Добірка наукової літератури з теми "Peptide production pilot plant"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Peptide production pilot plant".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Peptide production pilot plant"
Guo, Minliang, Qingming Hou, Choy L. Hew, and Shen Q. Pan. "Agrobacterium VirD2-Binding Protein Is Involved in Tumorigenesis and Redundantly Encoded in Conjugative Transfer Gene Clusters." Molecular Plant-Microbe Interactions® 20, no. 10 (October 2007): 1201–12. http://dx.doi.org/10.1094/mpmi-20-10-1201.
Повний текст джерелаAlenezi, Faizah N., Ali Chenari Bouket, Hafsa Cherif-Silini, Allaoua Silini, Marcel Jaspars, Tomasz Oszako, and Lassaȃd Belbahri. "Loss of Gramicidin Biosynthesis in Gram-Positive Biocontrol Bacterium Aneurinibacillus migulanus (Takagi et al., 1993) Shida et al. 1996 Emend Heyndrickx et al., 1997 Nagano Impairs Its Biological Control Ability of Phytophthora." Forests 13, no. 4 (March 30, 2022): 535. http://dx.doi.org/10.3390/f13040535.
Повний текст джерелаConic, Vesna, Vladimir Cvetkovski, Milovan Vukovic, and Milena Cvetkovska. "Pilot plant for biohidrometallurgical production of copper." Chemical Industry 63, no. 1 (2009): 51–56. http://dx.doi.org/10.2298/hemind0901051c.
Повний текст джерелаVaquero, C., R. Wendelbo, A. Egizabal, C. Gutierrez-Cañas, and J. López de Ipiña. "Exposure to graphene in a pilot production plant." Journal of Physics: Conference Series 1323 (October 2019): 012005. http://dx.doi.org/10.1088/1742-6596/1323/1/012005.
Повний текст джерелаPOLEDNÍKOVÁ, M., J. VÝBORSKÝ, L. CHLÁDEK, and T. ŠRUMA. "Production using immobilized yeasts on pilot plant scale." Kvasny Prumysl 39, no. 1 (January 1, 1993): 2–7. http://dx.doi.org/10.18832/kp1993001.
Повний текст джерелаEl-Shawarby, Sh I., E. A. El-Zanaty, A. H. El-Refai, F. A. Hamissa, and H. Shaker. "Pilot plant production of SCP from sugarcane bagasse." Biological Wastes 20, no. 4 (January 1987): 273–80. http://dx.doi.org/10.1016/0269-7483(87)90004-8.
Повний текст джерелаLiu, Guang Rui, and Guan Yi Chen. "Pilot Plant of Biodiesel Production from Waste Cooking Oil." Advanced Materials Research 550-553 (July 2012): 687–92. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.687.
Повний текст джерелаReiling, H. E., U. Thanei-Wyss, L. H. Guerra-Santos, R. Hirt, O. Käppeli, and A. Fiechter. "Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa." Applied and Environmental Microbiology 51, no. 5 (1986): 985–89. http://dx.doi.org/10.1128/aem.51.5.985-989.1986.
Повний текст джерелаMann, Horace C., Kenneth E. McGill, and Mark T. Holt. "Pilot-plant production of ammonium polyphosphate sulfate suspension fertilizers." Industrial & Engineering Chemistry Product Research and Development 24, no. 4 (December 1985): 598–603. http://dx.doi.org/10.1021/i300020a020.
Повний текст джерелаDel Rosso, Renato, Paolo Gronchi, and Paolo Centola. "Pilot plant tests for glyoxal production: Reactor thermal behavior." Reaction Kinetics and Catalysis Letters 48, no. 2 (December 1992): 655–61. http://dx.doi.org/10.1007/bf02162722.
Повний текст джерелаДисертації з теми "Peptide production pilot plant"
Ruiz, Medina Tarik. "Plant cell bioreactors for peptide production." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670804.
