Добірка наукової літератури з теми "Pellet injection"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pellet injection".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pellet injection":

1

Nagami, M. "Pellet injection." Nuclear Fusion 33, no. 10 (October 1993): 1583–87. http://dx.doi.org/10.1088/0029-5515/33/10/413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wingen, A., B. C. Lyons, R. S. Wilcox, L. R. Baylor, N. M. Ferraro, S. C. Jardin, and D. Shiraki. "Simulation of pellet ELM triggering in low-collisionality, ITER-like discharges." Nuclear Fusion 61, no. 12 (November 18, 2021): 126059. http://dx.doi.org/10.1088/1741-4326/ac34d7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract 3D nonlinear, as well as 2D linear M3D-C1 simulations are used to model ELM triggering by small pellets in DIII-D discharges in the ITER relevant, peeling-limited pedestal stability regime. A critical pellet size threshold is found in both experiment and modeling depending on pedestal conditions, pellet velocity and injection direction. Using radial injection at the outboard midplane, the threshold is determined by M3D-C1 for multiple time slices of a DIII-D low-collisionality discharge that has pellet ELM triggering. Experimental observations show that a larger pellet size than the standard 1.3 mm diameter is necessary for ELM triggering; 1.8 mm pellets triggered several ELMs in cases where a smaller pellet failed. The M3D-C1 simulations are in good agreement with these observations. While the 2D linear simulations give insight into the change of growth rates for various toroidal modes with pellet size, the 3D nonlinear simulations apply a pellet ablation model that mimics the actual injection with good match to the experiment. The 3D nonlinear simulation confirms the pellet ELM triggering for a pellet size larger than the threshold found by the linear simulations.
3

Szepesi, Tamás, Albrecht Herrmann, Gábor Kocsis, Ádám Kovács, József Németh, and Bernhard Ploeckl. "Table-top pellet injector (TATOP) for impurity pellet injection." Fusion Engineering and Design 96-97 (October 2015): 707–11. http://dx.doi.org/10.1016/j.fusengdes.2015.01.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Combs, S. K. "Pellet injection technology." Review of Scientific Instruments 64, no. 7 (July 1993): 1679–98. http://dx.doi.org/10.1063/1.1143995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kovács, Á., S. Zoletnik, D. Réfy, G. Papp, S. Hegedűs, T. Szepesi, E. Walcz, et al. "Acceleration of cryogenic pellets for Shattered Pellet Injection." Fusion Engineering and Design 202 (May 2024): 114303. http://dx.doi.org/10.1016/j.fusengdes.2024.114303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sheikh, U. A., D. Shiraki, R. Sweeney, P. Carvalho, S. Jachmich, E. Joffrin, M. Lehnen, et al. "Disruption thermal load mitigation with shattered pellet injection on the Joint European Torus (JET)." Nuclear Fusion 61, no. 12 (November 12, 2021): 126043. http://dx.doi.org/10.1088/1741-4326/ac3191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Disruption mitigation remains a critical, unresolved challenge for ITER. To aid in addressing this challenge, a shattered pellet injection (SPI) system was installed on JET and experiments conducted at a range of thermal energy fractions and stored energies in excess of 7 MJ. The primary goals of these experiments were to investigate the efficacy of the SPI on JET and the ability of the plasma to assimilate multiple pellets. Single pellet injections produced a saturation in total radiated energy (W rad) with increasing injected neon content, suggesting total radiation of stored thermal energy. Further increases in injected neon quantities resulted in reduced cooling times and current quench (CQ) durations, indicating higher impurity assimilation. No significant variation in CQ duration or W rad was observed when varying the deuterium content at fixed neon quantities. Higher assimilation, inferred by shorter CQ durations, was measured when a mechanical punch was used to launch the pellets and this was attributed to a lower pellet velocity leading to higher solid content in the pellet plume and larger fragments penetrating deeper into the plasma. Radiation asymmetries averaged over the cooling time were inferred from Emis3D and ranged from 1.6 to 1.9. Asymmetries averaged over the entire disruption sequence were found to increase at higher thermal energy fractions. The radiated energy fractions decreased with increasing thermal energy fractions but this trend was eliminated when toroidal asymmetries were accounted for with Emis3D. Pure deuterium pellets were able to produce cooling times of up to 75 ms with a gradual loss in thermal stored energy of up to 80%. Experiments with multiple pellet injection indicated W rad can be increased through pellet superposition and density can be increased with an additional D2 injection without a reduction in W rad. KPRAD modelling accurately reproduced the cooling times and the CQ duration at high thermal energies. Assimilation estimates from KPRAD indicated CQ rates scale strongly whilst W rad scales weakly and saturates with assimilated neon content. Comparable W rad can be achieved with lower assimilated neon quantities as longer cooling times are attained. Thus reduced neon content can be preferential in a thermal load mitigation scheme as it may reduce radiation asymmetries and prevent flash melting.
7

Mori, Y., K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, Y. Nishimura, O. Komeda, et al. "Ten hertz bead pellet injection and laser engagement." Nuclear Fusion 62, no. 3 (February 3, 2022): 036028. http://dx.doi.org/10.1088/1741-4326/ac3d69.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A laser inertial fusion energy (IFE) reactor requires repetitive injection of fuel pellets and laser engagement to fuse fusion fuel beyond a few Hz. We demonstrate 10 Hz free-fall bead pellet injection and laser engagement with γ-ray generation. Deuterated polystyrene beads with a diameter of 1 mm were engaged by counter illuminating ultra-intense laser pulses with an intensity of 5 × 1017 W cm−2 at 10 Hz. The spatial distribution of free-fall beads was 0.86 mm in the horizontal direction and 0.18 mm in the vertical direction. The system operated for more than 5 min and 3500 beads were supplied with achieved frequencies of 2.1 Hz for illumination on the beads and 0.7 Hz for γ-ray generation; these frequencies were three times greater than with the previous 1 Hz injection system. The duration of operation was limited by the pellet supply. This injection and engagement system could be used for laser IFE research platforms.
8

Sudo, Shigeru. "Vision of pellet injection experiments." Kakuyūgō kenkyū 55, no. 3 (1986): 272–82. http://dx.doi.org/10.1585/jspf1958.55.272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

McFarlane, JD, GJ Judson, RK Turnbull, and BR Kempe. "An evaluation of copper-containing soluble glass pellets, copper oxide particles and injectable copper as supplements for cattle and sheep." Australian Journal of Experimental Agriculture 31, no. 2 (1991): 165. http://dx.doi.org/10.1071/ea9910165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The efficacy of 3 copper (Cu) supplements in maintaining adequate Cu status in Shorthorn heifers and Merino wethers was investigated in 3 experiments on alkaline peat soils in the South East of South Australia. The Cu supplements used were: soluble glass pellets containing Cu; copper oxide particles (CuO); Cu as a subcutaneous injection. Pasture contained moderate to high concentrations of molybdenum (Mo) (2.9-12.3 mg/kg), moderate Cu (3.8-8.7 mg/kg) and adequate sulfur (>1.7 g/kg) to limit the absorption of dietary Cu in ruminants. Shorthom heifers with normal Cu status were given 1 of 6 treatments (no Cu; 2 glass pellets; CuO at 3 doses; Cu injection) and introduced to the pasture (experiment 1). There was no liveweight response to any supplement. Relative to untreated heifers, mean liver Cu concentrations were raised only in heifers receiving the glass pellets or the highest dosage of CuO (20 g). The glass pellets maintained an adequate mean liver Cu concentration for at least 44 weeks but the CuO was effective for less than 24 weeks. Hypocupraemic heifers given 1 of 3 treatments (2 glass pellets; CuO; Cu injection) were significantly heavier (P<0.05) than the untreated heifers after 30 weeks (experiment 2). Mean plasma Cu concentrations were adequate at 30 weeks in the glass pellet and CuO groups, but mean liver concentrations indicated severe deficiency in all groups at 30 weeks. There was considerable individual variability in response to the glass pellet and CuO particle treatments, possibly due to the partial regurgitation of some of these orally dosed supplements. Merino wethers with adequate plasma and liver Cu concentrations received 1 of 5 treatments (no Cu; 1 glass pellet; 2 glass pellets; CuO; Cu injection) and were then grazed on a peat soil for a period of 1 year. Plasma Cu concentrations in the control group only indicated hypocupraemia at week 42. Liver Cu concentrations were higher (P<0.001) in all supplemented groups from week 18 to after week 30. Under the conditions of the experiments, 20 g CuO (the suggested dose) for the glass pellets or a single Cu injection were not sufficient to maintain the Cu status of heifers for 1 year. Repeat treatments or higher dose rates were required. The recommended dose rates of the supplements were adequate for wethers.
10

Yuan, Shaohua, Nizar Naitlho, Roman Samulyak, Bernard Pégourié, Eric Nardon, Eric Hollmann, Paul Parks, and Michael Lehnen. "Lagrangian particle simulation of hydrogen pellets and SPI into runaway electron beam in ITER." Physics of Plasmas 29, no. 10 (October 2022): 103903. http://dx.doi.org/10.1063/5.0110388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Numerical studies of the ablation of pellets and shattered pellet injection (SPI) fragments into a runaway electron beam in ITER have been performed using a time-dependent pellet ablation code [Samulyak et al., Nucl. Fusion, 61(4), 046007 (2021)]. The code resolves detailed ablation physics near pellet fragments and large-scale expansion of ablated clouds. The study of a single-fragment ablation quantifies the influence of various factors, in particular, the impact ionization by runaway electrons and cross-field transport models, on the dynamics of ablated plasma and its penetration into the runaway beam. Simulations of SPI performed using different numbers of pellet fragments study the formation and evolution of the ablation clouds and their large-scale dynamics in ITER. The penetration depth of the ablation clouds is found to be of the order of 50 cm.

Дисертації з теми "Pellet injection":

1

Böse, Brock (Brock Darrel). "Lithium pellet injection into high pressure magnetically confined plasmas." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 195-201).
The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High speed imaging of the ablation (> 250, 000 frames/second) during the 2003-2004 campaign revealed that these filament move away from the pellet primarily in the poloidal direction with a characteristic speeds of ~ 5km/s. Significant differences appeared in the filament drifts in RF heated H-mode plasmas compared to ohmic L-mode plasmas. Filaments in ohmic L-mode plasmas moved in both the electron and ion diamagnetic directions while filaments in H-mode move only in the electron diamagnetic direction. Furthermore, the motion of the filaments in L-mode plasmas appeared to be semi-random, with the direction changing randomly from shot to shot, but with a distinct preferred direction during each shot. The susceptibility of the filament's motion to variations in the background plasma conditions indicate that the drift is a result of interactions with the background plasma, and not a result of the internal dynamics of the ablation cloud. Furthermore, the chaotic, or semi-random, nature of the filament drift suggests that the drift could be due to ExB flows resulting from plasma turbulence. A stereoscopic imaging system was installed on Alcator C-Mod to make a detailed study of three dimensional evolution of the filaments. By examining a large number of pellet injections into ohmically heated L-mode plasmas, we were able to demonstrate that filaments do indeed move primarily along flux surfaces, and that the filament flow direction is correlated for sequential filaments. Additionally, a statistical examination of the trajectory data revealed that filaments have a wider distribution of speeds at lower values of the local safety factor, q. The measurements of the stereo-imaging system were compared with the implied turbulent ExB drifts determined by the gyrokinetic solver GYRO. Simulations conducted using profiles consistent with both pre-pellet and post-pellet conditions demonstrate that the filament drifts are more consistent with the turbulent conditions prevalent after the injection, indicating the filament drifts are most likely the result of turbulence generated by the modified plasma profiles from injection process itself.
by Brock Böse.
Ph.D.
2

