Добірка наукової літератури з теми "Penalized log-likelihood criterion"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Penalized log-likelihood criterion".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Penalized log-likelihood criterion"
Gao, Yongfeng, Siming Lu, Yongyi Shi, Shaojie Chang, Hao Zhang, Wei Hou, Lihong Li, and Zhengrong Liang. "A Joint-Parameter Estimation and Bayesian Reconstruction Approach to Low-Dose CT." Sensors 23, no. 3 (January 26, 2023): 1374. http://dx.doi.org/10.3390/s23031374.
Повний текст джерелаTang, Jiarui, An-Min Tang, and Niansheng Tang. "Variable selection for joint models of multivariate skew-normal longitudinal and survival data." Statistical Methods in Medical Research, July 5, 2023. http://dx.doi.org/10.1177/09622802231181767.
Повний текст джерелаPluntz, Matthieu, Cyril Dalmasso, Pascale Tubert‐Bitter, and Ismaïl Ahmed. "A Simple Information Criterion for Variable Selection in High‐Dimensional Regression." Statistics in Medicine, December 12, 2024. https://doi.org/10.1002/sim.10275.
Повний текст джерелаLeonardi, Florencia, Rodrigo Carvalho, and Iara Frondana. "Structure recovery for partially observed discrete Markov random fields on graphs under not necessarily positive distributions." Scandinavian Journal of Statistics, August 2, 2023. http://dx.doi.org/10.1111/sjos.12674.
Повний текст джерелаДисертації з теми "Penalized log-likelihood criterion"
Aubert, Julien. "Théorie de l'estimation pour les processus d'apprentissage." Electronic Thesis or Diss., Université Côte d'Azur, 2025. http://www.theses.fr/2025COAZ5001.
Повний текст джерелаThis thesis considers the problem of estimating the learning process of an individual during a task based on observed choices or actions of that individual. This question lies at the intersection of cognition, statistics, and reinforcement learning, and involves developing models that accurately capture the dynamics of learning, estimating model parameters, and selecting the best-fitting model. A key difficulty is that learning, by nature, leads to non-independent and non-stationary data, as the individual selects its actions depending on the outcome of its previous choices.Existing statistical theories and methods are well-established for independent and stationary data, but their application to a learning framework introduces significant challenges. This thesis seeks to bridge the gap between empirical methods and theoretical guarantees in computational modeling. I first explore the properties of maximum likelihood estimation on a model of learning based on a bandit problem. I then present general theoretical results on penalized log-likelihood model selection for non-stationary and dependent data, for which I develop a new concentration inequality for the suprema of renormalized processes. I also introduce a hold-out procedure and theoretical guarantees for it in a learning framework. These theoretical results are supported with applications on synthetic data and on real cognitive experiments in psychology and ethology
Частини книг з теми "Penalized log-likelihood criterion"
Dawid, A. P. "Prequential Analysis, Stochastic Complexity and Bayesian Inference." In Bayesian Statistics 4, 109–26. Oxford University PressOxford, 1992. http://dx.doi.org/10.1093/oso/9780198522669.003.0007.
Повний текст джерелаAnderson, Raymond A. "Stats & Maths & Unicorns." In Credit Intelligence & Modelling, 405–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.003.0011.
Повний текст джерела