Статті в журналах з теми "PEDOT:PSS/Si"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: PEDOT:PSS/Si.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "PEDOT:PSS/Si".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lu, Wenhui, Shuai Zhang, Enqi Dai, Bin Miao, Yiran Peng, Tao Pang, Tiansheng Zhang, et al. "Adjustable electrical characteristics in hybrid Si/PEDOT:PSS core/shell nanowire hetero-junctions." Journal of Materials Chemistry C 5, no. 16 (2017): 3932–36. http://dx.doi.org/10.1039/c7tc00376e.

Повний текст джерела
Анотація:
Si/PEDOT:PSS core/shell nanowire hetero-junctions with adjustable electrical characteristics are reported. They exhibit an ohmic behavior ascribed to p-type Si/PEDOT:PSS, whereas n-type Si/PEDOT:PSS displays a rectifying nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, Na Yeon, Gwan Seung Jeong, Young-Jin Yu, Yoon-Chae Jung, Jin Hee Lee, Jung Hwa Seo, and Jea-Young Choi. "Photovoltaic Device Application of a Hydroquinone-Modified Conductive Polymer and Dual-Functional Molecular Si Surface Passivation Technology." Polymers 14, no. 3 (January 25, 2022): 478. http://dx.doi.org/10.3390/polym14030478.

Повний текст джерела
Анотація:
In the last decades, the conductive polymer PEDOT:PSS has been introduced in Si-based hybrid solar cells, gaining noticeable research interest and being considered a promising candidate for next generation solar cells which can achieve both of low manufacturing cost and high power conversion efficiency. This study succeeded in improving the electrical conductivity of PEDOT:PSS to 937 S/cm through a simple process of adding hydroquinone (HQ) to the pristine PEDOT:PSS solution. The results also showed that the addition of HQ to PEDOT:PSS(HQ-PEDOT:PSS) could not only dramatically improve the conductivity but also well-sustain the work function characteristics of PEDOT:PSS by promoting the formation of more continuous conductive-PEDOT channels without removing the insulating PSS. In this report, we reveal that the application of the HQ-PEDOT:PSS to the Si/PEDOT:PSS HSC could significantly improve the short-circuit current and open-circuit voltage characteristics to increase the power conversion efficiency of the HSCs compared to the conventional approaches. Moreover, we also treated the Si surface with the organic monomer, benzoquinone (BQ) to (1) passivate the excess Si surface defect states and (2) to improve the properties of the Si/PEDOT:PSS interface. We show that BQ treatment is able to dramatically increase the minority carrier lifetime induced by effective chemical and field-effect passivation in addition to enhancing the wettability of the Si surface with the PEDOT:PSS solution. As a result, the power conversion efficiency was increased by 10.6% by introducing HQ and BQ into the fabrication process of the Si/PEDOT:PSS HSC.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Jian Ying, Hao Yu, Juan Juan Wen, Zhi Dong Li, Zhen Cheng Xu, Ya Feng Zhang, Hang Yu, Bing Rui Lu, Ran Liu, and Yi Fang Chen. "Fabrication of Nano-Strctures on PEDOT:PSS Film by Nanoimprint Lithography." Advanced Materials Research 465 (February 2012): 287–91. http://dx.doi.org/10.4028/www.scientific.net/amr.465.287.

Повний текст джерела
Анотація:
It is very hard to fabricate nano-strctures on PEDOT:PSS film by conventional Nanoimprint Lithography for its non-thermoplastic property. Here we demonstrated a new nanoimprint process to pattern the PEDOT:PSS film at low temperature and low pressure by adding proper amount of Glycerol into PEDOT:PSS solution and pressing the Si-mold into Glycerol-PEDOT:PSS film under a pressure of 6.2Mpa for 45min at 80°C. We also compared our result to L. Tan and co-workers’. They found that positive replica was left on PEDOT:PSS film after pressing the Si-mold into Glycerol-PEDOT:PSS film under a pressure of 10Kpa for 5min at 80°C, but our work showed negative replica formed. Pressing time maybe is the critical reason to explain the different results. Holding the pressure longer gave the PEDOT:PSS enough time to flow into Si-mold and also gave Glycerol enough time to evaporate so that PEDOT:PSS became strong enough when separated the Si-mold from the PEDOT:PSS film. At last, Roman spectra was measured to confirm adding glycerol to PEDOT:PSS will not influence its molecular structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ryu, Beo Deul, Jung-Hwan Hyung, Min Han, Gil-Sung Kim, Nam Han, Kang Bok Ko, Ko Ku Kang, Tran Viet Cuong, and Chang-Hee Hong. "Long-term stability of Si-organic hybrid solar cells with a thermally tunable graphene oxide platform." RSC Advances 6, no. 76 (2016): 72342–50. http://dx.doi.org/10.1039/c6ra12441k.