Nakamura, Yuji. "A PELLET ABLATION MODEL IN THE PRESENCE OF MULTIPLE ENERGY CARRIERS AND ANALYSES OF PELLET INJECTION EXPERIMENTS." Kyoto University, 1986. http://hdl.handle.net/2433/74692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garnier, Darren Thomas. "Lithium pellet injection experiments on the Alcator C-Mod Tokamak." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/39753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Geulin, Eléonore. "Contribution to the modeling of pellet injection : from the injector to ablation in the plasma." Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La méthode privilégiée d'alimentation des machines à fusion est l'utilisation de glaçons de D et/ou T injectés dans le plasma. Ils sont utilisés actuellement, mais les résultats ne sont pas extrapolables aux futures machines de plus grande taille où le design du système d'injection et la construction de scenarii seront surtout basés sur les simulations. II est donc important de combler les vides dans les modèles existants allant de la fabrication des glaçons au dépôt de matière dans le plasma. Deux manques apparaissent : la modélisation du transport du glaçon dans le tuyau d'injection et la validation du processus d'ablation. Ce travail vise à combler ces vides et comporte 3 parties.- Décrire la physique du dépôt de matière, puis l'état de l'art des principaux résultats et enfin la description des systèmes d'injection de glaçons prévus pour les prochaines machines.- Modéliser le transport du glaçon dans le tuyau d'injection. Les effets pris en compte dans le modèle sont la fragilisation de la glace lors des rebonds, l'augmentation de sa température et son érosion. Le modèle donne notamment le ralentissement et la perte de masse du glaçon au cours du trajet, ainsi que l'énergie élastique stockée lié à son intégrité au sortir du tube.- Contribuer à la validation du code d'ablation HPI2, en comparant ses prédictions aux données mesurées dans les nuages d'ablation. La méthode utilisée est un calcul de jeu de données synthétiques à partir des simulations et en les comparant aux mesures. Cette méthode a permis de valider les hypothèses et approximations du modèle d'ablation susmentionné
The preferred method of fueling fusion device is the use of D and/or T pellets injected into the plasma. They are currently used, but the results cannot be extrapolated to future larger reactors where the design of the injection system and the construction of scenarios will be mainly based on simulations. It is therefore important to fill in the gaps in the existing models from the manufacture of pellets to the deposition of material in the plasma. Two lacks of knowledge appear: the modeling of the pellet transport in the injection pipe and the validation of the ablation process. This work aims to fill these gaps and consists of 3 parts.- Describe the physics of material deposition, then the state of the art of the main results and finally the description of the pellet injection systems planned for the next machines.- Model the transport of the pellet in the injection pipe. The effects taken into account in the model are the weakening of the ice during rebounds, the increase in its temperature and its erosion. The model gives in particular the slowing down and the loss of mass of the pellet during the journey, as well as the stored elastic energy linked to its integrity on leaving the tube.- Contribute to the validation of the HPI2 ablation code, by comparing its predictions to data measured in ablation clouds. The method used is a calculation of synthetic data sets from simulations and comparing them to measurements. This method made it possible to validate the assumptions and approximations of the ablation model
5

Gomez, Camilo Ciro. "Study of electron temperature evolution during sawtoothing and pellet injection using thermal electron cyclotron emission in the Alcator C tokamak." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/15195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Urbahn, John A. (John Arthur). "The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Teixeira, Carlos Mariz de Oliveira. "Desenvolvimento e utilização de um injetor de pastilhas de impurezas no estudo da mitigação de disrupções e atenuação de raios-X de altas energias." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-18112008-150605/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Um injetor de pastilhas (pellets) de impurezas foi projetado, construído e instalado junto ao tokamak TCABR do Instituto de Física da Universidade de São Paulo - USP. O injetor é basicamente constituído por uma câmara com gás a alta pressão cuja vazão é controlada por uma bobina de acionamento rápido. Uma fonte de alta tensão (7kV) e alta corrente (6kA) foi construída para alimentar a bobina. Ao ser disparada, o gás propulsor (N2 ou He) acelera a pastilha para o interior do vaso do tokamak, sem que gás penetre no mesmo. Pastilhas de grafite cilíndricas com diâmetro de 0,4mm a 0,9mm, e comprimento de 0,5mm a 1mm, foram utilizadas para investigar a possibilidade de se mitigar os e*feitos de uma disrupção maior O processo de ablação da pastilha no TCABR foi investigado através de simulações que consideraram, de uma maneira simplificada, o resfriamento sofrido pelo plasma devido à propagação da pastilha no seu interior. O modelo, ao ser aplicado aos dados experimentais do tokamak T-10, por exemplo, apresentou resultados bastante encorajadores. Na maioria dos casos em que houve a injeção das pastilhas no TCABR, o plasma terminou devido ao surgimento de uma disrupção maior. Analisando a taxa de queda da corrente de plasma em dois instantes próximos ao fim da descarga, tanto para pulsos que sofreram uma disrupção natural quanto aos que sofreram um disrupção induzida (devido à injeção de pastilhas de grafite), constatou-se que a corrente de plasma decresce mais lentamente nos casos em que houve o disparo do injetor. Isto significa uma menor sobrecarga nos sistemas eletro-mecânicos do tokamak, em resultado à ocorrência da disrupção. A análise da atividade MHD foi realizada no entorno da disrupção causada pela injeção de pastilha. Observou-se, em conseqüência, uma redução da velocidade de rotação das ilhas magnéticas após o início da interação da pastilha com o plasma. Também constatou-se, em todos os disparos analisados, um aumento significativo da atividade MHD. Um outro resultado interessante foi a constatação de que a emissão de raios-X de altas energias decresce significativamente no final das descargas nas quais ocorre a injeção de pastilhas.
An impurity pellet injector has been projected, built and installed in the TCABR tokamak, at the Physics Institute of Physics of the University of São Paulo - USP. Basically, the injector is composed of a high pressure gas chamber, in which the gas flow (N2 or He) is controlled by a fast switch valve. An high voltage (7kA) and high electric current (6kA) power supply has been built to provide energy for the valve. When fired, the propellant gas move the pellet into the interior of the tokamak vessel. During this process, the gas is properly collected before reaching the tokamak vacuum chamber. For this work, cylindrical carbon pellets with 0,4mm to 0,9mm in diameter and 0,5mm to 1mm in length were chosen as to investigate how the hazardous effects of a major disruption could be mitigated. The pellet ablation process in TCABR was studied trough running simulations that take into account, in a simplified way, the cooling of the plasma by the propagating pellet. The model, when applied to the T-10 tokamak experimental data, for example, exhibited very encouraging results. For the TCABR tokamak, in most of the cases in which pellets were injected, the plasma was terminated because of the advent of a major disruption. By analyzing the plasma current decay rate in two time intervals - within the end of plasma discharges, with and without the injection of pellets, it was observed that the plasma current decays significantly slower when pellets are injected. Consequently the load on the tokamak\'s electromechanical systems is reduced. Fourier analysis has been carried out to investigate the MHD activity near the disruption time, caused by the pellet injection. It could be noticed a reduction on the magnetic island\'s velocity rotation, after the pellet-plasma interaction initiates. Also, for all discharges analyzed, the MHD activities increased in amplitude after the pellet-plasma interaction. Another interesting result refers to the fact that the hard X-ray emission was observed to decrease significantly within the end of discharges in which pellets were injected
8

Gebhart, Gerald Edward III. "A Computational Study of A Lithium Deuteride Fueled Electrothermal Plasma Mass Accelerator." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/23223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Future magnetic fusion reactors such as tokamaks will need innovative, fast, deep-fueling systems to inject frozen deuterium-tritium pellets at high speeds and high repetition rates into the hot plasma core. There have been several studies and concepts for pellet injectors generated, and different devices have been proposed. In addition to fueling, recent studies show that it may be possible to disrupt edge localized mode (ELM) formation by injecting pellets or gas into the fusion plasma. The system studied is capable of doing either at a variety of plasma and pellet velocities, volumes, and repetition rates that can be controlled through the formation conditions of the plasma.
In magnetic or inertial fusion reactors, hydrogen, its isotopes, and lithium are used as fusion fueling materials. Lithium is considered a fusion fuel and not an impurity in fusion reactors as it can be used to produce fusion energy and breed fusion products. Lithium hydride and lithium deuteride may serve as good ablating sleeves for plasma formation in an ablation-dominated electrothermal plasma source to propel fusion pellets. Previous studies have shown that pellet exit velocities, greater 3 km/s, are possible using low-z propellant materials. In this work, a comprehensive study of solid lithium hydride and deuteride as a pellet propellant is conducted using the ETFLOW code, and relationships between propellants, source and barrel geometry, pellet volume and aspect ratio, and pellet velocity are determined for pellets ranging in volume from 1 to 100 mm3.