Повний текст джерелаLa producción de proteínas recombinantes en plantas representa una oportunidad para su obtención y uso comercial. El objetivo principal de esta tesis industrial ha sido el desarrollo de sistemas vegetales de producción de proteínas, eficientes y competitivos a nivel económico, con posibilidades de llevarlas al mercado. Para ello hemos explorado dos sistemas: los cultivos celulares de Daucus carota y las hojas de Nicotiana benthamiana, cada uno con sus ventajas y limitaciones. Como prueba de concepto, ambos sistemas fueron utilizados para la producción de “'insulin-like growth factor 1” (IGF1), un péptido de alto valor añadido para las industrias cosmética y farmacéutica. Se ensayaron varias estrategias innovadoras para mejorar los rendimientos de producción aumentando la expresión génica y para reducir costes de purificación del producto. Además, la actividad biológica de IGF1 y sus derivados producidos en plantas se evaluó en comparación con péptidos sintéticos. Como primera estrategia se ensayaron supresores del silenciamiento de ARN de origen viral para incrementar la expresión génica. En ensayos de expresión transitoria con la proteína verde fluorescente como marcadora, seleccionamos la proteína P1b del ipomovirus Cucumber vein yellowing virus (CVYV). Nuestros resultados con líneas celulares de zanahoria sobreexpresoras de IGF1 o su péptido derivado CPP-IGF1 (variante diseñada para mejorar su penetración en células humanas) mostraron que en combinación con P1b alcanzaban rendimientos de producción 4 veces mayores que las líneas sin el supresor del silencing. Además, los péptidos fueron dirigidos al medio de cultivo para facilitar su aislamiento por simple clarificación. En ensayos de actividad, las fracciones obtenidas confirmaron ser capaces de incrementar la división de fibroblastos humanos. En relación a la estabilidad de la producción, se observó una reducción cercana al 33% después de veintiún ciclos de propagación sucesivos, por lo que se implementó la criopreservación de las líneas transgénicas para mantener los rendimientos de producción originales, y así establecer bancos de líneas celulares para usos futuros. También se desarrolló un sistema de producción transitoria de IGF1 y CPP-IGF1 en hojas de N. benthamiana utilizando un vector derivado del virus del mosaico del tabaco, Tobacco mosaic virus (TMV). Este sistema permitió reducir el tiempo de obtención del péptido activo, aunque en comparación con la producción en líneas celulares la obtención del producto no fue tan sencilla. Con el fin de facilitar la purificación de IGF1 desde matrices vegetales, aplicamos una estrategia innovadora basada en fusiones a oleosina para dirigir la producción a cuerpos lipídicos. Esta tecnología ya había sido utilizada en semillas, pero no en cultivos celulares, y escasamente en hojas. Nuestras observaciones mostraron la presencia de abundantes cuerpos lipídicos en numerosos cultivos celulares, incluyendo los de D. carota, con la excepción de las dos especies modelo analizadas, Nicotiana tabacum y Arabidopsis thaliana. Desafortunadamente, la expresión estable de fusiones a oleosina pareció afectar gravemente el crecimiento de los callos celulares, por lo que se exploró la alternativa de su aplicación a la producción en hojas. Para aumentar la cantidad de cuerpos lipídicos, la producción de las fusiones a oleosina se realizó simultáneamente con inductores de la acumulación de triacilgliceroles, usando elementos clave de su ruta biosintética en A. thaliana: la enzima DGAT1 y el factor de transcripción WRI1. Cuando ambos inductores fueron co-expresados en combinación con fusiones de oleosina e IGF1 en plantas de N. benthamiana, se obtuvo hasta 1 μg/g de IGF1 unida a los cuerpos lipídicos, fácilmente aislable y activo. Nuestro trabajo proporciona evidencias de que la utilización de supresores del silenciamiento de ARN, los vectores virales y la tecnología de oleosinas contribuyen al potencial de las matrices vegetales para la producción de proteínas de interés.
The production of proteins in plant cell cultures and whole plants represents great opportunities to develop products for commercial use. The main objective of this industrial thesis was to develop economic and efficient plant production systems to bring proteins of interest to the market. We explored two different systems, Daucus carota cell cultures and Nicotiana benthamiana leaves, each having advantages and drawbacks depending on the intended use of the products. As a proof of concept, both systems were applied in the production of the human insulin-like growth factor 1 (IGF1), a high value peptide for the cosmetic and therapeutic industries. Innovative strategies to enhance gene expression and to facilitate product purification were used to improve yields and to reduce costs. Moreover, the biological activity of the produced IGF1 and derivatives was evaluated and compared to the chemically synthesized peptides to demonstrate the usefulness of production systems. Our first approach to enhance gene expression and improve peptide yields was with RNA silencing suppressors (RSSs). Using transient expression assays and the green fluorescent protein (GFP) as reporter, we selected the P1b from the Cucumber vein yellowing virus (CVYV) Ipomovirus as the RSSs to enhance gene expression in carrot cell cultures. Our results demonstrated that transgenic lines overexpressing IGF1 or the derivative CPP-IGF1 (a variant tailored to enhance the delivery to human cells) reached up to 4-fold higher peptide yields in combination with P1b than without. The IGF1 or CPP-IGF1 was targeted to the culture media being easily purified by simple clarification of suspensions. Moreover, we found that the media containing the produced IGF1 or CPP-IGF1 stimulated the division of human fibroblasts. A cryopreservation process was applied to the transgenic lines to avoid the reduction in peptide production found over successive propagation cycles. This allowed us to recover the original yields, opening up the possibility of establishing master cell banks. We also developed a transient production system of IGF1 and CPP-IGF1 using N. benthamiana leaves and a derived tobacco mosaic virus vector. This system resulted in similar yields of active peptides to cell cultures with the main advantage of shortening production times, although requiring more complex downstream purification. Our innovative strategy to facilitate the purification of IGF1 from plant matrices was the use of oleosin fusion technology for lipid droplet (LDs) targeting. This technology has been previously used in LD-rich seeds, but unexplored in plant cell cultures or LD-poor tissues such as leaves. Our work showed that model cell cultures from Nicotiana tabacum or Arabidopsis thaliana were an exception, as many other plant cell cultures, including D. carota cells, do contain a large number of LDs and are susceptible to produce oleosin fusion proteins. However, as the stable expression of oleosin fusions severely affected callus cell growth, we tested the technology in transient expression in leaves. Due to the low level of LDs in leaves, oleosin fusion proteins production was in combination with triacylglycerol (TAG) induction to increase LD content simultaneously. For this purpose, key components of the TAG biosynthetic pathway, A. thaliana derived elements such as the enzyme DGAT1 and the regulatory factor WRI1 were co-expressed with the IGF1 oleosin fusion proteins in N. benthamiana leaves. Using this strategy, we obtained yields up to 1 μg/g of IGF1 bound to LDs, easily purified and fully active. Our work provides evidence of the potential of plant matrices to produce valuable peptides. Also, the oleosin technology, the use of RSSs and viral vectors explored will serve to overcome some of the known limitations of plant systems to produce active products of industrial interest.
Jiménez, Peñalver Pedro. "Sophorolipids production by solid-state fermentation: from lab-scale to pilot plant." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458652.
Повний текст джерелаEn este trabajo se propone una tecnología alternativa para producir soforolípidos (SLs), un tipo de biosurfactante, presentados como alternativa a los surfactantes producidos químicamente debido a su mayor eficiencia y mejor perfil medioambiental. En este trabajo se han explorado dos estrategias para mejorar la relación coste-eficiencia de los SLs respecto a los surfactantes producidos químicamente, que es lo que determina su viabilidad económica. Ambas estrategias están basadas en la producción de SLs mediante la fermentación en estado sólido (FES) de Starmerella bombicola. La primera estrategia consistió en el uso de un residuo de winterización (RW) con el fin de disminuir el precio de los sustratos. Se utilizó melaza de azúcar como co-sustrato y paja de trigo como soporte inerte. El proceso fue optimizado en base a la ratio de sustratos, la velocidad de aireación y el tamaño del inóculo a escala de 100-g obteniendo un rendimiento de 0.261 g de SLs por g de sustrato a día 10. El proceso fue escalado satisfactoriamente a un biorreactor de lecho fijo de 40-L, pero se observaron problemas asociados con la eliminación del calor durante el escalado a un biorreactor de 100-L. Los SLs producidos a partir del RW fueron caracterizados durante una estancia en el Rensselaer Polytechnic Institute (RPI) en NY, EEUU. La segunda estrategia consistió en el uso de ácido esteárico (C18:0) para obtener SLs con una estructura específica que mejore las propiedades fisicoquímicas de la mezcla natural de SLs y, por tanto, su eficiencia. Se utilizó melaza de azúcar como co-sustrato y espuma de poliuretano como soporte inerte. Se evaluó el efecto de la densidad de la espuma de poliuretano y la capacidad de retención hídrica y el proceso fue optimizado en base a la ratio de sustratos e inóculo obteniendo un rendimiento final de 0.211 g de SLs por g de sustrato. Los SLs producidos presentaron contenidos elevados de SLs diacetilados C18:0 acídico y lactónico. Se observaron correlaciones significativas entre el rendimiento de SLs y el oxígeno consumido (COA). Esto sugiere que el COA puede ser usado como medida indirecta de la producción de SLs para la monitorización on-line de procesos de FES. Esta tesis representa el comienzo de una nueva línea de investigación centrada en la producción de SLs por FES en el Grupo de Investigación en Compostaje (GICOM) del Departamento de Ingeniería Química, Biológica y Ambiental de la Universitat Autònoma de Barcelona.
This work proposes a potential alternative approach to produce sophorolipids (SLs), a type of biosurfactant, which are presented as an alternative to chemically-produced surfactants due to their higher efficiency and better environmental compatibility. Two strategies have been performed in this work to increase their cost-performance relative to petroleum based surfactants, which determines their commercial viability. Both are based in the production of SLs by the solid-state fermentation (SSF) of solid hydrophobic substrates by the yeast Starmerella bombicola. The first strategy was to use winterization oil cake (WOC), an oil cake that comes from the oil refining industry, to decrease the price of the substrates and, therefore, the final production costs of SLs. Sugar-beet molasses was used as co-substrate and wheat straw was chosen as inert support. The process was optimized in terms of substrates ratio, aeration rate and inoculum size at 0.5-L scale to obtain a yield of 0.261 g of SLs per g of substrate at day 10. The optimized process was successfully scale-up to a 40-L packed-bed bioreactor but problems associated with heat removal were found during the scale-up to a 100-L intermittently-mixed bioreactor. The chemical structure and interfacial properties of the SL natural mixture produced from the WOC were studied during a research stay at the Rensselaer Polytechnic Institute (RPI) in NY, USA. The second strategy consisted in the use of stearic acid (C18:0) to obtain SLs with a specific structure that improves the physicochemical properties of the SL natural mixture and, therefore, their performance. Sugar-beet molasses was used as co-substrate and polyurethane foam (PUF) functioned as inert support. The effect of PUF density and water holding capacity was assessed and the process was optimized in terms of substrate and inoculum ratio to obtain a final yield of 0.211 g of SLs per g of substrate. SLs produced herein had high contents of diacetylated acidic and lactonic C18:0 SLs. There were significant correlations between the SL yield and the oxygen consumed (COC). This suggests that the respiration parameter COC, can be used as an indirect measurement of the production of SLs for the on-line monitoring of SSF processes. This thesis represents the beginning of a new research line focused on the production of SLs by SSF in the Composting Research Group (GICOM) at the Department of Chemical, Biological and Environmental Engineering of the Universitat Autònoma de Barcelona.
Briano, Lucía Benavente. "Production of ellagitannins concentrate by UF-NF from tropical highland blackberries." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10420.
Повний текст джерелаTropical highland blackberries are produced in Costa Rica and other tropical countries. Since weather conditions in tropical regions are more stressful than in temperate ones, polyphenol content in blackberries is hypothetically higher for tropically grown fruits. Ellagitannins are hydrolysable tannins – polyphenols – that have been studied lately due to their health beneficial properties, such as antioxidants, cancer treatment agents and cardiovascular health improvers. The concentration of such components by low-ultrafiltration/nanofiltration technologies is of great interest since low processing temperatures are used. Therefore, thermal labile components are not lost due to heat. CITA and CIRAD have issued a patent for using membrane technologies for the production of fruit juices and concentrate by using mostly membrane technology. The results show that it is possible to concentrate ellagitannins in blackberry up to a concentration 5-times higher than the one in the initial clarified juice with a ceramic membrane at 30ºC, with a VRF of 11. Retentions of up to 99 % were obtained for anthocyanins and ellagitannins. The initial estimate of production cost per kilogram of product is of 34 U$S/kg and assuming a sales price of 72 U$S/kg of product the payback time for an investment of nearly 165,000 U$S and a consumption of 2000 kg/day of blackberries is of two and a half months. The preliminary stability study showed that there is a need for further stabilization steps in order to assure the quality of concentrate, since polyphenol content decreased by 28%, anthocyanins by 52% and the ellagitannin estimate reduction percentage was of 22%, for a storage at 37ºC for a 5-week period. All in all, it was possible to study the concentration of ellagitannins from blackberry clarified juice in a pilot scale.
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universities
Koumoutsi, Alexandra. "Functional genome analysis of the plant-growth promoting bacterium Bacillus amyloliquefaciens strain FZB42; characterizing its production and regulation of nonribosomal peptide synthetases." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983473870.
Повний текст джерелаHemlin, Hanna, and Nektaria Lalangas. "Production of Biochar Through Slow Pyrolysis of Biomass: Peat,Straw, Horse Manure and Sewage Sludge." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246042.
Повний текст джерелаD'Ercole, Annunziata. "Development and scale-up of synthetic strategies for exotic macrocyclisation to increase druggability of peptides as active pharmaceutical ingredients of industrial interest." Doctoral thesis, 2022. http://hdl.handle.net/2158/1264636.
Повний текст джерелаCoimbra, Inês Alves. "Support in microalgae pilot scale production plant." Master's thesis, 2019. http://hdl.handle.net/10400.26/32902.
Повний текст джерелаYumba, Nomsa. "A review of legislative and safety requirements for running the titanium-production pilot plant at Anglo Research." Thesis, 2009. http://hdl.handle.net/10539/6932.
Повний текст джерелаKutama, Makonde. "The construction and evaluation of a novel tubular photobioreactor at a small pilot plant scale." Thesis, 2012. http://hdl.handle.net/10352/266.
Повний текст джерелаThe mass production of algae for commercial purposes has predominately been carried out in open ponds systems. However, open ponds systems have a number of disadvantages such as poor light utilization, requirement for large areas of land and high risks of contamination. On the other hand, photobioreactors have attracted much interest because they allow a better control of the cultivation conditions than open systems. With photobioreactors, higher biomass productivities are obtained and contamination can be easily prevented. Photobioreactors can also be engineered to manipulate the light and dark photosynthetic reactions thus enhancing biomass productivity. The main objective of this study was to construct a novel tubular photobioreactor which had the ability to expose the cultured alga to light and dark phases with the aim of optimizing the algal biomass production. A novel tubular photobioreactor with the ability to manipulate the cultured alga’s light and dark photosynthetic reactions was constructed in this study. The alga Spirulina platensis was chosen as the test organism in this novel tubular photobioreactor due to a number of reasons such as its globally socioeconomic importance, its tolerance of higher pH and temperature values which makes it almost impossible to contaminate. The cultivation process of Spirulina in the photobioreactor was investigated through alternating light and dark cycles in an attempt to increase the photosynthetic efficiency of the culture. The effect of different light intensities on the growth of Spirulina in the novel tubular photobioreactor was investigated and it was found that the best light condition that favored higher biomass formation was at 600 μ mol m-2 s-1. Five different light/ dark ratios were evaluated at a light intensity of 600 μ mol m-2 s-1 during a batch mode of operation of the novel tubular photobioreactor. The light/ dark ratio of 1:0.25 was found to be the best ratio because it gave the highest biomass in the shortest period of time when compared to the other ratios used. These results seem to suggest that longer light cycle relative to dark cycle results in higher biomass production. The ratio of 1:0.25 was then used to operate the novel tubular photobioreactor in a continuous mode. A maximum biomass productivity of 25 g/m2/day was achieved which corresponded to a net photosynthetic efficiency of 5.7 %. This result was found to be higher than what most photobioreactors could achieve but it was 2.8 g/m2/day lower than the highest ever reported productivity in a photobioreactor when Spirulina is cultivated. The 2.8 g/m2/day lower was attributed to the different materials used in the construction of these two photobioreactors. The photobioreactor which achieved 27.8 g/m2/day was made up of a clear glass whereas the novel tubular photobioreactor was made up of a PVC tubing. PVC tubes tend to change from clear to a milky colour after a certain period when it is used at higher temperature and pH values hence blocks a certain amount of light. Therefore the main recommendation in this study is to use a PVC tubing with a longer life span when used at a higher temperature and pH values.
Koumoutsi, Alexandra [Verfasser]. "Functional genome analysis of the plant-growth promoting bacterium Bacillus amyloliquefaciens strain FZB42; characterizing its production and regulation of nonribosomal peptide synthetases / Alexandra Koumoutsi." 2006. http://d-nb.info/983473870/34.
Повний текст джерелаКниги з теми "Peptide production pilot plant"
Silva, Matthew. Implications of the presence of petroleum resources on the integrity of the WIPP. Albuquerque, N.M: Environmental Evaluation Group, 1994.
Знайти повний текст джерелаCentral Intelligence Agency. Proposed Pilot Plant for Production of Octyl-Alcohal Utilizing Oxosynthesis Process/East German Oxosyntheses Progess at Ig Farban Works. Creative Media Partners, LLC, 2021.
Знайти повний текст джерелаЧастини книг з теми "Peptide production pilot plant"
Vereijken, P., and H. Kloen. "Innovative Research with Ecological Pilot Farmers." In Plant Production on the Threshold of a New Century, 37–56. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1158-4_4.
Повний текст джерелаIgboanugo, A. C., and S. Amiebenomo. "Design of Process Layout for a Pilot Alkyd Resin Production Plant." In Advanced Materials Research, 435–41. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-450-2.435.
Повний текст джерелаShoda, Makoto. "Genetic Analysis of B. subtilis Related with Production of Three Peptide Substances." In Biocontrol of Plant Diseases by Bacillus subtilis, 137–80. Boca Raton, Florida : CRC Press, 2019. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429027635-6.
Повний текст джерелаMoulton, T. P., L. J. Borowitzka, and D. J. Vincent. "The mass culture of Dunaliella salina for β-carotene: from pilot plant to production plant." In Twelfth International Seaweed Symposium, 99–105. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4057-4_14.
Повний текст джерелаTancredi, Giovanni, Eleonora Bottani, and Giuseppe Vignali. "Digital Twin Application for the Temperature and Steam Flow Monitoring of a Food Pasteurization Pilot Plant." In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, 612–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85902-2_65.
Повний текст джерелаRoggero, P., M. Sohn, Anna Maria Vaira, Cornelia Heinze, Vera Masenga, and G. Adam. "Production of antibodies against a synthetic peptide based on a sequence common to all tospovirus non-structural NsS protein." In Developments in Plant Pathology, 149–54. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_31.
Повний текст джерелаWood-Black, Frankie. "Considerations for Scale-Up – Moving from the Bench to the Pilot Plant to Full Production." In ACS Symposium Series, 37–45. Washington, DC: American Chemical Society, 2014. http://dx.doi.org/10.1021/bk-2014-1163.ch003.
Повний текст джерелаKadier, Abudukeremu, Rustiana Yuliasni, S. M. Sapuan, R. A. Ilyas, Pankaj Kumar Rai, Peng Cheng Ma, Aruliah Rajasekar, Khulood Fahad Saud Alabbosh, Aidil Abdul Hamid, and Hassimi Abu Hasan. "The Role of Microbial Electrolysis Cell in Bioenergy Production: Current Applications and Pilot Plant Experiences." In Bioelectrochemical Systems, 323–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6868-8_15.
Повний текст джерелаFisher, Lawrence E., Charles Dvorak, Keena Green, Samantha Janisse, Anthony Prince, Keshab Sarma, Paul McGrane, et al. "Synthesis of RO 113-0830, a Matrix Metalloproteinase Inhibitor: From Research Scheme to Pilot-Plant Production." In ACS Symposium Series, 89–100. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0817.ch006.
Повний текст джерелаLucchesi, Aldo, Giuseppe Maschio, Cosimo Rizzo, and Giusto Stoppato. "A Pilot Plant for the Study of the Production of Hydrogen-Rich Syngas by Gasification of Biomass." In Research in Thermochemical Biomass Conversion, 642–54. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_49.
Повний текст джерелаТези доповідей конференцій з теми "Peptide production pilot plant"
Duwig, Christophe, Jan Fredriksson, and Torsten Fransson. "Production of Simulated Gasified Biomass for Pilot Plant Applications." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0368.
Повний текст джерелаAdeyeri, Michael K., Khumbulani Mpofu, Sesan P. Ayodeji, and Adeola O. Borode. "Animated Simulation of Pilot Soya Beans Oil Production Process Plant." In Environment and Water Resource Management. Calgary,AB,Canada: ACTAPRESS, 2014. http://dx.doi.org/10.2316/p.2014.813-026.
Повний текст джерелаBautista, Zosimo Ismael Bautista, Jose Angel Mejia Dominguez, and Oscar Arturo Gonzalez Vargas. "Control and Automation of an Oxyethylene production tests Pilot Plant." In 2021 16th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 2021. http://dx.doi.org/10.23919/cisti52073.2021.9476442.
Повний текст джерелаChinedu, Louis Onwulri. "Multi-Purpose Dryer Pilot Plant." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79559.
Повний текст джерелаFailaka, Muhamad Fariz, Nadia Zahrotul Firdausi, Chairunnisa, and Ali Altway. "Research and development in pilot plant production of granular NPK fertilizer." In INTERNATIONAL SEMINAR ON FUNDAMENTAL AND APPLICATION OF CHEMICAL ENGINEERING 2016 (ISFAChE 2016): Proceedings of the 3rd International Seminar on Fundamental and Application of Chemical Engineering 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4982294.
Повний текст джерелаZiari Kerboua, Yasmina, Lofti Ziani, Bouziane Mahmah, and Ahmed Benzaoui. "Dimensioning and Simulation of a Pilot Plant for Solar Hydrogen Production." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24507.
Повний текст джерелаWU, LI-GANG, JI-HUA FAN, QING-QI ZHANG, HUI-HUI ZHU, ZHENG-KAI XU, ZHI-AI ZHOU, and YONG XIE. "PRODUCTION OF VACCINE IN PLANT EXPRESSION OF FMDV PEPTIDE VACCINE IN TOBACCO USING A PLANT VIRUS BASED VECTOR." In International Seminar on Nuclear War and Planetary Emergencies 25th Session. Singapore: World Scientific Publishing Co. Pte. Ltd., 2001. http://dx.doi.org/10.1142/9789812797001_0063.
Повний текст джерелаMiller, Jeffrey A., Alonzo Wm Lawrence, Robert F. Hickey, and Thomas D. Hayes. "Pilot Plant Treatment of Natural Gas Produced Waters to Meet Beneficial Use Discharge Requirements." In SPE/EPA Exploration and Production Environmental Conference. Society of Petroleum Engineers, 1997. http://dx.doi.org/10.2118/37903-ms.
Повний текст джерелаMoulford, W. E. F. L., A. R. Martin, P. W. Cains, P. D. Martin, and G. Tan. "A Preliminary Design of a Pilot Plant for the Production of Lunar Oxygen." In Fifth International Conference on Space. Reston, VA: American Society of Civil Engineers, 1996. http://dx.doi.org/10.1061/40177(207)103.
Повний текст джерелаWieckert, C., E. Guillot, M. Epstein, G. Olalde, S. Sante´n, U. Frommherz, S. Kra¨upl, T. Osinga, and A. Steinfeld. "A 300 kW Solar Chemical Pilot Plant for the Carbothermic Production of Zinc." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99027.
Повний текст джерелаЗвіти організацій з теми "Peptide production pilot plant"
Carrell, E. 10 MWe Solar Thermal Central Receiver Pilot Plant: 1984 summer solstice power production test. Office of Scientific and Technical Information (OSTI), May 1985. http://dx.doi.org/10.2172/5885607.
Повний текст джерелаRadosevich, L. G. An analysis of power production performance for solar one, the 10 MWe Solar Thermal Central Receiver Pilot Plant. Office of Scientific and Technical Information (OSTI), June 1987. http://dx.doi.org/10.2172/6523571.
Повний текст джерелаRadosevich, L. Final report on the power production phase of the 10 MW/sub e/ Solar Thermal Central Receiver Pilot Plant. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/7120228.
Повний текст джерелаAlig, Robert, David Burton, Elliot Kennel, and Max Lake. Development of pilot plant for the production of vapor grown carbon fiber from Ohio coal. Final report, July 1997 to July 2000. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/1185202.
Повний текст джерелаMitchell, Brian G., Amir Neori, Charles Yarish, D. Allen Davis, Tzachi Samocha, and Lior Guttman. The use of aquaculture effluents in spray culture for the production of high protein macroalgae for shrimp aqua-feeds. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597934.bard.
Повний текст джерелаShoseyov, Oded, Steven A. Weinbaum, Raphael Goren, and Abhaya M. Dandekar. Biological Thinning of Fruit Set by RNAase in Deciduous Fruit Trees. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568110.bard.
Повний текст джерелаReisch, Bruce, Avichai Perl, Julie Kikkert, Ruth Ben-Arie, and Rachel Gollop. Use of Anti-Fungal Gene Synergisms for Improved Foliar and Fruit Disease Tolerance in Transgenic Grapes. United States Department of Agriculture, August 2002. http://dx.doi.org/10.32747/2002.7575292.bard.
Повний текст джерелаHorwitz, Benjamin A., and Barbara Gillian Turgeon. Fungal Iron Acquisition, Oxidative Stress and Virulence in the Cochliobolus-maize Interaction. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7709885.bard.
Повний текст джерелаLoebenstein, Gad, William Dawson, and Abed Gera. Association of the IVR Gene with Virus Localization and Resistance. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7604922.bard.
Повний текст джерела