Повний текст джерела
Анотація:
The PEDOT:PSS/Si solar cell with a rGO layer enhances the stability in a package-free device as the rGO layer with various annealing temperatures plays a critical role as a passivation layer in the PEDOT:PSS/Si interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Shuxin, Zhibin Pei, Fei Zhou, Ying Liu, Haibo Hu, Shulin Ji, and Changhui Ye. "Flexible Si/PEDOT:PSS hybrid solar cells." Nano Research 8, no. 10 (August 6, 2015): 3141–49. http://dx.doi.org/10.1007/s12274-015-0814-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ikeda, Natsumi, Tomoyuki Koganezawa, Daisuke Kajiya, and Ken-ichi Saitow. "Performance of Si/PEDOT:PSS Hybrid Solar Cell Controlled by PEDOT:PSS Film Nanostructure." Journal of Physical Chemistry C 120, no. 34 (August 23, 2016): 19043–48. http://dx.doi.org/10.1021/acs.jpcc.6b07101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Subramani, Thiyagu, Chen-Chih Hsueh, Hong-Jhang Syu, Chien-Ting Liu, Song-Ting Yang, and Ching-Fuh Lin. "Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells." RSC Advances 6, no. 15 (2016): 12374–81. http://dx.doi.org/10.1039/c5ra23109d.

Повний текст джерела
Анотація:
In this paper, the interface between Si nanoholes (SiNHs) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is investigated and improved to achieve high-efficiency SiNH/PEDOT:PSS hybrid solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dai, Ruijie, Tengzuo Huang, Weijie Zhou, Jinpeng Yang, Hua Zhang, Fayin Yu, Anran Chen, et al. "Improved Interfacial Contact for Pyramidal Texturing of Silicon Heterojunction Solar Cells." Molecules 27, no. 5 (March 5, 2022): 1710. http://dx.doi.org/10.3390/molecules27051710.

Повний текст джерела
Анотація:
Reducing the surface reflectivity of silicon substrates is essential for preparing high-performance Si-based solar cells. We synthesized pyramid-nanowire-structured Si (Si-PNWs) anti-reflection substrates, which have excellent light-trapping ability (<4% reflectance). Furthermore, diethyl phthalate (DEP), a water-insoluble phthalic acid ester, was applied to optimize the Si-PNWs/PEDOT:PSS interface; the photoelectric conversion efficiency of heterojunction solar cells was shown to increase from 9.82% to 13.48%. We performed a detailed examination of the shape and optical characteristics of Si-PNWs, as well as associated photoelectric performance tests, to investigate the origin of performance improvements in Si-PNWs/PEDOT:PSS heterojunction solar cells (HSCs).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jung, Pil-Hoon, Yang Doo Kim, Hak-Jong Choi, Jae-Hyun Kim, and Heon Lee. "Effect of Si nanostructures on PEDOT:PSS Si hybrid solar cells." Thin Solid Films 616 (October 2016): 335–38. http://dx.doi.org/10.1016/j.tsf.2016.08.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jäckle, Sara, Martin Liebhaber, Jens Niederhausen, Matthias Büchele, Roberto Félix, Regan G. Wilks, Marcus Bär, Klaus Lips, and Silke Christiansen. "Unveiling the Hybrid n-Si/PEDOT:PSS Interface." ACS Applied Materials & Interfaces 8, no. 13 (March 23, 2016): 8841–48. http://dx.doi.org/10.1021/acsami.6b01596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mykytiuk, A., and S. Kondratenko. "Optical properties of PEDOT:PSS-silicon solar cells." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 4 (2018): 118–21. http://dx.doi.org/10.17721/1812-5409.2018/4.17.