Master of Science
9

貴保, 藤浦, та Takayasu Fujiura. "天然長繊維強化熱可塑性生分解樹脂複合材料における成形プロセス最適化に関する研究". Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12936621/?lang=0, 2015. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12936621/?lang=0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
従来型の繊維強化プラスチック(FRP)に対し環境負荷の少ない「グリーンコンポジット」の実用的な成形プロセスの確立が切望されている。本研究では、天然繊維およびポリ乳酸を原料とする長繊維強化樹脂(LFT)ペレット製造および射出成形による複合材製造法を対象に、複合材の力学的特性に対する繊維の含有水分や熱劣化の影響、繊維分散の効果等を把握し、高い特性を発揮させるための成形プロセスおよび諸条件を提示した。
'Green Composites' have been attracting attention due to their high sustainability and carbon neutrality. This study investigated the preparation process for composites of long jute fiber reinforced polylactic acid by LFT-pellet manufacturing method followed by injection molding. The author explored effect of several factors, such as moisture in fiber, heat decomposition of fiber at processing and the level of fiber dispersion in matrix resin, on mechanical properties of composites. The author eventually proposed the optimized process and operating windows for attaining higher mechanical properties of composites.
博士(工学)
Doctor of Philosophy in Engineering
同志社大学
Doshisha University
10

Liu, Chiang-Hsing, and 劉江興. "A Study on Process and Properties of Metallized Plastic Pellet and Injection Molding Thereof." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/51468433160452630514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
淡江大學
機械工程學系
86
The research had used the metallized plastic of the ABS + 20wt%PC / Al flake with three different weight percentages (20wt5, 27wt%, 33wt5). Using the design of three - zone screw in the injection molding, and get the average aspect ratio of Al flake is 156. Using the design of progressive screw in the injection molding, and get the averge aspect ratio of Al flake is 198. Using the injection molding to get the tensile, impact and shielding test specimens, and discussing the microstructure and the effect of the content and aspect ratio of Al flake.   From the result, the Al flakes are piled up easily in the injector, and the degree of piling up increases by adding the content of Al flake. In the EMI testing specimen, the pile - up situation is modified in the fanshaped runner and the sheet gate, but there are still clusters of Al flake in the gate (single pointed gate) of the tensile and impact. The impact strength, shielding effectiveness and HDT are increased with the rise of aspect ratio, but the volume resistivity and tensile strength go opposite. The HDT and the shielding effectiveness are increased with the adding of the content of Al flake, but the volume resistivity, tensile strength, and impact strength go contrary.

Книги з теми "Pellet injection":

1

Xue, Ming-Lun. Considerations of Several Real Effects in Pneumatic Pellet Injection Processes. Roskilde: Riso National Laboratory, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Pellet injection":

1

Sudo, S., T. Baba, M. Kanno, H. Zushi, F. Sano, K. Kondo, T. Mizuuchi, et al. "PELLET INJECTION EXPERIMENTS ON HELIOTRON E AND DEVELOPMENTS OF HIGH SPEED PELLET INJECTOR." In Fusion Technology 1992, 656–60. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89995-8.50125-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

REGGIORI, Adolfo, Giulio RIVA, Giambattista DAMINELLI, Francesco SCARAMUZZI, and Antonio FRATTOLILLO. "IMPROVED TWO-STAGE GUN FOR PELLET INJECTION." In Fusion Technology 1988, 733–37. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-444-87369-9.50117-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lang, P. T., M. Alexander, C. Andelfinger, P. Cierpka, R. S. Lang, and V. Mertens. "A CENTRIFUGE FOR HIGH-SPEED PELLET INJECTION." In Fusion Technology 1994, 641–44. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-444-82220-8.50128-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ONOZUKA, M., Y. ODA, S. KURIBAYASHI, K. AZUMA, K. SATAKE, S. KASAI, and K. HASEGAWA. "DEVELOPMENT OF RAILGUN SYSTEM FOR HIGH-SPEED PELLET INJECTION." In Fusion Technology 1992, 599–603. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89995-8.50113-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sudo, S., M. Kanno, H. Kaneko, and H. Yamada. "HIGH SPEED PELLET INJECTION SYSTEM “HIPEL” FOR LARGE HELICAL DEVICE." In Fusion Technology 1994, 649–52. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-444-82220-8.50130-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KURIBAYASHI, S., M. ONOZUKA, Y. ODA, M. OGINO, K. SHIMIZU, H. TAMURA, A. SAWAOKA, and S. KASAI. "DEVELOPMENT OF RAILGUN SYSTEM TO PELLET INJECTION FOR FUSION REACTOR REFUELING." In Fusion Technology 1990, 660–64. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88508-1.50116-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Industrial Application of Extrusion for Development of Snack Products Including Co-Injection and Pellet Technologies." In Advances in Food Extrusion Technology, 273–90. CRC Press, 2016. http://dx.doi.org/10.1201/b11286-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saddem, Mourad, Ahmed Koubaa, and Bernard Riedl. "Properties of High-Density Polyethylene-Polypropylene Wood Composites." In Biocomposites. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We investigated the effects of polymer blend variation on the physical, mechanical, and thermal properties of wood-polymer composites (WPC). We used high-density polyethylene (HDPE) and polypropylene (PP) and a combination of 80% PP, 20% HDPE, and 80% HDPE, 20% PP as polymer blends for WPC formulations to simulate recycled plastics. We used black spruce (Picea mariana Mill.) hammer milled fibers (75–250 μm) at 35 wt% as a filler for all the formulations. A two-step process was used for WPC manufacturing; pellet extrusion followed by test samples injection. Tensile and three bending tests characterized the WPC mechanical properties. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) characterized the WPCs’ thermal properties. Water absorption and contact angle measurements assessed the composite dimensional stability. Infrared spectroscopy (FTIR) and electron scanning microscopy (SEM) investigated the WPCs’ surface chemistry and microstructure. Mechanical properties and dimensional stability varied according to polymer composition, with better performance for WPC containing higher PP proportions. Thermal properties varied with the polymer composition in the WPC, with better thermal stability for the formulation containing higher HDPE proportions. Surface chemistry analysis did not reveal any chemical changes on the WPCs surface. Scanning electron microscopy analysis revealed distinct phases in all WPCs without evidence of interfacial adhesion.
9

SØRENSEN, H., P. ENGBæK, A. NORDSKOV, B. SASS, P. VILLORESI, and K.-V. WEISBERG. "A MULTISHOT PELLET INJECTOR DESIGN." In Fusion Technology 1988, 704–8. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-444-87369-9.50111-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

COMBS, S. K., C. A. FOSTER, S. L. MILORA, D. D. SCHURESKO, M. J. GOUGE, P. W. FISHER, B. E. ARGO, et al. "PELLET INJECTOR RESEARCH AT ORNL." In Fusion Technology 1988, 709–14. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-444-87369-9.50112-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Pellet injection":

1

Baylor, L. R., S. K. Combs, R. C. Duckworth, M. S. Lyttle, S. J. Meitner, D. A. Rasmussen, and S. Maruyama. "Pellet injection technology and applications on ITER." In 2015 IEEE 26th Symposium on Fusion Engineering (SOFE). IEEE, 2015. http://dx.doi.org/10.1109/sofe.2015.7482362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Murakami, Masuo, Yuqiu Yang, and Hiroyuki Hamada. "Mechanical Properties of Jute/PLA Injection Molded Products-All Natural Composites." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. However, PLA is very brittle polymer, so that polymer chemists have been made the efforts to make tough PLA. In this paper Jute/PLA composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet pultrusion technique was adopted to prepare jute fiber-PLA pellet (Jute/PLA). Because it is a new method which is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other is without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then Jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of heat die i.e. impregnation temperature and the kind of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. And the mechanical property were investigated by tensile and Izod testing. It is found that 250 degree is much suitable for Jute/PLA long fiber pultrusion process. Additionally the jute fibers seem much effective to increase the tensile modulus and the Izod strength. That is to say, the addition of Jute fiber in PLA, the brittle property can be improved.
3

Meitner, S. J., L. R. Baylor, S. K. Combs, D. T. Fehling, J. M. McGill, D. A. Rasmussen, and J. W. Leachman. "Twin-screw extruder development for the ITER pellet injection system." In 2009 23rd IEEE/NPSS Symposium on Fusion Engineering - SOFE. IEEE, 2009. http://dx.doi.org/10.1109/fusion.2009.5226408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Erofeev, A., Tatiana Lapushkina, Serguei Poniaev, Roman Kurakin, and Boris Zhukov. "Flow Around Different Bodies at the Pellet or Plasma Jet Injection." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Combs, S. K., C. R. Foust, J. M. McGill, L. R. Baylor, J. B. O. Caughman, D. T. Fehling, J. H. Harris, et al. "A new four-barrel pellet injection system for the TJ-II stellarator." In 2011 IEEE 24th Symposium on Fusion Engineering (SOFE). IEEE, 2011. http://dx.doi.org/10.1109/sofe.2011.6052244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sudo, S. "New Multi-functional Diagnostic Method with Tracer-encapsulated Pellet Injection on LHD." In ATOMIC AND MOLECULAR DATA AND THEIR APPLICATIONS: Joint Meeting of 14th Internat. Toki Conf. on Plasma Physics and Controlled Nuclear Fusion (ITC14); and 4th Internat. Conf. on Atomic and Molecular Data and Their Applications (ICAMDATA2004). AIP, 2005. http://dx.doi.org/10.1063/1.1944688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nie, Zisen, Zhongyong Chen, Wei Yan, Shengguo Xia, Yinlong Yu, Guina Zou, and Fanxi Liu. "Velocity control of Electromagnetic pellet injection based on genetic algorithm in J-TEXT." In 2023 IEEE 4th China International Youth Conference On Electrical Engineering (CIYCEE). IEEE, 2023. http://dx.doi.org/10.1109/ciycee59789.2023.10401778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tang, Junhui, Feng Li, Weikang Zhang, Shengguo Xia, and Junjia He. "Analysis of C-armature Deceleration Performance of Electromagnetic Pellet Injection System on J-TEXT Tokamak." In 2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE). IEEE, 2022. http://dx.doi.org/10.1109/ciycee55749.2022.9959064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

García de la Camacha, A., E. Tabares, A. Jiménez-Morales, S. Schsuchnigg, C. Kukla, S. Cano, and E. Gordo. "Validation Of Alternative Binders for Pellet Extrusion 3D Printing Of 316L Steels." In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235763690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Composite Extrusion Modelling (CEM) is an attractive additive manufacturing process based on material extrusion techniques for rapid low-cost production of complex products using feedstock in the shape of granules instead of filaments. In this work, a novel water-soluble binder based on the combination of polyethylene glycol (PEG) and cellulose acetate butyrate (CAB) is used to develop 316L stainless steel feedstocks, which are compared with two feedstocks used in powder injection molding (MIM) and Fused Filament Fabrication (FFF). The study and comparison of the feedstocks are based on: 1) characterization of the viscosity of the three feedstocks to study the influence of the different binder compositions during their deposition; 2) optimization of the printing parameters of the different feedstocks to ensure their structural integrity and densification of the parts in subsequent processes. In addition, the debinding and sintering process of the samples was carried out, and the microstructural properties of the final parts were analysed.
10

Yamaguchi, Takazumi, Teruou Takayama, Atsushi Kamitani, and Hiroaki Ohtani. "Equivalent-Circuit Model for Axisymmetric High-Temperature Superconducting Film: Application to Contactless jC Measurement System and Pellet Injection System." In 2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG). IEEE, 2019. http://dx.doi.org/10.1109/compumag45669.2019.9032731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Pellet injection":

1

Marmar, E. S. Impurity pellet injection experiments at TFTR. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6888609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gouge, M. J., I. C. Gomes, L. T. Gomes, and P. N, Stevens. Radiation analysis of the ITER pellet injection system. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/6134252.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marmar, E. S. Impurity pellet injection experiments at TFTR. Final performance report. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10103315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Combs, S. K., L. R. Baylor, C. R. Foust, M. J. Gouge, T. C. Jernigan, and S. L. Milora. Experimental study of curved guide tubes for pellet injection. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/554870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

M.J. Gouge and P.W. Fisher. Development of a Tritium Extruder for ITER Pellet Injection. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/1176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jassby, D. L., D. K. Mansfield, and M. G. Bell. High-performance supershots in TFTR with lithium pellet injection. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10189887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Strachan, J. D., D. K. Mansfield, and M. G. Bell. Wall conditioning experiments on TFTR using impurity pellet injection. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10116246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Garnier, Darren Thomas. Lithium pellet injection experiments on the Alcator C-Mod tokamak. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/448074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Heidbrink, W. W. Energetic ion diagnostics using neutron flux measurements during pellet injection. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6020775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

R. Samtaney, S.C. Jardin, P. Colella, and D.F. Martin. 3D Adaptive Mesh Refinement Simulations of Pellet Injection in Tokamaks. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/820114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії