nanotechnology 21, no. 1 (January 1, 2021): 326–42. http://dx.doi.org/10.1166/jnn.2021.18448.
Повний текст джерелаSkvortsova, Vera, Nina Mironova-Ulmane, and Daina Riekstiņa. "Structure and Phase Changes in Natural and Synthetic Magnesium Aluminum Spinel." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 2 (August 5, 2015): 100. http://dx.doi.org/10.17770/etr2011vol2.1002.
Повний текст джерелаReimann, T., J. Töpfer, and S. Barth. "Low-temperature sintered NTC ceramics for thick film temperature sensors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (September 1, 2012): 000536–41. http://dx.doi.org/10.4071/cicmt-2012-wp42.
Повний текст джерелаДисертації з теми "Phase spinelle"
Hébert, Christian. "Films minces nanocomposites ZnxFe1-xO1+δ : phases wurtzite, sel gemme et spinelle". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066068/document.
Повний текст джерелаThis thesis deals with the growth of thin films of zinc/iron oxides (ZnxFe1-xO1+δ) by pulsed laser deposition (PLD) and the possibility of controlling their structural and physicochemical properties by varying the elaboration conditions: oxygen pressure and growth temperature, respective proportions of zinc/iron. For high values of x (x> 65%), the films are single-phase with a ZnO-type wurtzite structure (Fe:ZnO films), with 80% optical transparency in the UV-visible range but without ferromagnetic properties; depending on their iron (1-x) content, they evolve from very good electrical conductors to near-insulators. For small values of x (x <15%), the films are also single-phase with a Fe3O4-type spinel structure (Zn:Fe3O4 films). They exhibit very good ferromagnetic properties at ambient temperature as well as good electrical conductivity, the localization effects of charge carriers occurring below the Verwey temperature. The number of antiphase walls can be decreased by a two-step growth, as evidenced by magnetoresistance measurements. At intermediate zinc rates (15%
Condolf, Cyril. "Elaboration d’un cermet conducteur électrique à haute température." Grenoble INPG, 2005. http://www.theses.fr/2005INPG0071.
Повний текст джерелаThis thesis is devoted to the making of inert anode materials, used for aluminium electrolysis. On the basis of knowledge obtained from the cermet copper- nickel ferrite, a strategy of research was carried out in order to determine alternative chemical systems. The reading of phase diagrams is a tool of prediction for hypothetical promising compositions. Physical models of spinel conductivity and sintering, integrated into the results of thermodynamic calculation, are used to determine theoretical best zones of cermets'development, in the system Al-Co-Cr-Fe-Ni-Zn-O (FACT database). Manganese, comparable with iron and cobalt concerning the electronic structure, is not included in FACT database and Fe-Mn-Ni-0 had to be evaluated through experiments and theoretically in order to include it in our thought and to show its interest as an alloying element. Practical application was validated in the case of Cu-Al-Fe-Ni-0 and Cu-Fe-Mn-Ni-0 materials. Addition of aluminium reduces the solubility in cryolite bath, and manganese can be used as a doping element in order to enhance sintering. The potential interest of the other elements (Co,Cr and Zn) has been surveyed through a logical analysis developed during the thesis
Tabit, Adelhalim. "Equilibre orthopyroxene-spinelle : etude experimentale et theorique, application aux roches issues du manteau superieur." Clermont-Ferrand 2, 1986. http://www.theses.fr/1986CLF21025.
Повний текст джерелаDouin, Myriam. "Etude de phases spinelle cobaltées et d'oxydes lamellaires dérivés de Na0,6CoO2 employés comme additifs conducteurs dans les accumulateurs Ni-MH." Bordeaux 1, 2008. http://www.theses.fr/2008BOR13562.
Повний текст джерелаCaillot, Thierry. "Synthèses microondes et caractérisation de nanoparticules associant une phase métallique M (M=Fe, FeCo, FeNi) et un oxyde de structure spinelle Fe3-xM'xO4(M'=Fe, Co, Ni, Mn, MnZn)." Dijon, 2002. http://www.theses.fr/2002DIJOS055.
Повний текст джерелаMadon, Michel. "Cellules à enclumes de diamant et microscopie électronique en transmission : étude expérimentale des transformations de phase du manteau terrestre." Paris 6, 1986. http://www.theses.fr/1986PA066123.
Повний текст джерелаDouin, Myriam. "Etude de phases spinelle cobaltée et d'oxydes lamellaires dérivés de Na0,6CoO2 employés comme additifs conducteurs dans les accumulateurs Ni-MH." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2008. http://tel.archives-ouvertes.fr/tel-00373899.
Повний текст джерелаLa première partie de l'étude a été focalisée sur des phases spinelle HxLiyCo3-δO4 conductrices, synthétisées par oxydation électrochimique de l'oxyde CoO. Une forte influence du traitement thermique du matériau sur sa conductivité électronique a été mise en évidence. Des analyses par diffraction des rayons X in situ, ATG-SM, RMN et des mesures de conductivités électroniques ont permis de mettre en évidence une redistribution cationique au sein de la structure spinelle, conduisant à une augmentation du rapport atomique Co4+/Co3+ dans le réseau octaédrique [Co2O4], sans variation du degré d'oxydation moyen du cobalt. Il s'ensuit une augmentation de la conductivité électronique du matériau de trois ordres de grandeur. Le second axe de la thèse concerne l'étude du comportement électrochimique de l'additif Na0.6CoO2. Les réactions d'échange/insertion des ions alcalins mises en jeu au cours des processus d'oxydation et de réduction de la phase initiale ont été étudiées en détail et un mécanisme a pu être proposé. L'oxyhydroxyde de cobalt hydraté γ, formé par oxydation de Na0.6CoO2 au cours du cyclage, s'est avéré présenter de très bonnes performances lors des tests en batteries. La formation d'une phase interstratifiée intermédiaire, qui possède une cinétique de réduction lente, permet de conserver la stabilité de l'additif à bas potentiel et par conséquent, l'intégrité du réseau conducteur.
Djian, Damien. "Etude et développement de séparateurs pour une nouvelle architecture de batteries Li-ion à charge rapide." Phd thesis, Grenoble INPG, 2005. http://tel.archives-ouvertes.fr/tel-00011543.
Повний текст джерелаAfin d'augmenter les capacités chargées par rapport aux séparateurs commerciaux, des membranes à squelette poly(fluorure de vinylidène) et poly(fluorure de vinylidène) co poly(hexafluoropropylène) ont été élaborées par inversion de phase en utilisant la méthodologie des plans d'expériences. Les processus de formation ont été explicités à partir de la thermodynamique des systèmes ternaires polymère/solvant/non-solvant. Les membranes obtenues ont permis de gagner 20% de capacité chargée en 3 minutes par rapport aux séparateurs commerciaux.
Enfin, les limitations en charge rapide dues aux séparateurs ont été étudiées et identifiées à l'aide d'un code de modélisation d'accumulateurs Li-ion.
BENOIT, VINCENT. "Etat d'equilibre de peridotites du manteau superieur : application au plateau du colorado." Paris 7, 1987. http://www.theses.fr/1987PA077186.
Повний текст джерелаDinh, Thi Mong Cam. "Influence des conditions d'élaboration sur les transformations de phases dans les couches minces de cobaltites de fer à structure spinelle." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30090.
Повний текст джерелаThin spinel films of Co1.7Fe1.3O4 iron cobaltites, whose composition is in the miscibility gap of the CoFe2O4-Co3O4 phase diagram, were prepared by RF sputtering near room temperature. The films obtained, whose thicknesses were fixed at 300 nm, consist of crystallites with a mean diameter close to 20 nm. The treatment of these samples at 600 °C for several hours leads to the formation of two spinel phases, in agreement with the phase diagram. This transformation was clearly established, both by X-ray diffraction and Raman spectroscopy. In "bulk" iron cobaltites of close or same compositions, such a transformation is of spinodal type and is characterized by a pseudo-periodic organization of rich iron and cobalt-rich spinel phases on a scale of a few tens of nanometers. In order to highlight this organization in the thin films, microscopy studies were carried out. A specific preparation process was even developed in order to cut in-plane thin sections, by the focused ion beam (FIB) technique. Crystallites can thus be observed and studied individually. The analyzes revealed, however, and in the best case (i.e. for the largest crystallites), the presence of only two zones of different compositions. The expected pseudo-periodic alternation could never be observed. It seems that the nanometric size of the crystallites, prevents the spinodal transformation which was highlighted in the "bulk" samples. The observation of local chemical anomalies in grain boundaries corroborates this hypothesis, which suggests a "nano" effect on phase transformation. For the present work, it was furthermore found that in addition to the temperature and the annealing time, the sputtering conditions also have a significant impact on the formation and decomposition of the phases in the thin films. Although this study did not find the deposition conditions that lead directly to the formation of two spinel phases after sputtering, it shows however that certain conditions shorten the annealing times while lowering the temperatures required to perform the targeted transformation. For the first time, iron cobaltite thin films were subjected to laser beam treatments to induce phase transformations within them. It was shown that the formation of two spinels from a single-phase film can be achieved in very short times and at low laser power, probably because of a rapid and high rise of local temperature, due to the absorption of the laser beam. The numerous parameters offered by the photolithography machine used (power, scanning speed, scanning increment, focusing, etc.) could not be exhaustively explored during this study. The latter should therefore be considered only as a preliminary work. The results, however, are promising and seem to bring out a new treatment route, allowing simple phase transformations in iron cobaltites
Частини книг з теми "Phase spinelle"
Chakraborty, Akshoy Kumar. "Spinel Phase." In Phase Transformation of Kaolinite Clay, 207–34. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1154-9_20.
Повний текст джерелаChakraborty, Akshoy Kumar. "Spinel Phase: A Concise Review." In Mullite Formations, 481–557. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003031673-17.
Повний текст джерелаChakraborty, Akshoy Kumar. "Topotaxy IN K-MK-AL/SI Spinel-Mullite Reaction Series." In Phase Transformation of Kaolinite Clay, 303–11. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1154-9_24.
Повний текст джерелаChakraborty, Akshoy Kumar. "Critical Analysis and Characterization of Spinel Phase." In Mullite Formations, 663–728. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003031673-21.
Повний текст джерелаRodríguez-Hernández, P., and A. Muñoz. "Theoretical Ab Initio Calculations in Spinels at High Pressures." In Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, 103–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40367-5_4.
Повний текст джерелаAl-Sharab, Jafar F., James Bentley, Amit Singhal, Ganesh Skandan, and Frederic Cosandey. "Tem Study of Nanostructured Magnesium Aluminate Spinel Phase Formation." In Ceramic Transactions Series, 165–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407158.ch18.
Повний текст джерелаBesmann, Theodore M., Nagraj S. Kulkarni, Karl E. Spear, and John D. Vienna. "Predicting Phase Equilibria of Spinel-Forming Constituents in Waste Glass Systems." In Ceramic Transactions Series, 119–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408438.ch11.
Повний текст джерелаWill, G., and J. Lauterjung. "The kinetics of the pressure induced olivine-spinel phase transition Mg2GeO4." In High‐Pressure Research in Mineral Physics: A Volume in Honor of Syun‐iti Akimoto, 177–86. Washington, D. C.: American Geophysical Union, 1987. http://dx.doi.org/10.1029/gm039p0177.
Повний текст джерелаKanno, Ryoji, Osamu Yamamoto, Christian Cros, and Jean-Louis Soubeyroux. "Phase Transition and Ionic Conductivity of the Spinel System Li2−2xMg1+xCl4." In Solid State Batteries, 460–63. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_33.
Повний текст джерелаRamasamy, M., S. Baumann, A. Opitz, R. Iskandar, J. Mayer, D. Udomsilp, U. Breuer, and M. Bram. "Phase Interaction and Distribution in Mixed Ionic Electronic Conducting Ceria-Spinel Composites." In Advances in Solid Oxide Fuel Cells and Electronic Ceramics II, 99–112. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119320197.ch9.
Повний текст джерелаТези доповідей конференцій з теми "Phase spinelle"
Dubsky, J., K. Neufuss, and B. Kolman. "Phase Composition Changes in Annealed Plasma-Sprayed Zircon-Alumina Coatings." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0473.
Повний текст джерелаStefanovsky, Sergey, Alexander Kobelev, Vladimir Lebedev, Michael Polkanov, Dmitriy Suntsov, and James Marra. "The Effect of Waste Loading on the Characteristics of Borosilicate SRS SB4 Waste Glasses." In ASME 2009 12th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2009. http://dx.doi.org/10.1115/icem2009-16196.
Повний текст джерелаSchiller, G., M. Müller, F. Gitzhofer, M. I. Boulos, and R. B. Heimann. "Suspension Plasma Spraying (SPS) of Cobalt Spinel." In ITSC 1997, edited by C. C. Berndt. ASM International, 1997. http://dx.doi.org/10.31399/asm.cp.itsc1997p0343.
Повний текст джерелаBolelli, G., L. Lusvarghi, D. Lisjak, A. Hujanen, P. Lintunen, U. Kanerva, T. Varis, et al. "Thermally-Sprayed BaCoTiFe10O19 Layers as Microwave Absorbers." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0628.
Повний текст джерелаMueller, M., R. Henne, G. Schiller, M. I. Boulos, F. Gitzhofer, and R. B. Heimann. "Radio-Frequency Suspension Plasma Spraying of Cobalt Spinel Anodes for Alkaline Water Electrolysis." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1523.
Повний текст джерелаAoki, Hirofumi, Hiroshi Kaneko, Noriko Hasegawa, Hideyuki Ishihara, Yoichiro Takahashi, Akio Suzuki, and Yutaka Tamaura. "Two-Step Water Splitting With Ni-Ferrite System for Solar H2 Production Using Concentrated Solar Radiation." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65068.
Повний текст джерелаMcCartney, D. G., D. Zhang, J. Y. Yellup, M. Brühl, K. Bobzin, K. Richardt, T. Talako, and A. Ilyushchanka. "Novel NiZn-Ferrite Powders and Coatings for Electromagnetic Applications." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0818.
Повний текст джерелаOndro, Tomáš, Štefan Csáki, František Lukáč, and Anton Trník. "Non-isothermal kinetic analysis of spinel phase crystallization from metakaolinite." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120167.
Повний текст джерелаKaur, Harleen, and M. M. Sinha. "Phonon dispersion and density of States of Fe2SiO4 in spinel phase." In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0052582.
Повний текст джерелаRamis, Gianguido, Guido Busca, Tania Montanari, Michele Sisani, and Umberto Costantino. "Ni-Co-Zn-Al Catalysts From Hydrotalcite-Like Precursors for Hydrogen Production by Ethanol Steam Reforming." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33034.
Повний текст джерелаЗвіти організацій з теми "Phase spinelle"
Wouter Montfrooij. designer phase transitions in lithium-based spinels. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1042954.
Повний текст джерелаHarris, Donovan. Subsurface Optical Microscopy of Coarse Grain Spinels. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada593527.
Повний текст джерелаWogelius, R. A., and D. G. Fraser. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10154294.
Повний текст джерела