Статті в журналах з теми "Periodic density functional theory"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Periodic density functional theory.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Periodic density functional theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Genova, Alessandro, Davide Ceresoli, and Michele Pavanello. "Periodic subsystem density-functional theory." Journal of Chemical Physics 141, no. 17 (November 7, 2014): 174101. http://dx.doi.org/10.1063/1.4897559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ring, P. "Covariant density functional theory for rare isotopes." HNPS Proceedings 14 (December 5, 2019): 25. http://dx.doi.org/10.12681/hnps.2244.

Повний текст джерела
Анотація:
Modern methods for the description of the nuclear many-body system use the concepts of density functional theory (DFT) and of effective field theory (EFT). The covariant version of this theory is based on a density functional which takes into account Lorentz symmetry in a self-consistent way. Pairing correlations play an important role in all open-shell configurations. They are included in relativistic Hartree Bogoliubov (RHB) theory by an effective residual interaction of finite range. With a minimal number of phenomenological parameters this theory allows a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recently this method has also been extended for the investigations of excited states, such as collective vibrations and rotations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McFarland, John, and Efstratios Manousakis. "Imaginary-time time-dependent density functional theory for periodic systems." Journal of Physics: Condensed Matter 33, no. 5 (November 10, 2020): 055903. http://dx.doi.org/10.1088/1361-648x/abbe7e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rozanska, Xavier, Mayela García-Sánchez, Emiel J. M. Hensen, and Rutger A. Van Santen. "A periodic density functional theory study of gallium-exchanged mordenite." Comptes Rendus Chimie 8, no. 3-4 (March 2005): 509–20. http://dx.doi.org/10.1016/j.crci.2004.11.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sansone, Giuseppe, Bartolomeo Civalleri, Denis Usvyat, Julien Toulouse, Kamal Sharkas, and Lorenzo Maschio. "Range-separated double-hybrid density-functional theory applied to periodic systems." Journal of Chemical Physics 143, no. 10 (September 14, 2015): 102811. http://dx.doi.org/10.1063/1.4922996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Zhao-Xu, Chun-Gen Liu, Yi Chen, and Yuan-Sheng Jiang. "Theoretical investigation on BaTiO3 with periodic density functional theory BLYP method." Chemical Physics 270, no. 2 (August 2001): 253–61. http://dx.doi.org/10.1016/s0301-0104(01)00400-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lin, Zijing. "Pulay forces in density functional theory for periodic and molecular systems." Physics Letters A 299, no. 4 (July 2002): 413–17. http://dx.doi.org/10.1016/s0375-9601(02)00615-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gavini, Vikram, Jaroslaw Knap, Kaushik Bhattacharya, and Michael Ortiz. "Non-periodic finite-element formulation of orbital-free density functional theory." Journal of the Mechanics and Physics of Solids 55, no. 4 (April 2007): 669–96. http://dx.doi.org/10.1016/j.jmps.2006.09.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Suryanarayana, Phanish, Vikram Gavini, Thomas Blesgen, Kaushik Bhattacharya, and Michael Ortiz. "Non-periodic finite-element formulation of Kohn–Sham density functional theory." Journal of the Mechanics and Physics of Solids 58, no. 2 (February 2010): 256–80. http://dx.doi.org/10.1016/j.jmps.2009.10.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Towler, Michael D., Ales Zupan, and Mauro Causà. "Density functional theory in periodic systems using local Gaussian basis sets." Computer Physics Communications 98, no. 1-2 (October 1996): 181–205. http://dx.doi.org/10.1016/0010-4655(96)00078-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yong, Yongliang, Xiping Hao, Chao Li, Xiaohong Li, Tongwei Li, Hongling Cui, and Shijie Lv. "Density functional studies of small silicon clusters adsorbed on graphene." RSC Advances 5, no. 48 (2015): 38680–89. http://dx.doi.org/10.1039/c5ra02081f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kenge, Nivedita, Sameer Pitale, and Kavita Joshi. "The nature of electrophilic oxygen: Insights from periodic density functional theory investigations." Surface Science 679 (January 2019): 188–95. http://dx.doi.org/10.1016/j.susc.2018.09.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhao, Rui-Sheng, Jing-Shuang Dang, Tao Yang, and Xiang Zhao. "Density functional theory study on configurations and electronic properties of periodic nanoridges." Computational Materials Science 77 (September 2013): 312–15. http://dx.doi.org/10.1016/j.commatsci.2013.04.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ghosh, Swarnava, and Phanish Suryanarayana. "Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory." Journal of Computational Physics 307 (February 2016): 634–52. http://dx.doi.org/10.1016/j.jcp.2015.12.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mavrikakis, M., D. J. Doren, and M. A. Barteau. "Density Functional Theory Calculations for Simple Oxametallacycles: Trends across the Periodic Table." Journal of Physical Chemistry B 102, no. 2 (January 1998): 394–99. http://dx.doi.org/10.1021/jp971450p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Luber, Sandra. "Local electric dipole moments for periodic systems via density functional theory embedding." Journal of Chemical Physics 141, no. 23 (December 21, 2014): 234110. http://dx.doi.org/10.1063/1.4903828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Reckien, Werner, Florian Janetzko, Michael F. Peintinger, and Thomas Bredow. "Implementation of empirical dispersion corrections to density functional theory for periodic systems." Journal of Computational Chemistry 33, no. 25 (June 8, 2012): 2023–31. http://dx.doi.org/10.1002/jcc.23037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Demir, Hakan, Jeffery A. Greathouse, Chad L. Staiger, John J. Perry IV, Mark D. Allendorf, and David S. Sholl. "DFT-based force field development for noble gas adsorption in metal organic frameworks." Journal of Materials Chemistry A 3, no. 46 (2015): 23539–48. http://dx.doi.org/10.1039/c5ta06201b.

Повний текст джерела
Анотація:
Density functional theory (DFT) based force fields (FFs) for Ar and Xe adsorption in M-MOF-74 (M = Co, Ni, Zn, Mg), ZIF-8 and HKUST-1 were developed using three DFT functionals (PBE-D2, vdW-DF, vdW-DF2) in periodic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Chachiyo, Teepanis, and Hathaithip Chachiyo. "Simple and Accurate Exchange Energy for Density Functional Theory." Molecules 25, no. 15 (July 31, 2020): 3485. http://dx.doi.org/10.3390/molecules25153485.

Повний текст джерела
Анотація:
A non-empirical exchange functional based on an interpolation between two limits of electron density, slowly varying limit and asymptotic limit, is proposed. In the slowly varying limit, we follow the study by Kleinman from 1984 which considered the response of a free-electron gas to an external periodic potential, but further assume that the perturbing potential also induces Bragg diffraction of the Fermi electrons. The interpolation function is motivated by the exact exchange functional of a hydrogen atom. Combined with our recently proposed correlation functional, tests on 56 small molecules show that, for the first-row molecules, the exchange-correlation combo predicts the total energies four times more accurately than the presently available Quantum Monte Carlo results. For the second-row molecules, errors of the core electrons exchange energies can be corrected, leading to the most accurate first- and second-row molecular total energy predictions reported to date despite minimal computational efforts. The calculated bond energies, zero point energies, and dipole moments are also presented, which do not outperform other methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kabengele, Tilas, and Erin R. Johnson. "Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene." Nanoscale 13, no. 34 (2021): 14399–407. http://dx.doi.org/10.1039/d1nr03001a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Guerrero-Sánchez, J., M. Lopez-Fuentes, F. Sánchez-Ochoa, Noboru Takeuchi, and Gregorio H. Cocoletzi. "Nitrogen induced phosphorene formation on the boron phosphide (111) surface: a density functional theory study." RSC Advances 6, no. 110 (2016): 108621–26. http://dx.doi.org/10.1039/c6ra23369d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wang, Hui, Jing-Yao Liu, Zhifang Chai, and Dongqi Wang. "Hydrocarbon chain growth and hydrogenation on V(100): a density functional theory study." RSC Advances 5, no. 7 (2015): 4909–17. http://dx.doi.org/10.1039/c4ra15368e.

Повний текст джерела
Анотація:
The activation of CO, hydrogenation of CHx (x = 0–4) and C2Hy (y = 0–5) species and carbon chain propagation on V(100) were studied by means of periodic density functional theory (DFT) calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Golosnaya, Maria N., Nadezhda A. Nikitina, Daria A. Pichugina, Nikolay E. Kuz’menko, and Vasily V. Kaichev. "SIMULATION OF VANADIUM OXIDE STRUCTURE ON ANATASE SURFACE BY DENSITY FUNCTIONAL THEORY." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 62, no. 4 (April 7, 2019): 82–86. http://dx.doi.org/10.6060/ivkkt.20196204.5974i.

Повний текст джерела
Анотація:
The article is devoted to results of systematic study of the structure transformation of V2O5 supported on TiO2 (anatase). The effect of (001) TiO2-anatase on the structural properties and morphology of V2O5 was analyzed using the spin-polarized density functional theory (DFT) in the periodic approach. The calculations were performed using the VASP code with PBE energy functional and plane wave basis set. The catalyst is represented as a periodic surface. The supercell includes four Ti – O layers and the top V2O5 layer. A lot of different forms of V2O5 (monomeric and polymeric structures, individual crystallites) on the TiO2 surface were considered. According to the calculations of the adsorption energy, vanadium oxide on the oxide composite surface can form various forms. The monomeric form is the most stable. Calculated value of adsorption energy is -1.16 eV. The ionic interaction causes a significant change in the interatomic distances between the vanadium atom and the oxygen atom from the support d (V – O (Ti)) for all active forms. The highest value d (V – O (Ti)) was found for catalyst with the polymeric active form. It suggests that the binding of the form with the anatas is the smallest. Theoretical studies have shown that the V2O5/TiO2 system is dynamic and can change the surface structure under the different conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Łazarski, Roman, Asbjörn M. Burow, and Marek Sierka. "Density Functional Theory for Molecular and Periodic Systems Using Density Fitting and Continuous Fast Multipole Methods." Journal of Chemical Theory and Computation 11, no. 7 (June 11, 2015): 3029–41. http://dx.doi.org/10.1021/acs.jctc.5b00252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tian, Xinxin, Tao Wang, and Haijun Jiao. "Mechanism of coverage dependent CO adsorption and dissociation on the Mo(100) surface." Physical Chemistry Chemical Physics 19, no. 3 (2017): 2186–92. http://dx.doi.org/10.1039/c6cp08129k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wang, Zishen, and Xiao-Fang Chen. "A periodic density functional theory study on methanol adsorption in HSAPO-34 zeolites." Chemical Physics Letters 771 (May 2021): 138532. http://dx.doi.org/10.1016/j.cplett.2021.138532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Rozanska, X., L. A. M. M. Barbosa, and R. A. van Santen. "A Periodic Density Functional Theory Study of Cumene Formation Catalyzed by H-Mordenite†." Journal of Physical Chemistry B 109, no. 6 (February 2005): 2203–11. http://dx.doi.org/10.1021/jp049227x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ramírez-Solís, A., C. M. Zicovich-Wilson, and B. Kirtman. "Periodic Hartree-Fock and density functional theory calculations for Li-doped polyacetylene chains." Journal of Chemical Physics 124, no. 24 (June 28, 2006): 244703. http://dx.doi.org/10.1063/1.2208363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Yan, Zhen Hua Li, Jing Lu, and Kang-Nian Fan. "Periodic Density Functional Theory Study of Propane Dehydrogenation over Perfect Ga2O3(100) Surface." Journal of Physical Chemistry C 112, no. 51 (December 4, 2008): 20382–92. http://dx.doi.org/10.1021/jp807864z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chulhai, Dhabih V., and Jason D. Goodpaster. "Projection-Based Correlated Wave Function in Density Functional Theory Embedding for Periodic Systems." Journal of Chemical Theory and Computation 14, no. 4 (March 2018): 1928–42. http://dx.doi.org/10.1021/acs.jctc.7b01154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rozanska, X. "A periodic density functional theory study of thiophenic derivative cracking catalyzed by mordenite." Journal of Catalysis 215, no. 1 (April 1, 2003): 20–29. http://dx.doi.org/10.1016/s0021-9517(02)00148-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Dai, Guo-Liang, Zhi-Pan Liu, Wen-Ning Wang, Jing Lu, and Kang-Nian Fan. "Oxidative Dehydrogenation of Ethane over V2O5(001): A Periodic Density Functional Theory Study." Journal of Physical Chemistry C 112, no. 10 (March 2008): 3719–25. http://dx.doi.org/10.1021/jp075843s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bentarcurt, Yenner L., Mónica Calatayud, Jaime Klapp, and Fernando Ruette. "Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties." Surface Science 677 (November 2018): 239–53. http://dx.doi.org/10.1016/j.susc.2018.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Moses, Poul Georg, and Jens K. Nørskov. "Methanol to Dimethyl Ether over ZSM-22: A Periodic Density Functional Theory Study." ACS Catalysis 3, no. 4 (March 18, 2013): 735–45. http://dx.doi.org/10.1021/cs300722w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zhao, Lianming, Shengping Wang, Qiuyue Ding, Wenbin Xu, Pengpeng Sang, Yuhua Chi, Xiaoqing Lu, and Wenyue Guo. "The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation." Journal of Physical Chemistry C 119, no. 35 (August 20, 2015): 20389–400. http://dx.doi.org/10.1021/acs.jpcc.5b03951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zicovich-Wilson, C. M., B. Kirtman, B. Civalleri, and A. Ramírez-Solís. "Periodic density functional theory calculations for 3-dimensional polyacetylene with empirical dispersion terms." Physical Chemistry Chemical Physics 12, no. 13 (2010): 3289. http://dx.doi.org/10.1039/b918539a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Fu, Hui, Zhi-Pan Liu, Zhen-Hua Li, Wen-Ning Wang, and Kang-Nian Fan. "Periodic Density Functional Theory Study of Propane Oxidative Dehydrogenation over V2O5(001) Surface." Journal of the American Chemical Society 128, no. 34 (August 2006): 11114–23. http://dx.doi.org/10.1021/ja0611745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ramírez-Solís, A., B. Kirtman, R. Bernal-Jáquez, and C. M. Zicovich-Wilson. "Periodic Density Functional Theory Calculations for Na-doped Quasi-one-dimensional Polyacetylene Chains." Journal of Physical Chemistry C 112, no. 25 (May 31, 2008): 9493–500. http://dx.doi.org/10.1021/jp077426l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Grimmer, Hans, and Bernard Delley. "Density functional theory calculations of merohedric twinning in KLiSO4." Zeitschrift für Kristallographie - Crystalline Materials 234, no. 4 (April 24, 2019): 211–17. http://dx.doi.org/10.1515/zkri-2018-2126.

Повний текст джерела
Анотація:
Abstract Density functional theory (DFT) calculations have been performed on five models of periodic, polysynthetic twin interfaces in the ambient-temperature phase of KLiSO4, which has space group P63. The models represent the three merohedric twin laws (m||z, 2⊥z and 1̅) with boundary plane (1 0 1̅ 0), also with boundary plane (0 0 0 1) in case of m, and with boundary plane (1 2̅ 1 0) in case of 1̅. The models satisfy stoichiometry at the boundary plane and maintain the fourfold coordination of the Li and S atoms and the twofold coordination of the oxygen atoms. Relaxed lattice parameters and atomic positions were determined by DFT, using the DMol3 code with functional PBEsol. The energy difference between polysynthetic twin and single crystal per primitive cell of the twin is 0.0009 eV for m(0 0 0 1), 0.09 eV for 1̅(1 0 1̅ 0), 0.58 eV for m(1 0 1̅ 0) and 0.55 eV for 2(1 0 1̅ 0). In KLiSO4 crystals grown from aqueous solutions the first twin was frequently observed, similarly also the second twin in Cr-doped crystals, whereas the third twin appeared only rarely and the fourth was not observed. Not only for KLiSO4 but also for quartz, the energy of twins and the frequency of their occurrence are closely connected for crystals grown from aqueous solutions, whereas for the formation of transformation twins the availability of twin nuclei plays a major role.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

RING, P. "COVARIANT DENSITY FUNCTIONAL THEORY FOR COLLECTIVE EXCITATIONS IN NUCLEI FAR FROM STABILITY." International Journal of Modern Physics E 15, no. 02 (March 2006): 520–28. http://dx.doi.org/10.1142/s0218301306004478.

Повний текст джерела
Анотація:
Modern methods for the description of the nuclear many-body system use the concepts of density functional theory (DFT) and of effective field theory (EFT). Relativistic Hartree Bogoliubov (RHB) theory is a covariant version of this method, which takes into account Lorentz symmetry and pairing correlations in a fully self-consistent way. This theory has been used in the past for a very successful phenomenological description of ground state properties of nuclei all over the periodic table. Recently is also has been extended for the investigation of excited states. We discuss the calculation of rotational bands within cranked RHB-theory and recent investigations of vibrational excitations within the framework of relativistic Quasiparticle Random Phase Approximation (QRPA).
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Behara, Pavan Kumar, and Michel Dupuis. "Electron transfer in extended systems: characterization by periodic density functional theory including the electronic coupling." Physical Chemistry Chemical Physics 22, no. 19 (2020): 10609–23. http://dx.doi.org/10.1039/c9cp05133c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Tian, Xinxin, Tao Wang, and Haijun Jiao. "Oxidation of the hexagonal Mo2C(101) surface by H2O dissociative adsorption." Catalysis Science & Technology 7, no. 13 (2017): 2789–97. http://dx.doi.org/10.1039/c7cy00728k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Ghambarian, Mehdi, Zahra Azizi, and Mohammad Ghashghaee. "Remarkable improvement in phosgene detection with a defect-engineered phosphorene sensor: first-principles calculations." Physical Chemistry Chemical Physics 22, no. 17 (2020): 9677–84. http://dx.doi.org/10.1039/d0cp00427h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Delle Piane, Massimo, Marta Corno, Roberto Orlando, Roberto Dovesi, and Piero Ugliengo. "Elucidating the fundamental forces in protein crystal formation: the case of crambin." Chemical Science 7, no. 2 (2016): 1496–507. http://dx.doi.org/10.1039/c5sc03447g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Correa, Julian David, Elizabeth Florez, and Miguel Eduardo Mora-Ramos. "Ab initio study of hydrogen chemisorption in nitrogen-doped carbon nanotubes." Physical Chemistry Chemical Physics 18, no. 36 (2016): 25663–70. http://dx.doi.org/10.1039/c6cp04531f.

Повний текст джерела
Анотація:
The electronic structure of single walled nitrogen-doped carbon nanotubes is calculated by first principles using density functional theory within the supercell approach with periodic boundary conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Jabraoui, Hicham, Ibrahim Khalil, Sébastien Lebègue, and Michael Badawi. "Ab initio screening of cation-exchanged zeolites for biofuel purification." Molecular Systems Design & Engineering 4, no. 4 (2019): 882–92. http://dx.doi.org/10.1039/c9me00015a.

Повний текст джерела
Анотація:
Using periodic density functional theory calculations combined with four dispersion-correction schemes, we have investigated the adsorption of phenol, toluene and water for various cation-exchanged faujasite zeolites.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Liu, Yunjie, Wenyue Guo, Xiaoqing Lu, Wei Gao, Guixia Li, Yahui Guo, Jun Zhu, and Lanzhong Hao. "Density functional theory study of hydrogenation of S to H2S on Pt–Pd alloy surfaces." RSC Advances 6, no. 8 (2016): 6289–99. http://dx.doi.org/10.1039/c5ra20087c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Perdew, John P., Weitao Yang, Kieron Burke, Zenghui Yang, Eberhard K. U. Gross, Matthias Scheffler, Gustavo E. Scuseria, et al. "Understanding band gaps of solids in generalized Kohn–Sham theory." Proceedings of the National Academy of Sciences 114, no. 11 (March 6, 2017): 2801–6. http://dx.doi.org/10.1073/pnas.1621352114.

Повний текст джерела
Анотація:
The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Yong-Chao, Zhi-Jun Zuo, Rui-Peng Ren, and Yong-Kang Lv. "Insights into the effect of Pt doping of Cu(110)/H2O for methanol decomposition: a density functional theory study." RSC Advances 6, no. 110 (2016): 109124–31. http://dx.doi.org/10.1039/c6ra09395g.

Повний текст джерела
Анотація:
Density functional theory calculations with the periodic slab model were performed to investigate the methanol decomposition mechanism with different ratios of Pt doped into Cu(110)/H2O surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Du, Pan, Yuan Gao, Ping Wu, and Chenxin Cai. "Exploring the methanol decomposition mechanism on the Pt3Ni(100) surface: a periodic density functional theory study." Physical Chemistry Chemical Physics 20, no. 15 (2018): 10132–41. http://dx.doi.org/10.1039/c8cp00768c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії