Добірка наукової літератури з теми "Percolation de dernier passage"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Percolation de dernier passage".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Percolation de dernier passage"
Kesten, Harry. "Percolation Theory and First-Passage Percolation." Annals of Probability 15, no. 4 (October 1987): 1231–71. http://dx.doi.org/10.1214/aop/1176991975.
Повний текст джерелаHoffman, Christopher. "Geodesics in first passage percolation." Annals of Applied Probability 18, no. 5 (October 2008): 1944–69. http://dx.doi.org/10.1214/07-aap510.
Повний текст джерелаBerger, Quentin, and Niccolò Torri. "Entropy-controlled Last-Passage Percolation." Annals of Applied Probability 29, no. 3 (June 2019): 1878–903. http://dx.doi.org/10.1214/18-aap1448.
Повний текст джерелаLicea, C., C. M. Newman, and M. S. T. Piza. "Superdiffusivity in first-passage percolation." Probability Theory and Related Fields 106, no. 4 (December 13, 1996): 559–91. http://dx.doi.org/10.1007/s004400050075.
Повний текст джерелаDamron, Michael, and Jack Hanson. "Bigeodesics in First-Passage Percolation." Communications in Mathematical Physics 349, no. 2 (September 22, 2016): 753–76. http://dx.doi.org/10.1007/s00220-016-2743-3.
Повний текст джерелаLópez, Sergio I., and Leandro P. R. Pimentel. "Geodesic forests in last-passage percolation." Stochastic Processes and their Applications 127, no. 1 (January 2017): 304–24. http://dx.doi.org/10.1016/j.spa.2016.06.009.
Повний текст джерелаYukich, J. E., and Yu Zhang. "Singularity points for first passage percolation." Annals of Probability 34, no. 2 (March 2006): 577–92. http://dx.doi.org/10.1214/009117905000000819.
Повний текст джерелаKesten, Harry, and Vladas Sidoravicius. "A problem in last-passage percolation." Brazilian Journal of Probability and Statistics 24, no. 2 (July 2010): 300–320. http://dx.doi.org/10.1214/09-bjps032.
Повний текст джерелаAndjel, Enrique D., and Maria E. Vares. "First passage percolation and escape strategies." Random Structures & Algorithms 47, no. 3 (May 23, 2014): 414–23. http://dx.doi.org/10.1002/rsa.20548.
Повний текст джерелаZhang, Yu, and Yunshyong Chow. "Large deviations in first-passage percolation." Annals of Applied Probability 13, no. 4 (November 2003): 1601–14. http://dx.doi.org/10.1214/aoap/1069786513.
Повний текст джерелаДисертації з теми "Percolation de dernier passage"
Ibrahim, Jean-Paul. "Grandes déviations pour des modèles de percolation dirigée et des matrices aléatoires." Phd thesis, Université Paul Sabatier - Toulouse III, 2010. http://tel.archives-ouvertes.fr/tel-00577242.
Повний текст джерелаIbrahim, Jean-Paul. "Grandes déviations pour des modèles de percolation dirigée & pour des matrices aléatoires." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1250/.
Повний текст джерелаIn this thesis, we study two random models: last-passage percolation and random matrices. Despite the difference between these two models, they highlight common interests and phenomena. The last-passage percolation or LPP is a growth model in the lattice plane. It is part of a wide list of growth models and is used to model phenomena in various fields: tandem queues in series, totally asymmetric simple exclusion process, etc. In the first part of this thesis, we focused on LPP's large deviation properties. Later in this part, we studied the LPP's transversal fluctuations. Alongside the work on growth models, we studied another subject that also emerges in the world of physics: random matrices. These matrices are divided into two main categories introduced twenty years apart: the sample covariance matrices and Wigner's matrices. The extent of the scope of these matrices is so large we can meet almost all the sciences: probability, combinatorics, atomic physics, multivariate statistics, telecommunications, representation theory, etc. Among the most studied mathematical objects, we list the joint distribution of eigenvalues, the empirical spectral density, the eigenvalues spacing, the largest eigenvalue and eigenvectors. For example, in quantum mechanics, the eigenvalues of a GUE matrix model the energy levels of an electron around the nucleus while the eigenvector associated to the largest eigenvalue of a sample covariance matrix indicates the direction or the main axis in data analysis. As with the LPP, we studied large deviation properties of the largest eigenvalue for some sample covariance matrices. This study could have applications in statistics. Despite the apparent difference, the random matrix theory is strictly related to directed percolation model. Correlation structures are similar in some cases. The convergence of fluctuations to the famous Tracy-Widom law in both cases illustrates the connection between these two models
Boyer, Alexandre. "Bidimensional stationarity of random models in the plane." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASM011.
Повний текст джерелаIn this PhD thesis, three models have been independently studied. They all have in common to be random models defined in the plane and having a two-dimensional stationarity property. The first one is Hammersley’s stationary model in the quarter plane, introduced and studied by Cator and Groeneboom. We present here a probablistic proof the Gaussian fluctuations in the non-critical case. The second model can be seen as a stationary modification ofO’Connell-Yor’s problem. The proof of its stationarity is obtained by introducing a discretisation of this model, by proving its stationairty and then by observing that this stationarity is preserved in the limit. Finally, the third model is a general class of random systems of horizontal and vertical weighted broken lines on the quarter plane whose distribution are proved to be reversible. This class of systems generalizes several classical processes of the same kind. The noveltycomes here from the introduction of a weight associated with each line
Ciech, Federico. "Models of last passage percolation." Thesis, University of Sussex, 2019. http://sro.sussex.ac.uk/id/eprint/81476/.
Повний текст джерелаDembin, Barbara. "Percolation and first passage percolation : isoperimetric, time and flow constants." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7023.
Повний текст джерелаIn this thesis, we study the models of percolation and first passage percolation on the graph Zd, d≥2. In a first part, we study isoperimetric properties of the infinite cluster Cp of percolation of parameter p>pc. Conditioning on the event that 0 belongs to Cp, the anchored isoperimetric constant φp(n) corresponds to the infimum over all connected subgraph of Cp containing 0 of size at most nd, of the boundary size to volume ratio. We prove that n φp (n) converges when n goes to infinity towards a deterministic constant φp, which is the solution of an anisotropic isoperimetric problem in the continuous setting. We also study the behavior of the anchored isoperimetric constant at pc, and the regularity of the φp in p for p>pc. In a second part, we study a first interpretation of the first passage percolation model where to each edge of the graph, we assign independently a random passage time distributed according to a given law G. This interpretation of first passage percolation models propagation phenomenon such as the propagation of water in a porous medium. A law of large numbers is known: for any given direction x, we can define a time constant µG(x) that corresponds to the inverse of the asymptotic propagation speed in the direction x. We study the regularity properties of the µG in G. In particular, we study how the graph distance in Cp evolves with p. In a third part, we consider a second interpretation of the first passage percolation model where to each edge we assign independently a random capacity distributed according to a given law G. The capacity of G edge is the maximal amount of water that can cross the edge per second. For a given vector v of unit norm, a law of large numbers is known: we can define the flow constant in the direction v as the asymptotic maximal amount of water that can flow per second in the direction v per unit of surface. We prove a law of large numbers for the maximal flow from a compact convex source to infinity. The problem of maximal flow is dual to the problem of finding minimal cutset. A minimal cutset is a set of edges separating the sinks from the sources that limits the flow propagation by acting as a bottleneck: all its edges are saturated. In the special case where G({0})>1-pc, we prove a law of large numbers for the size of minimal cutsets associated with the maximal flow in a flat cylinder, where its top and bottom correspond respectively to the source and the sink
Nakajima, Shuta. "Maximal edge-traversal time in First Passage Percolation." Kyoto University, 2019. http://hdl.handle.net/2433/242581.
Повний текст джерелаRenlund, Henrik. "Recursive Methods in Urn Models and First-Passage Percolation." Doctoral thesis, Uppsala universitet, Matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145430.
Повний текст джерелаOccelli, Alessandra [Verfasser]. "KPZ universality for last passage percolation models / Alessandra Occelli." Bonn : Universitäts- und Landesbibliothek Bonn, 2019. http://d-nb.info/1198933747/34.
Повний текст джерелаMarchand, Régine. "Stricte croissance de la forme asymptotique en percolation de premier passage." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11048.
Повний текст джерелаThéret, Marie. "Grandes déviations pour le flux maximal en percolation de premier passage." Paris 11, 2009. http://www.theses.fr/2009PA112070.
Повний текст джерелаThe object of this thesis is the study of the maximal flow in first passage percolation on the graph Zd for d ≥ 2. Ln the first three parts of the thesis, we are interested in the maximal flow Φ between the top and the bottom of a cylinder and in the maximal flow τ between the boundary of the upper half cylinder and the boundary of the lower half cylinder. A law of large numbers is known for τ when the dimensions of the cylinders go to infinity, and it can be easily extended to Φ in very flat cylinders. As concerns Φ in straight cylinders, a law of large numbers much more difficult to establish has been proved by Kesten in 1987, and improved by Zhang in 2007. Ln the first part of this thesis, we prove that the upper large deviations for τ and Φ in the cases cited above are of volume order. Moreover we obtain the corresponding large deviation principle for Φ in straight cylinders. Ln the second part of the thesis, we show that the lower large deviations of τ and Φ in the same cases are of surface order, and we prove the corresponding large deviation principles. Ln the third part, we consider the case of the dimension two, in which we generalize the law of large numbers, the lower large deviation principle and the study of the order of the upper large deviations to the variable Φ in tilted cylinders. The fourth part of the thesis is devoted to the study of the maximal flow through a connected domain of Rd whose dimensions go to infinity at the same speed in every direction. We prove a law of large numbers for this flow, and we show that its upper large deviations are of volume order whereas its lower large deviations are of surface order. Ln particular, this result applies to tilted cylinders whose dimensions grow isotropically, and hence extends the law of large numbers for Φ proved by Kesten in the case of straight cylinders
Книги з теми "Percolation de dernier passage"
Dilasser, Antoinette. Le passage: Recit (Collection Dernier avis). Julliard, 1993.
Знайти повний текст джерелаMajumdar, Satya N. Random growth models. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.38.
Повний текст джерелаЧастини книг з теми "Percolation de dernier passage"
Kesten, Harry. "First-Passage Percolation." In From Classical to Modern Probability, 93–143. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8053-4_4.
Повний текст джерелаHoward, C. Douglas. "Models of First-Passage Percolation." In Probability on Discrete Structures, 125–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09444-0_3.
Повний текст джерелаZhang, Yu. "Double Behavior of Critical First-Passage Percolation." In Perplexing Problems in Probability, 143–58. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-2168-5_8.
Повний текст джерелаNewman, Charles M. "A Surface View of First-Passage Percolation." In Proceedings of the International Congress of Mathematicians, 1017–23. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9078-6_94.
Повний текст джерелаBenjamini, Itai, Gil Kalai, and Oded Schramm. "First Passage Percolation Has Sublinear Distance Variance." In Selected Works of Oded Schramm, 779–87. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9675-6_26.
Повний текст джерелаAhlberg, Daniel. "Existence and Coexistence in First-Passage Percolation." In Progress in Probability, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60754-8_1.
Повний текст джерелаBasu, Riddhipratim, and Shirshendu Ganguly. "Time Correlation Exponents in Last Passage Percolation." In Progress in Probability, 101–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60754-8_5.
Повний текст джерелаPemantle, R., and Y. Peres. "Planar First-Passage Percolation Times are not Tight." In Probability and Phase Transition, 261–64. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8326-8_16.
Повний текст джерелаHoward, C. Douglas, and Charles M. Newman. "From Greedy Lattice Animals to Euclidean First-Passage Percolation." In Perplexing Problems in Probability, 107–19. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-2168-5_6.
Повний текст джерелаGravner, Janko, and David Griffeath. "Reverse Shapes in First-Passage Percolation and Related Growth Models." In Perplexing Problems in Probability, 121–42. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-2168-5_7.
Повний текст джерелаТези доповідей конференцій з теми "Percolation de dernier passage"
BAIK, JINHO. "Limiting distribution of last passage percolation models." In XIVth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812704016_0032.
Повний текст джерелаM'selmi, Sana. "Lecture croisée du désir dans Hable con ella de Pedro Almodóvar et La Macération de Rachid Boudjedra à travers le motif de l’eau." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.2969.
Повний текст джерела