Повний текст джерела
Анотація:
We study the optical and electrical losses in PEDOT:PSS/n-Si solar cells using spectroscopic ellipsometry and current-voltage measurements. The optical constants and thickness of the PEDOT:PSS films were studied using spectroscopic ellipsometry performed by a SE-2000 SEMILAB ellipsometer spanning the NIR–VIS–UV range with a resolution of 5 nm. The results were analyzed using a four-layer model involving the ntype silicon (001) substrate, interfacial layer between Si and polymer films, PEDOT:PSS thin film, and a surface roughness layer. The key to understand the origin of the losses is that the studied junctions have an interfacial layer between organic (PEDOT:PSS) and inorganic substrates. The dielectric functions of the PEDOT:PSS were fitted with the known thickness and the assumption of a negligible roughness (i.e. that the roughness is much smaller than the wavelength). Using the complex dielectric function, the optical constants (refractive index n and extinction coefficient k) were calculated. In addition to real and imaginary part of the refractive index, the absorption coefficient was calculated. The produced hybrid solar cells show efficiencies around 7%.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zhang, Chenxu, Yuming Zhang, Hui Guo, Zeyulin Zhang, and Chunfu Zhang. "Hole-Transporting Layer Treatment of Planar Hybrid n-Si/PEDOT:PSS Solar Cells with Power Conversion Efficiency up to 14.5%." International Journal of Photoenergy 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/3192197.

Повний текст джерела
Анотація:
A systematical investigation was carried out into the effects of the hole-transporting layer treatment of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on the performance of planar hybrid n-Si/PEDOT:PSS solar cells. Triton X-100 and ethylene glycol (EG) were chosen to improve the conductivity and surface morphology of the PEDOT:PSS film. It was found that the annealing temperature has a great influence on the PEDOT:PSS material properties and the corresponding device performance. By optimizing the annealing temperature, the conductivity of the PEDOT:PSS film doped with Triton X-100 and EG could be enhanced by a factor of more than three orders. And the corresponding device also shows record power conversion efficiency as high as 14.5% with an open circuit voltage of 0.627 V, a short circuit current of 32.6 mA/cm2, and a fill factor of 70.7%.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yu, Ming Hung, and Kien Wen Sun. "Efficiency Improvement of Hybrid Solar Cells Using Solvent Modified PEDOT:PSS Hole Conducting Layer." Applied Mechanics and Materials 704 (December 2014): 3–6. http://dx.doi.org/10.4028/www.scientific.net/amm.704.3.

Повний текст джерела
Анотація:
This work aims to enhance the power conversion efficiency of PEDOT:PSS/Si hybrid solar cells by reducing the resistance of PEDOT:PSS of hybrid solar cells using simple solvent treatment. A noticeable decrease in resistance of PEDOT:PSS layer was found after treating with DMSO and methanol using the dipping method or the mixing method. The combinations of these two methods allow us to greatly enhance the fill factor and power conversion efficiency of hybrid solar cells due to the significant reduction in Rs.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yoon, Sung-Soo, and Dahl-Young Khang. "Ag nanowire/PEDOT:PSS bilayer transparent electrode for high performance Si-PEDOT:PSS hybrid solar cells." Journal of Physics and Chemistry of Solids 129 (June 2019): 128–32. http://dx.doi.org/10.1016/j.jpcs.2019.01.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kurushima, Yasunori, Naoya Katsuyama, and Hidenori Okuzaki. "Effect of PEDOT:PSS composition on photovoltaic performance of PEDOT:PSS/n-Si hybrid solar cells." Japanese Journal of Applied Physics 60, no. 9 (August 16, 2021): 091001. http://dx.doi.org/10.35848/1347-4065/ac19d2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Abood, Morooj A. "Bulk heterojunction blend (NiPcTs:PEDOT:PSS) in gas sensing." Iraqi Journal of Physics (IJP) 15, no. 32 (January 11, 2019): 31–42. http://dx.doi.org/10.30723/ijp.v15i32.154.

Повний текст джерела
Анотація:
Thin films of bulk heterojunction blend Ni-PhthalocyanineTetrasulfonic acid tetrasodium salt and dpoly(3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (NiPcTs:PEDOT: PSS) with different (PEDOT:PSS) concentrations (0.5, 1, 2)are prepared using spin coating technique with thickness 100 nm onglass and Si substrate. The X-Ray diffraction pattern of NiPcTspowder was studied and compared with NiPc powder, the patternshowed that the structure is a polycrystalline with monoclinic phase.XRD analysis of as-deposited (NiPcTs/PEDOT:PSS) thin filmsblends in dicated that the film appeared at(100), (102) inconcentrations (0.5, 1) and (100) in concentration (2). The grain sizeis increased with increasing (PEDOT:PSS) concentrations. FTIRmeasurements for these bulk heterojunction blend thin films alsocarried out in this work and gave good information about the bondsand their locations. Sensor measurements of Si/NiPcTS:PEDOT:PSSbulk heterojunctions blend thin films show a good sensitivity for NO2gas Compared to NH3gas. The NiPcTS/PEDOT:PSS gas sensordevice work at room temperature than high temperature for NO2 gasbut good sensitivity at100ºC for NH3 gas and sensor work moreeffectively in 0.5 concentration for both gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Van Trinh, Pham, Nguyen Ngoc Anh, Nguyen Thi Cham, Le Tuan Tu, Nguyen Van Hao, Bui Hung Thang, Nguyen Van Chuc, Cao Thi Thanh, Phan Ngoc Minh, and Naoki Fukata. "Enhanced power conversion efficiency of an n-Si/PEDOT:PSS hybrid solar cell using nanostructured silicon and gold nanoparticles." RSC Advances 12, no. 17 (2022): 10514–21. http://dx.doi.org/10.1039/d2ra01246d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhang, Jingying, Kang Meng, and Gang Ni. "Enhanced Lateral Photovoltaic Effects in n-Si/SiO2/PEDOT:PSS Structures." Polymers 14, no. 7 (March 31, 2022): 1429. http://dx.doi.org/10.3390/polym14071429.

Повний текст джерела
Анотація:
Organic/silicon hybrid structures have been extensively studied for the application of solar cells due to their high photoelectric conversion efficiency and simple fabrication process. However, studies of lateral photovoltaic effects (LPEs) in the devices are still scarce. Herein, the Si/SiO2/PEDOT:PSS devices were prepared by spin-coating, and showing the lateral photovoltage (LPV) sensitivity of 14.0 mV/mm at room temperature, which is higher than the control samples of Si/SiO2 (0.1 mV/mm) and Si/PEDOT:PSS (9.0 mV/mm) structures. With the decrease in temperature, the lateral photovoltage increases initially, and reaches a peak at around 210 K, then drops accordingly. The enhancement of LPE can be mainly ascribed to the formation of the p-n junction and the native oxide layer at the organic/inorganic interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yu, LePing, Tom Grace, Hong Duc Pham, Munkhbayar Batmunkh, Mahnaz Dadkhah, Cameron Shearer, Prashant Sonar, and Joe Shapter. "Application of Hole-Transporting Materials as the Interlayer in Graphene Oxide/Single-Wall Carbon Nanotube Silicon Heterojunction Solar Cells." Australian Journal of Chemistry 70, no. 11 (2017): 1202. http://dx.doi.org/10.1071/ch17380.

Повний текст джерела
Анотація:
Solid-state hole-transporting materials, including the traditional poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and recently developed 4,4′-(naphthalene-2,6-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (NAP) and (E)-4′,4‴-(ethene-1,2-diyl)bis(N,N-bis(4-methoxyphenyl)-[1″,1‴-biphenyl]-4-amine) (BPV), have been applied as a hole-transporting interlayer (HTL) for graphene oxide/single-walled carbon nanotube–silicon (GOCNT/Si) heterojunction solar cells, forming a GOCNT/HTL/Si architecture. The influence of the thickness of the HTL has been studied. A new AuCl3 doping process based on bath immersion has been developed and proved to improve the efficiency. With the AuCl3-doped GOCNT electrodes, the efficiency of GOCNT/PEDOT:PSS/Si, GOCNT/NAP/Si, and GOCNT/BPV/Si devices was improved to 12.05 ± 0.21, 10.57 ± 0.37, and 10.68 ± 0.27 % respectively. This study reveals that the addition of an HTL is able to dramatically minimise recombination at the heterojunction interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhou, Weijie, Hua Zhang, Juan Wang, Qianwen Wei, Zhengang Chen, Chong Wang, and Yu Yang. "High conductivity PEDOT:PSS thin films affording improved open circuit voltages in PEDOT:PSS-Si heterojunction solar cells." Materials Letters 312 (April 2022): 131466. http://dx.doi.org/10.1016/j.matlet.2021.131466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Thomas, Joseph Palathinkal, and Kam Tong Leung. "Mixed co-solvent engineering of PEDOT:PSS to enhance its conductivity and hybrid solar cell properties." Journal of Materials Chemistry A 4, no. 44 (2016): 17537–42. http://dx.doi.org/10.1039/c6ta07410c.

Повний текст джерела
Анотація:
Addition of mixed co-solvents of ethylene glycol and methanol in PEDOT:PSS changes its microstructure, and produces high conductivity and hybrid solar cell efficiency exceeding 14.6% on planar Si substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pathak, C. S., J. P. Singh, and R. Singh. "Temperature dependent electrical characteristics of PEDOT:PSS/n-Si heterojunction diode." Invertis Journal of Science & Technology 9, no. 3 (2016): 129. http://dx.doi.org/10.5958/2454-762x.2016.00009.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kim, Min Su, Su Min Jeon, Kwang Gug Yim, Hyun Young Choi, Min Young Cho, Ghun Sik Kim, Hyeoung Geun Kim, et al. "Inorganic/Organic Heterojunction Comprised of Si-Doped GaN and PEDOT:PSS." Journal of the Korean Physical Society 58, no. 5(1) (May 13, 2011): 1365–68. http://dx.doi.org/10.3938/jkps.58.1365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hong, Lei, Rusli, Xincai Wang, Hongyu Zheng, Jianxiong Wang, Hao Wang, and HongYu Yu. "Si/PEDOT:PSS hybrid solar cells incorporated with silver plasmonic nanospheres." Thin Solid Films 599 (January 2016): 37–41. http://dx.doi.org/10.1016/j.tsf.2015.12.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Khang, Dahl-Young. "Recent progress in Si-PEDOT:PSS inorganic–organic hybrid solar cells." Journal of Physics D: Applied Physics 52, no. 50 (September 25, 2019): 503002. http://dx.doi.org/10.1088/1361-6463/ab3f64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wang, Hao, Jianxiong Wang, Ari Bimo Prakoso, Lei Hong, Yew Heng Tan, Chuan Seng Tan, and R. Rusli. "High-Efficiency Planar Thin-Film Si/PEDOT:PSS Hybrid Solar Cell." IEEE Journal of Photovoltaics 6, no. 1 (January 2016): 217–22. http://dx.doi.org/10.1109/jphotov.2015.2491606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kondratenko, O. S., S. V. Mamykin, T. S. Lunko, I. B. Mamontova, and V. R. Romanyuk. "Optical characterization of hybrid PEDOT:PSS/Si heterostructures by spectroscopic ellipsometry." Molecular Crystals and Liquid Crystals 717, no. 1 (March 4, 2021): 92–97. http://dx.doi.org/10.1080/15421406.2020.1860533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kou, Yanlei, Kong Liu, Zhijie Wang, Dan Chi, Shudi Lu, Shizhong Yue, Yanpei Li, Shengchun Qu, and Zhanguo Wang. "Hybrid silicon nanocone–polymer solar cells based on a transparent top electrode." RSC Advances 5, no. 53 (2015): 42341–45. http://dx.doi.org/10.1039/c5ra04222d.

Повний текст джерела
Анотація:
We utilize fully covered thin layer of transparent MoO3/Ag/ZnS as the top electrode for Si nanocone/PEDOT:PSS hybrid solar cells. By adjusting the geometrical parameters systematically, the optimized PCE was realized as 5.12%.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhao, Haiming, Dan Xie, Tingting Feng, Yuanfan Zhao, Jianlong Xu, Xinming Li, Hongwei Zhu, and Tianling Ren. "Enhanced performance of PEDOT:PSS/n-Si hybrid solar cell by HNO3treatment." Applied Physics Express 7, no. 3 (March 1, 2014): 031603. http://dx.doi.org/10.7567/apex.7.031603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mamedov, D., C. C. You, S. Zh Karazhanov, and E. S. Marstein. "Influence of Si-nanoparticles on PEDOT:PSS properties for hybrid solar cells." Materials Today: Proceedings 33 (2020): 2517–19. http://dx.doi.org/10.1016/j.matpr.2020.04.906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Lu, Wenhui, Chengwei Wang, Wei Yue, and Liwei Chen. "Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells." Nanoscale 3, no. 9 (2011): 3631. http://dx.doi.org/10.1039/c1nr10629e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Javadi, Mohammad, Mahdiyeh Gholami, Hadis Torbatiyan, and Yaser Abdi. "Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si." Applied Physics Letters 112, no. 11 (March 12, 2018): 113302. http://dx.doi.org/10.1063/1.5022758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Thomas, Joseph Palathinkal, and Kam Tong Leung. "Defect-Minimized PEDOT:PSS/Planar-Si Solar Cell with Very High Efficiency." Advanced Functional Materials 24, no. 31 (May 26, 2014): 4978–85. http://dx.doi.org/10.1002/adfm.201400380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mamykin, S. V., I. B. Mamontova, T. S. Lunko, O. S. Kondratenko, and V. R. Romanyuk. "Fabrication and conductivity of thin PEDOT: PSS-CNT composite films." Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no. 02 (June 16, 2021): 148–53. http://dx.doi.org/10.15407/spqeo24.02.148.

Повний текст джерела
Анотація:
In this work, two methods for fabrication of composite conductive films, consisting of single walled carbon nanotubes (SWCNTs) and PEDOT:PSS, in order to obtain films with high conductivity and transparency for their use in solar cell structures based on Si have been compared. The thickness and optical parameters of the films were determined using the spectro-ellipsometric measurements within the spectral range 0.6…5.0 eV. The electrophysical parameters were obtained from the four-point probe measurements. Our results showed that the method for deposition of SWCNTs and PEDOT:PSS in layers enables to obtain films with a much higher conductivity (220…306 S/cm) as compared to the method of applying a film from their mixture (6…209 S/cm).
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Shaughnessy, Kenneth D., Emma G. Langford, Chester Szwejkowski, Patrick Hopkins, and Costel Constantin. "Goniometry Versus Profilometry Studies of Contact Angle for PEDOT:PSS Deposited Onto Silicon and Fused Silica Substrates." MRS Advances 1, no. 7 (December 22, 2015): 471–75. http://dx.doi.org/10.1557/adv.2015.29.

Повний текст джерела
Анотація:
ABSTRACTThis paper presents a comparative study on the effects of plasma type and duration on the contact angle of silicon (Si) and fused silica (FS) for the deposition of Poly (3,4 ethyldioxythiophene) Polystyrene Sulfonate (PEDOT:PSS) via drop casting. The two methods used to measure contact angles were goniometry and profilometry. Both methods agreed that the lowest contact angles were given by: 1) 30 seconds in nitrogen/oxygen mix for Si substrates, and 2) 10 minutes in pure oxygen plasma for FS substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Chen, Tao, Hao Guo, Leiming Yu, Tao Sun, Anran Chen, Juan Wang, Chong Wang, and Yu Yang. "Antireflection Improvement and Junction Quality Optimization of Si/PEDOT:PSS Solar Cell with the Introduction of Dopamine@Graphene." Energies 13, no. 22 (November 16, 2020): 5986. http://dx.doi.org/10.3390/en13225986.

Повний текст джерела
Анотація:
Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Vázquez-López, Antonio, Marina García-Carrión, Erlend Hall, Anisa Yaseen, Ilknur Kalafat, María Taeño, Junjie Zhu, et al. "Hybrid Materials and Nanoparticles for Hybrid Silicon Solar Cells and Li-Ion Batteries." Journal of Energy and Power Technology 03, no. 02 (November 9, 2020): 1. http://dx.doi.org/10.21926/jept.2102020.

Повний текст джерела
Анотація:
Hybrid composites based on inorganic nanomaterials embedded into a polymer matrix have were synthesized and characterized. Oxide semiconductor nanoparticles (SnO, SnO2, TiO2, Ga2O3, and NiO) and Si nanoparticles were employed as inorganic counterparts in the hybrid composite, while a conductive polymer (PEDOT:PSS) with diverse additives was used as the organic matrix. The composites were spin-coated on Si or glass substrates. The potential use of these materials in photovoltaic devices to improve Si surface passivation behavior was investigated. Besides, the use of the nanoparticles as active materials for anodes in Li-ion batteries was evaluated. Some other aspects, such as the durability and stability of these materials, were also assessed.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Karim, Md Enamul, A. T. M. Saiful Islam, Yuki Nasuno, Abdul Kuddus, Ryo Ishikawa, and Hajime Shirai. "Solution-processed TiO2 as a hole blocking layer in PEDOT:PSS/n-Si heterojunction solar cells." EPJ Photovoltaics 11 (2020): 7. http://dx.doi.org/10.1051/epjpv/2020004.

Повний текст джерела
Анотація:
The junction properties at the solution-processed titanium dioxide (TiO2)/n-type crystalline Si(n-Si) interface were studied for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/n-Si heterojunction solar cells by the steady-state photovoltaic performance and transient reverse recovery characterizations. The power conversion efficiency could be increased from 11.23% to 13.08% by adjusting the layer thickness of TiO2 together with increasing open-circuit voltage and suppressed dark saturation current density. These findings originate from the enhancement of the carrier collection efficiency at the n-Si/cathode interface. The transient reverse recovery characterization revealed that the surface recombination velocity S was ∼375 cm/s for double TiO2 interlayer of ∼2 nm thickness. This value was almost the same as that determined by microwave photoconductance decay measurement. These findings suggest that solution-processed TiO2 has potential as a hole blocking layer for the crystalline Si photovoltaics.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kondratenko, Serhiy, Volodymyr Lysenko, Yury V. Gomeniuk, Olga Kondratenko, Yury Kozyrev, Oleksandr Selyshchev, Volodymyr Dzhagan, and Dietrich R. T. Zahn. "Charge Carrier Transport, Trapping, and Recombination in PEDOT:PSS/n-Si Solar Cells." ACS Applied Energy Materials 2, no. 8 (July 29, 2019): 5983–91. http://dx.doi.org/10.1021/acsaem.9b01083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

McGillivray, Donald, Joseph P. Thomas, Marwa Abd-Ellah, Nina F. Heinig, and K. T. Leung. "Performance Enhancement by Secondary Doping in PEDOT:PSS/Planar-Si Hybrid Solar Cells." ACS Applied Materials & Interfaces 8, no. 50 (December 6, 2016): 34303–8. http://dx.doi.org/10.1021/acsami.6b09704.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Prakoso, Ari Bimo, Lin Ke, Jianxiong Wang, Zeyu Li, Changyun Jiang, and Rusli. "Reverse recovery transient characteristic of PEDOT:PSS/n-Si hybrid organic-inorganic heterojunction." Organic Electronics 42 (March 2017): 269–74. http://dx.doi.org/10.1016/j.orgel.2016.12.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sakata, Toshiki, Natsumi Ikeda, Tomoyuki Koganezawa, Daisuke Kajiya, and Ken-ichi Saitow. "Performance of Si/PEDOT:PSS Solar Cell Controlled by Dipole Moment of Additives." Journal of Physical Chemistry C 123, no. 33 (July 30, 2019): 20130–35. http://dx.doi.org/10.1021/acs.jpcc.9b05144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hong, Lei, Rusli, Xincai Wang, Hongyu Zheng, Hao Wang, and Hongyu Yu. "Design guideline of Si nanohole/PEDOT:PSS hybrid structure for solar cell application." Nanotechnology 24, no. 35 (August 12, 2013): 355301. http://dx.doi.org/10.1088/0957-4484/24/35/355301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Giesbrecht, Patrick K., Jared P. Bruce, and Michael S. Freund. "Electric and Photoelectric Properties of 3,4-Ethylenedioxythiophene-Functionalized n-Si/PEDOT:PSS Junctions." ChemSusChem 9, no. 1 (December 18, 2015): 109–17. http://dx.doi.org/10.1002/cssc.201501231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Chen, Wenchao, Pingqi Gao, Liang Zhou, Li-Hua Shi, Da-Wei Wang, Ran Hao, Jichun Ye, Wen-Yan Yin, and Erping Li. "Carrier Dynamics of Nanopillar Textured Ultrathin Si Film/PEDOT:PSS Heterojunction Solar Cell." IEEE Journal of Photovoltaics 8, no. 3 (May 2018): 757–62. http://dx.doi.org/10.1109/jphotov.2018.2798000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Singh, Prashant, Sanjay K. Srivastava, B. Sivaiah, Subha Laxmi, P. Prathap, and C. M. S. Rauthan. "Light intensity dependent characteristics of micro-textured Si/PEDOT:PSS heterojunction solar cell." Journal of Materials Science: Materials in Electronics 29, no. 6 (December 29, 2017): 5087–97. http://dx.doi.org/10.1007/s10854-017-8472-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Van Trinh, Pham, Phan Ngoc Hong, Bui Hung Thang, Nguyen Tuan Hong, Duong Van Thiet, Nguyen Van Chuc, and Phan Ngoc Minh. "Effect of Surface Morphology and Dispersion Media on the Properties of PEDOT:PSS/n-Si Hybrid Solar Cell Containing Functionalized Graphene." Advances in Materials Science and Engineering 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2362056.

Повний текст джерела
Анотація:
We present the results on the effect of surface morphology and dispersion media on the properties of PEDOT:PSS/n-Si hybrid solar cell containing functionalized graphene (Gr). The hybrid solar cells based on SiNWs showed higher power conversion efficiency (PCE) compared to the planar based cells due to suppressing the carrier recombination and improving carrier transport efficiency. The PCE of hybrid solar cells could be improved by adding Gr into PEDOT:PSS. Different solvents including deionized (DI) water, ethylene glycol (EG), and isopropyl alcohol (IPA) were used as media for Gr dispersion. The best performance was obtained for the cell containing Gr dispersed in EG with a measured PCE of 7.33% and nearly 13% and 16% enhancement in comparison with the cells using Gr dispersed in IPA and DI water, respectively. The increase in PCE is attributed to improving the carrier-mobility, electrical conductivity, PEDOT crystallinity, and ordering.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Khatri, Ishwor, Qiming Liu, Ryo Ishikawa, Keiji Ueno, and Hajime Shirai. "Improved photovoltaic response by incorporating green tea modified multiwalled carbon nanotubes in organic–inorganic hybrid solar cell." Canadian Journal of Physics 92, no. 7/8 (July 2014): 849–52. http://dx.doi.org/10.1139/cjp-2013-0506.

Повний текст джерела
Анотація:
In this work, multiwalled carbon nanotubes (MWCNTs) are separated and cut into short pipes using a green tea solution and embedded at interface of poly(3,4-ethylenedioxythiophene):poly(stylenesulfonate) (PEDOT:PSS)/n-Si hybrid solar cells. Devices fabricated with embedding green tea modified MWCNTs show much better performance (10.02%) than that of a device without MWCNTs (9.2%) due to better hole transportation, easy exciton splitting, and suppression of charge recombination.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Gao, Ting, Qi Geng, Zhongliang Gao, Yingfeng Li, Lei Chen, and Meicheng Li. "Improving Junction Quality via Modifying the Si Surface to Enhance the Performance of PEDOT:PSS/Si Hybrid Solar Cells." ACS Applied Energy Materials 4, no. 11 (October 15, 2021): 12543–51. http://dx.doi.org/10.1021/acsaem.1c02338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Bobeico, Eugenia, Lucia V. Mercaldo, Pasquale Morvillo, Iurie Usatii, Marco Della Noce, Laura Lancellotti, Carmen Sasso, Rosa Ricciardi, and Paola Delli Veneri. "Evaporated MoOx as General Back-Side Hole Collector for Solar Cells." Coatings 10, no. 8 (August 6, 2020): 763. http://dx.doi.org/10.3390/coatings10080763.

Повний текст джерела
Анотація:
Substoichiometric molybdenum oxide (MoOx) has good potential as a hole-collecting layer in solar cells. In this paper, we report on the application of ultrathin evaporated MoOx as a hole collector at the back side of two distinct photovoltaic technologies: polymeric and silicon heterojunction (SHJ). In the case of polymer solar cells, we test MoOx as a hole transport layer in devices with inverted architecture. The higher transparency of the MoOx film, compared to the commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), allows an enhanced back reflected light into the photoactive layer, thus boosting the photogeneration, as found from the illuminated J-V and external quantum efficiency (EQE) curves. The higher fill factor (FF) of the MoOx-based device also suggests an improved charge collection efficiency compared to the cells with PEDOT:PSS. As for SHJ solar cells, we show that MoOx offers the means for dopant-free hole collection with both p-type and n-type Si wafers. In the present comparison over planar test structures with Ag back reflecting electrodes, we observe an efficiency gain of approximately 1% absolute against a baseline with a conventional p-type amorphous silicon hole collector. The gain is linked to the increased VOC, which is likely due to the reduced recombination at the Si wafer.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії