Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Periclase-carbon refractories.

Статті в журналах з теми "Periclase-carbon refractories"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-46 статей у журналах для дослідження на тему "Periclase-carbon refractories".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Konevskikh, L. A., O. G. Omel’chenko, O. G. Drugova, A. N. Varaksin, and T. Yu Obukhova. "Pulmonary ventilation and gases exchange disorders in workers engaged into refractory materials production." Occupational Health and Industrial Ecology, no. 2 (March 14, 2019): 74–79. http://dx.doi.org/10.31089/1026-9428-2019-2-74-79.

Повний текст джерела
Анотація:
Introduction.Occupational exposure to dust in concentrations sometimes exceeding allowable norms, infl uence of associated hazards (irritating gases, toxic chemicals, unfavorable microclimate at workplace, heavy physical work) cause occupational and occupationally conditioned bronchopulmonary diseases and lower work capacity in workers with main occupations of refractory materials production.Objective.To study functional state of respiratory system for diagnosis of early disorders of pulmonary ventilation and gases exchange in workers of moulded refractory materials production.Materials and methods.Prospective randomized study included apparently healthy male workers (n = 61) of refractory materials plant producing chamott e-silica and spinel-periclase-carbon refractories. Clinic of Ekaterinburg medical research center in 2017–2018 provided examination of carriers (n=21) in spinel-periclase-carbon refractories production shop and pressmen (n=40) of moulding area in chamott e-silica refractories production, aged 27 to 60 years, with length of service in hazardous conditions from 4 to 37 years. Bodyplethysmography helped to assess general lung capacity (GLC), residual lung volume, ratio of residual lung volume to general lung capacity, functional residual lung capacity, bronchial resistance and diff usion lung ability by carbon oxide via single inspiration method. For nonventilated lung volume, the authors used ∆ GLC value that is a diff erence between GLC values measured via bodyplethysmography and via helium dilution in single inspiration maneuver.Results.Obstructive syndrome (6.5%) was a main type of ventilation disorders among the examinees, and equally frequent among the workers engaged into spinel-periclase-carbon refractories production (9.5%) and in those engaged into chamott esilica refractories production (5%). Th e workers engaged into spinel-periclase-carbon refractories production had obstructive syndrome associated with lung hyperinfl ation, and those engaged into chamott e-silica refractories production had also a tendency to restrictive disorders. Lung gases exchange disorders were seen in one third of the examinees, equally frequent in both workers engaged into spinel-periclase-carbon refractories production and those engaged into chamott e-silica refractories production, manifested in 2 variants: lower diff usion lung capacity (fi rst variant) and lower diff usion lung capacity with increased ∆ GLC (second variant).Conclusion.Th e study results prove necessity of bodyplethysmography and diff usion lung capacity diagnosis to reveal perfusion and ventilation disorders at early stages in workers engaged into spinel-periclase-carbon refr actories production over 8 years and in those engaged into chamott e-silica refr actories production over 12 years.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shchekina, T. I., A. M. Batanova, E. N. Gramenitskiy, and B. N. Grigoriev,. "Experimental study of stability chromite-periclase and periclase-carbon refractories." Vestnik Otdelenia nauk o Zemle RAN 3, Special Issue (June 17, 2011): 1–7. http://dx.doi.org/10.2205/2011nz000232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kashcheev, I. D., K. G. Zemlyanoi, S. A. Pomortsev, A. G. Valuev, and Yu A. Borisova. "Reinforcement of Periclase-Carbon Refractories with Carbon Fibers1." Refractories and Industrial Ceramics 57, no. 3 (September 2016): 288–91. http://dx.doi.org/10.1007/s11148-016-9970-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khoroshavin, L. B., V. A. Perepelitsyn, T. I. Boriskova, L. V. Ivashchenko, L. B. Romanovskii, N. F. Kravtsov, A. F. Kravchenkov, K. G. Kurteev, and E. G. Krekker. "Periclase-carbon parts with a graphite kish (periclase-carbon refractories for steel melting production)." Refractories 29, no. 9-10 (September 1988): 632–37. http://dx.doi.org/10.1007/bf01287801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Antonov, G. I. "Unfired periclase-carbon refractories on a phenol binder." Refractories and Industrial Ceramics 39, no. 9-10 (September 1998): 329–33. http://dx.doi.org/10.1007/bf02770595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kashcheev, I. D., K. G. Zemlyanoi, A. V. Chevychelov, A. G. Valuev, and S. A. Pomortsev. "Periclase-Carbon Refractories Molded by a New Method1." Refractories and Industrial Ceramics 58, no. 2 (July 2017): 145–47. http://dx.doi.org/10.1007/s11148-017-0072-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rodgol'ts, Yu S., I. Ya Prokhorova, O. N. Semenova, V. I. N�shcheret, A. F. Kharichev, and N. N. Skripnik. "Periclase-lime refractories with increased concentration of carbon." Refractories 29, no. 11-12 (November 1988): 663–67. http://dx.doi.org/10.1007/bf01280331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kashcheev, I. D., V. I. Sizov, and O. A. Panin. "Properties of periclase-carbon refractories containing metal powders." Refractories 30, no. 7-8 (July 1989): 468–70. http://dx.doi.org/10.1007/bf01280680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bosyakova, N. A., S. A. Pomortsev, R. G. Gizatullin, Yu L. Klyosov, S. V. Laptov, I. D. Kashcheev, and K. G. Zemlyanoy. "Alumina-periclase-carbon refractories production of «Ogneupor» LCC." NOVYE OGNEUPORY (NEW REFRACTORIES) 1, no. 7 (November 25, 2021): 10–13. http://dx.doi.org/10.17073/1683-4518-2021-7-10-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bosyakova, N. A., S. A. Pomortsev, R. G. Gizatullin, Yu L. Klyosov, S. V. Laptov, I. D. Kashcheev, and K. G. Zemlyanoi. "Alumina-Periclase-Carbon Refractories Produced by OOO Ogneupor." Refractories and Industrial Ceramics 62, no. 4 (November 2021): 381–83. http://dx.doi.org/10.1007/s11148-021-00612-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Protopopov, E. V., M. V. Temlyantsev, E. M. Zapol’skaya, K. E. Maksakova, and V. A. Degtyar’. "High-temperature decarburization of alumina-periclase-carbon ladle refractories." Steel in Translation 44, no. 12 (December 2014): 879–82. http://dx.doi.org/10.3103/s0967091214120158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Andrievskikh, L. I., L. D. Bocharov, V. N. Koptelov, O. I. Frolov, V. I. Sakk, and V. V. Pichugin. "Periclase-carbon refractories bonded with lignosulfonates and complex additives." Refractories 32, no. 3-4 (March 1991): 127–32. http://dx.doi.org/10.1007/bf01290472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Suvorov, S. A., D. E. Denisov, V. G. Borisov, E. Ya Shapiro, L. M. Myznikova, and S. V. Kazakov. "Structure evolution in periclase-carbon refractories at elevated temperatures." Refractories 29, no. 1-2 (January 1988): 12–16. http://dx.doi.org/10.1007/bf01386597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Krivokorytov, E. V., N. V. Kononov, V. S. Osipchik, and B. I. Polyak. "Unfired periclase-carbon refractories with a thermoreactive polymer binder." Refractories and Industrial Ceramics 40, no. 1-2 (January 1999): 19–24. http://dx.doi.org/10.1007/bf02762438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Yarushina, T. V., V. A. Akbashev, V. A. Plyukhin, A. M. Akbashev, I. M. Gyrlya, and A. N. Parshikov. "Periclase-carbon composite refractories with a new complex binder." Refractories and Industrial Ceramics 48, no. 3 (May 2007): 170–75. http://dx.doi.org/10.1007/s11148-007-0053-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Visloguzova, É. A., I. D. Kashcheev, L. V. Serova, and M. A. Khoroshikh. "Corundum-periclase-carbon refractories for lining steel-pouring ladles." Refractories and Industrial Ceramics 51, no. 1 (June 23, 2010): 9–11. http://dx.doi.org/10.1007/s11148-010-9245-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Borisenko, О. N., and S. M. Logvinkov. "Investigation of the influence of the amount of ethylsilicate, sol based on it and phenol-formaldehyde resin on the strength properties of non-pergarnic magnesia carbon refractories." Scientific research on refractories and technical ceramics 117 (July 11, 2017): 43–48. http://dx.doi.org/10.35857/2663-3566.117.04.

Повний текст джерела
Анотація:
Using the full factorial experiment, the influence of the number of modifiers: ethylsilicate (Z1 = 0.5 − 1.5 %), sol based on it (Z2 = 0.25 − 0.75 %) and liquid phenol formaldehyde resin (Z3 = 3.0 − 4.0 %) on the strength of periclase-carbonaceous materials. It has been established that in order to obtain strong non-perliquid periclase-carbon refractories, the maximum amount of phenol-formaldehyde resin (4 %), ethylsilicate (1.5 %) and the minimum amount of sol based on ethylsilicate (0.25 %) should be included in the charge composition.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Axelrod, L. M., I. G. Maryasev, A. A. Platonov, and D. R. Melnikova. "Two Challenges to the System of Periclase Quality Evaluation." Journal of Materials Science Research 5, no. 1 (October 9, 2015): 12. http://dx.doi.org/10.5539/jmsr.v5n1p12.

Повний текст джерела
Анотація:
<p class="1Body">A new method of estimating the fused periclase quality – the revision of international standards. Quality and service life of refractories on the basis of fused periclase depend to a large extent upon the size of periclase crystals and its mineralogical composition. During fusion of periclase it is impossible to obtain completely homogeneous material with identical crystals size. That is why it is generally accepted to evaluate quality of fused periclase by the average crystals size. Measurements of this item are usually done with the help of generally adopted method of chords, which was developed in the last century and has a number of drawbacks. Magnezit Group developed a new objective method of digital analysis during microscopic examination of structural elements of fused periclase. It allows to considerably improve objectivity of obtained data. The main feature of the new method is application of the system of images analysis, which allows to carry out in automatic mode measurements on the preliminary created digital model of the whole area of the polished section. With the help of the digital model it is possible to calculate average size of fused periclase crystals taking into account number of crystals as well as percentage of the area occupied by them.</p> <p class="1Body">Does CaO/SiO<sub>2</sub> ratio influence service life of refractories? New view of old rules. Till today it was considered that one of the characteristics of fused periclase quality is coefficient of basicity – CaO/SiO<sub>2</sub>, ratio, which should be more than 2. Magnezit Group carried out investigations of coarse-crystalline fused periclase with MgO &gt;97.5 % content and with various CaO/SiO<sub>2 </sub>ratios. We present in this report the main study results: if the impurities content is low in the fused periclase with MgO &gt;97.5 %, then coefficient of basicity exerts limited influence onto the service life of periclase-carbon bricks.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Protopopov, E. V., M. V. Temlyantsev, E. M. Zapol’skaya, K. E. Maksakova, and V. A. Degtyar’. "RESEARCH ON HIGH-TEMPERATURE DECARBURIZATIONOF ALUM- PERICLASE-CARBON LADLE REFRACTORIES." Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy 57, no. 12 (April 1, 2015): 24. http://dx.doi.org/10.17073/0368-0797-2014-12-24-28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Demidenko, L. M., Zh N. Demidova, G. A. Ivanova, P. I. Matsak, M. I. Sokolov, E. M. Suvorov, and B. N. Androsov. "Investigation of Taimyrsk graphites for producing periclase-carbon ladle refractories." Refractories 32, no. 1-2 (January 1991): 26–29. http://dx.doi.org/10.1007/bf01295620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ikonnikov, K. I., A. A. Kondrukevich, N. S. S’emshchikov, A. V. Belyakov, and M. L. Kostochka. "Structural Changes in Binder During Oxidation of Periclase-Carbon Refractories." Refractories and Industrial Ceramics 57, no. 4 (November 2016): 384–87. http://dx.doi.org/10.1007/s11148-016-9989-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Brazhnik, D. A., G. D. Semchenko, G. N. Shabanova, E. E. Starolat, I. N. Rozhko, and L. V. Rudenko. "Physico-mechanical characteristics and phase composition of unburned periclase-carbon refractories on modified phenol-formaldehyde resin." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 3 (April 30, 2019): 29–33. http://dx.doi.org/10.17073/1683-4518-2019-3-29-33.

Повний текст джерела
Анотація:
The possibilities of improving the physico-mechanical properties of periclase-carbon materials by modifying the phenol-formaldehyde resin (PFR) with organoinorganic complexes are described. The composition of the modifying additives, the phase composition of the materials after the PFR hardening are given, the influence of modifiers on the formation of the structure of materials is established. It is shown that the introduction of ethyl silicate or hydrolyzed ethyl silicate into liquid PFR during preparation of the charge contributes to the formation of SiC in the phase composition. The conclusion is made about the rationality of the introduction of ethyl silicate in an amount of from 0,66 to 1 wt. % and the prospects of introducing nickel oxalate into a liquid PFR together with ammonium citrate to increase the compressive strength of periclase-carbon materials up to 60 MPa. Ill. 7. Ref. 9.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Suvorov, S. A., A. M. Smilovitskii, V. I. Sizov, A. A. Perepelitsyn, T. I. Boriskova, K. A. Be�k, and K. �. Kiis. "Tests of periclase-carbon refractories in an arc steel-melting furnace." Refractories 26, no. 9-10 (September 1985): 571–75. http://dx.doi.org/10.1007/bf01386470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Voronov, G. A., V. G. Ovsyannikov, A. D. Nosov, N. R. Khomenko, and L. T. Loginova. "Use of alumo-periclase-carbon refractories to line steel-pouring ladles." Metallurgist 43, no. 4 (April 1999): 172–75. http://dx.doi.org/10.1007/bf02463569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Akselrod, L. M., and V. Garten. "An alternative lining of steel ladles: technical and economic aspects." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information, no. 12 (December 19, 2018): 72–80. http://dx.doi.org/10.32339/0135-5910-2018-12-72-80.

Повний текст джерела
Анотація:
Quality of steel ladles lining to a big extent determine the economic efficiency of steel-making operation. Direct costs on the refractory lining of them can reach 30–50 % of the costs of lining of a steel-making complex. Experience of utilization of refractory materials of different composition considered with the purpose of efficiency increase of refractory materials application in the steel ladles lining under conditions of steel ladle treatment. Considerable abilities shown to make the lining of steel ladle walls and bottom by both carbon-containing and carbon-free refractory materials taking into account the economic aspect. Lining base of steel-making facilities — BOFs, EAFs and steel ladles — is composed by periclase-carbon (MgO–C) refractories. However those refractories have a high heat conductivity, that effects on the heat operation of steel ladles. When using MgO–С materials, vertical fractures can appear in the ladle walls lining as its residual thickness becomes small. Under definite conditions a working lining chipping takes place, problems appear with lining destruction in the pieces angles with cavities formation at the pieces joining. To level the MgO–С drawbacks, periclase-alumo-carbon (MgO–Al2O3–С) and alumo-periclase-carbon (Al2O3–MgO–С) refractory products are used. Al2O3–MgO–C refractories are widely used in most erosion-intensive lining zone — in the combatting place of steel ladle bottom lining. In Russia monolithic lining of steel ladle bottom is successfully displacing the lining by piece products, including alumo-periclase-carbon ones. Such a replace enables to decrease specific refractory consumption and specific costs of them. At present the technology of concrete application to bottom is implemented for ladles of BOF- and steel-making shops. A technology of concrete ladle walls and bottom is intensively implemented for 120–180-ton ladles. The concrete lining of steel ladles has the following advantages: high withstandability against impregnation by metal-slag melt; absence of metal carbonization by the carbon from ladle lining; increase of running duration of safety lining layer by 2–2.5 times; absence of necessity to use nest blocks in both steel outlet unit and for bottom blow-off lance; absence of cracks in lining, wash-outs in seams, angles and edges of pieces; decrease of gaseous hydrocarbon emissions(phenol, formaldehyde, benzapilene) during lining drying, heating-up and operation (only slag belt remains, where pieces have organic binders); saving of materials, working time and manpower while making and maintain the lining; decrease of specific consumption and specific costs for lining per 1t of steel. For lining of steel ladles of big volumes (more 250 t) alumo-periclase (alumo-spinel) products are widely used in China, Europe and Japan. For such a lining the thermo-mechanical tension, arising in monolithic ladle lining, has a less importance, including at its replacing with metal by using crane. It is easier for the products to compensate the ladle geometry change, resulted in metal shall geometry change in time. A positive influence of carbon-free lining, as well as a lining with low content of magnesium oxide, on metal quality noted, first of all for low- and ultralow carbon grades, and pipe low-alloyed steels.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Pishida, V. I., B. M. Boichenko, K. G. Nizyaev, S. N. Kravets, M. S. Tarnavskii, and A. V. Shibko. "Periclase-Carbon Refractories for Operation in the Mouth of a Converter Vessel." Refractories and Industrial Ceramics 46, no. 2 (March 2005): 110–12. http://dx.doi.org/10.1007/s11148-005-0063-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Buchebner, G., L. Sampayo, V. Samm, Ph Blondot, S. Peruzzi, and P. Boulanger. "Ankersyn — a new generation of periclase-carbon refractories using a carbonaceous binder." Refractories and Industrial Ceramics 46, no. 4 (July 2005): 291–94. http://dx.doi.org/10.1007/s11148-006-0028-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Borisenko, O. N., G. D. Semchenko, and T. V. Il’icheva. "Slag resistance of periclase-carbon refractories based on modified phenol formaldehyde resin." Refractories and Industrial Ceramics 51, no. 6 (March 2011): 433–36. http://dx.doi.org/10.1007/s11148-011-9345-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Suvorov, S. A., D. E. Denisov, V. G. Borisov, E. Ya Shapiro, S. V. Kazakov, and R. M. Vezikova. "Phase transformations in periclase-carbon refractories during oxidation-reduction reactions of the components." Refractories 28, no. 9-10 (September 1987): 498–504. http://dx.doi.org/10.1007/bf01386628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Boichenko, B. M., V. I. Pishchida, K. G. Nizyaev, and S. N. Kravets. "Periclase-Carbon Refractories for Service in the Slag Zone of an Oxygen Converter." Refractories and Industrial Ceramics 46, no. 2 (March 2005): 101–3. http://dx.doi.org/10.1007/s11148-005-0061-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Simonov, K. V., V. V. Zagnoiko, G. V. Burdina, V. I. Sakk, and A. I. Katunin. "Influence of technological parameters on the properties and wear resistance of periclase-carbon refractories." Refractories 29, no. 11-12 (November 1988): 734–41. http://dx.doi.org/10.1007/bf01280348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Борисенко, Оксана Миколаївна. "Influence of amount of graphite and modifying agent on the properties of periclase-carbon refractories." Technology audit and production reserves 3, no. 3(29) (May 26, 2016): 38. http://dx.doi.org/10.15587/2312-8372.2016.70533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Semchenko, G. D., D. A. Brazhnik, V. V. Povshuk, I. N. Rozhko, E. E. Starolat, and K. P. Vernigora. "Synthesis and Conversion on Heating of Nickel-Containing Antioxidant Organic Precursor for Periclase-Carbon Refractories." Refractories and Industrial Ceramics 57, no. 1 (May 2016): 33–37. http://dx.doi.org/10.1007/s11148-016-9922-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Temlyantsev, M. V., and M. V. Matveev. "Decarbonization of periclase-carbon refractories during heat treatment of the linings of steel-pouring ladles." Metallurgist 54, no. 7-8 (November 2010): 536–39. http://dx.doi.org/10.1007/s11015-010-9335-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Borisov, V. G., I. Ya Prokhorova, O. N. Semenova, and Yu S. Rodgol'ts. "Resistant refractories for converters with combined blowing. Investigating periclase-carbon refractories for converters with combined blowing of the bath with oxygen." Refractories 27, no. 11-12 (November 1986): 667–71. http://dx.doi.org/10.1007/bf01387226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Shchekina, T. I., A. M. Batanova, T. N. Kurbyko, A. N. Pyrikov, and B. N. Grigor’ev. "Comparative Study of Chromite-Periclase and Periclase-Carbon Refractory Stability During Reaction with Nickel Production Melts (Experimental Data). 2. Behavior of Periclase-Carbon Refractories in the Presence of Metal-Slag and Slag Melts." Refractories and Industrial Ceramics 56, no. 1 (May 2015): 54–65. http://dx.doi.org/10.1007/s11148-015-9784-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Nagornyi, A. P., I. D. Buga, A. B. Kovura, A. I. Kravchenko, and S. A. Nagornyi. "Experience in the use of periclase—Carbon refractories in the working lining of a steel converter." Refractories and Industrial Ceramics 38, no. 11-12 (December 1997): 475–78. http://dx.doi.org/10.1007/bf02767959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Nagornyi, A. P., A. I. Kravchenko, V. V. Il’in, N. A. Vozhol, and S. A. Nagornyi. "Use of unfired periclase-carbon refractories in parts of linings of 350-ton steel-teeming ladles." Refractories and Industrial Ceramics 39, no. 1-2 (February 1998): 72–74. http://dx.doi.org/10.1007/bf02769270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Borisenko, O. N., G. D. Semchenko, M. A. Chirkina, and I. V. Kasymova. "High-strength periclase-carbon refractories based on phenol-formaldehyde resin with modification of different batch components." Refractories and Industrial Ceramics 47, no. 4 (July 2006): 225–27. http://dx.doi.org/10.1007/s11148-006-0094-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Brazhnik, D. A., G. D. Semchenko, G. N. Shabanova, E. E. Starolat, I. N. Rozhko, and L. V. Rudenko. "Physicomechanical Properties and Phase Composition of Unfired Periclase-Carbon Refractories Based on Modified Phenol-Formaldehyde Resin." Refractories and Industrial Ceramics 60, no. 2 (July 2019): 149–53. http://dx.doi.org/10.1007/s11148-019-00326-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Shchekina, T. I., A. M. Batanova, T. N. Kurbyko, A. N. Pyrikov, and B. N. Grigor’ev. "Comparative Study of Chromite-Periclase and Periclase-Carbon Refractory Stability During Reaction with Nickel Production Melts (Experimental Data). 1. Behavior of Chromite-Periclase Refractories in the Presence of Metal-Slag and Slag Melts." Refractories and Industrial Ceramics 55, no. 6 (March 2015): 516–28. http://dx.doi.org/10.1007/s11148-015-9756-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Aksel’rod, L. M., O. V. Kvyatkovskii, I. K. Orlov, I. Ya Prokhorova, Yu S. Rodgol’ts, A. M. Chuklai, L. I. Andrievskikh, et al. "Fabrication Of Periclase-Carbon Refractories With An Antioxidant And Their Testing In A Lining Of A 370-ton Converter." Refractories and Industrial Ceramics 40, no. 5-6 (May 1999): 221–23. http://dx.doi.org/10.1007/bf02762289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kazakov, S. V., D. E. Denisov, E. Ya Litovskii, and Z. I. Tver'yanovich. "A study of the high-temperature transformations of periclase-carbon refractories using the method of X-ray spectral microanalysis." Refractories 30, no. 1-2 (January 1989): 11–14. http://dx.doi.org/10.1007/bf01292531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Suvorov, S. A., and V. V. Kozlov. "Experimental Measurement of the Solubility of Mgo in Metallurgical Slags to Control the Slag-Induced Corrosion of Periclase-Carbon Refractories." Refractories and Industrial Ceramics 55, no. 2 (July 2014): 114–16. http://dx.doi.org/10.1007/s11148-014-9671-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Babenko, A. A., A. N. Smetannikov, and A. G. Upolovnikova. "Influence of basicity and boron oxide content in slags of CaO-SiO2-B2O3-AlO3 system on solubility of periclase-carbon refractories." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 4 (July 9, 2020): 390–95. http://dx.doi.org/10.32339/0135-5910-2020-4-390-395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Chеrnyatevіch, А. G., L. S. Мolchanov, Т. I. Golub, and S. I. Semykin. "TECHNOLOGICAL ANALYSIS OF THE EFFICIENCY OF OPERATION OF PERICLASE-CARBON REFRACTORIES IN LOW-CAPACITY CONVERTERS." Fundamental and applied problems of ferrous metallurgy, no. 35 (2021). http://dx.doi.org/10.52150/2522-9117-2021-35-275-295.

Повний текст джерела
Анотація:
The aim of this study is to establish the functional relationships between different groups of factors of production and the stability of the lining of small-volume converters. At the stage of development of world metallurgy, the oxygen-converter process is the most popular way of producing structural steel. Its main difference is high productivity, which is determined by the duration of maintenance-free periods of smelting units. Under the current conditions, it is possible to increase productivity and reduce the cost of steel production in converters by increasing the stability of refractory linings. Thus it is relevant and necessary to assess the factors influencing the stability of the lining and the search for rational technological conditions for its operation. A statistical analysis over a five-year period of the work of two 50-ton converters with top blowing, which was lined with periclase carbon heat-treated refractories, was conducted. It was established that the dependences of the lining stability on the consumption indicators of charge materials are extreme: the consumption of hot metal at the level of 920-930 kg/t of steel corresponds to the lowest indicators of the lining stability; scrap consumption at the level of 200 - 220 kg/t of steel and lime consumption at the level of 70-75 kg/t of steel correspond to the best working conditions of the lining. Regarding the chemical composition of processed hot metal, the best working conditions of the lining correspond to the content of silicon in it at the level of 0.80-0.85% of the mass and manganese - 0.50-0.60% of the mass. Researches shown that in order to more accurately interpret the impact of certain factors on the stability of the lining of oxygen converters, it is necessary to group factors by organizational and production characteristics and conduct a detailed analysis in each of the groups. According to the results of correlation and regression analysis, the equation was obtained, which allows to predict the stability of the lining of converters with a capacity of 50 tons. The resulting equation can be used in industrial conditions to predict the stability of the lining.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії