Добірка наукової літератури з теми "PEDESTRIAN DIRECTION"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "PEDESTRIAN DIRECTION".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "PEDESTRIAN DIRECTION"
Lu, Lili, Gang Ren, Wei Wang, Chen Yu, and Chenzi Ding. "Exploring the Effects of Different Walking Strategies on Bi-Directional Pedestrian Flow." Discrete Dynamics in Nature and Society 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/150513.
Повний текст джерелаZhu, Nuo, Bin Jia, and Chun Fu Shao. "Pedestrian Evacuation Based on a Dynamic Parameters Model." Applied Mechanics and Materials 97-98 (September 2011): 956–59. http://dx.doi.org/10.4028/www.scientific.net/amm.97-98.956.
Повний текст джерелаZhao, Rongyong, Ping Jia, Chuanfeng Han, Yan Wang, Cuiling Li, and Zhishu Zhang. "Analysis of dynamic model based on pedestrian’s abnormal posture." MATEC Web of Conferences 355 (2022): 03010. http://dx.doi.org/10.1051/matecconf/202235503010.
Повний текст джерелаHajari, Kamal Omprakash, Ujwalla Gawande, and Yogesh Golhar. "Robust Pedestrian Detection and Path Prediction using Improved YOLOv5." ELCVIA Electronic Letters on Computer Vision and Image Analysis 21, no. 2 (September 13, 2022): 40–61. http://dx.doi.org/10.5565/rev/elcvia.1538.
Повний текст джерелаWang, Weili, Jiayu Rong, Qinqin Fan, Jingjing Zhang, Xin Han, and Beihua Cong. "Data-Driven Simulation of Pedestrian Movement with Artificial Neural Network." Journal of Advanced Transportation 2021 (August 28, 2021): 1–16. http://dx.doi.org/10.1155/2021/5580910.
Повний текст джерелаKim, Kwangsoo, Yangho Kim, and Sooyeong Kwak. "Vision Sensor Based Fuzzy System for Intelligent Vehicles." Sensors 19, no. 4 (February 19, 2019): 855. http://dx.doi.org/10.3390/s19040855.
Повний текст джерелаFelcman, Jiří, and Petr Kubera. "A cellular automaton model for a pedestrian flow problem." Mathematical Modelling of Natural Phenomena 16 (2021): 11. http://dx.doi.org/10.1051/mmnp/2021002.
Повний текст джерелаHu, Xiangmin, Tao Chen, Kaifeng Deng, and Guanning Wang. "Effects of the direction and speed strategies on pedestrian dynamics." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 6 (June 2022): 063140. http://dx.doi.org/10.1063/5.0091240.
Повний текст джерелаAprilnico, Elven, and Martha Leni Siregar. "Pedestrian risk analysis at Jl. Raya Citayam – Jl. Boulevard Raya Grand Depok City intersection leg using pedestrian risk index." MATEC Web of Conferences 276 (2019): 03011. http://dx.doi.org/10.1051/matecconf/201927603011.
Повний текст джерелаGuo, Ning, Rui Jiang, SC Wong, Qing-Yi Hao, Shu-Qi Xue, Yao Xiao, and Chao-Yun Wu. "Experimental study on mixed traffic flow of bicycles and pedestrians." Collective Dynamics 5 (August 12, 2020): A108. http://dx.doi.org/10.17815/cd.2020.108.
Повний текст джерелаДисертації з теми "PEDESTRIAN DIRECTION"
Shahabpoor, Erfan. "Dynamic interaction of walking humans with pedestrian structures in vertical direction experimentally based probabilistic modelling." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7241/.
Повний текст джерелаSchroder, Catherine Jane. "Automated creation of pedestrian route descriptions." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7720.
Повний текст джерелаJohansson, Anton. "Bi-directional flow in the Social Force Model." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-43274.
Повний текст джерелаShatu, Farjana M. "Built environment impact on pedestrian route choice behaviour: Shortest vs. least directional change routes." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/126392/1/Farjana_Shatu_Thesis.pdf.
Повний текст джерелаShimizu, Hiroaki, and Tomaso Poggio. "Direction Estimation of Pedestrian from Images." 2003. http://hdl.handle.net/1721.1/30397.
Повний текст джерелаRaman, Rahul. "Pedestrian Walk Direction Estimation for Smart Surveillance." Thesis, 2019. http://ethesis.nitrkl.ac.in/10071/1/2019_PhD_RRaman_513CS1040_Pedestrian.pdf.
Повний текст джерела趙, 光哲, and Guangzhe Zhao. "Estimation of Pedestrian Walking Direction for Driver Assistance System." Thesis, 2012. http://hdl.handle.net/2237/17275.
Повний текст джерелаLin, Chih-Chieh, and 林仕杰. "Design and Implementation of YOLO Deep Learning Network Based Pedestrian Collision Avoidance and Direction Detection Technology for Intelligent Self-propelled Vehicles." Thesis, 2019. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id=%22107NCHU5441090%22.&searchmode=basic.
Повний текст джерела國立中興大學
電機工程學系所
107
In the past ten years, with the rapid development of the Internet and the maturity of hardware technology, artificial intelligence and big data analysis have become the key targets of high-tech in the future. The deep learning network can continuously learn and fix the weight of the data, and it allows the robot to perform high-complexity tasks, which are the goal of current research efforts. For intelligent self-propelled vehicles, the development of pedestrian direction detection technology is an important issue. Pedestrian direction information can avoid collision between intelligent self-propelled vehicles and crowds. By real-time object detection under the premise of big data, the deep learning can achieve higher accuracy and generalization ability more than the traditional methods. Compared with other neural networks, the YOLO based network model can obtain the effective results of object detection and object recognition in one test, and it has the advantages of high accuracy and fast operation. Besides, the YOLO model is also a one-stage classifier. In this thesis, a YOLO-PD network model is proposed by the characteristics of pedestrians. Based on the YOLOv2 algorithm and architecture improvement, this model trains a classifier that can identify six pedestrian directions, including front, left front, right front, left, right, and back. We collect several existing public pedestrian database and field samples, and define sample screening conditions to establish the pedestrian databases. The implementation process is divided into the training and testing phases. In the training phase, by using the graphics card on the personal computer, the features are extracted through the neural network, and trained by the stochastic gradient method until the loss function is converged. In the testing phase, pedestrian images were taken with a webcam with the resolution of 1920 x 1080 pixels, and the performance of YOLO-PD network model was tested on an embedded platform. The experimental results show that the YOLO-PD network model can achieve 65.52% mAP with the real-time operations by 29.80 FPS on the Xavier embedded platform. Compared with the original YOLOv1 network model, the operational speed of the proposed design is more than twice, and the mAP is also increased more than 15.86%. In addition, compared with the well-designed YOLOv2 network model, the mAP of the proposed design is slightly reduced by 0.72%, but the FPS performance can be increased by 1.45 times.
Dutta, Sankha Baran. "GPU Accelerated Nature Inspired Methods for Modelling Large Scale Bi-Directional Pedestrian Movement." 2014. http://hdl.handle.net/1993/23597.
Повний текст джерелаКниги з теми "PEDESTRIAN DIRECTION"
Bachmann, Hugo, and Walter Ammann. Vibrations in Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 1987. http://dx.doi.org/10.2749/sed003e.
Повний текст джерелаA step in the right direction: Assessing the London Red Routes from a pedestrian point of view. London: Pedestrians Association, 1993.
Знайти повний текст джерелаBritain, Great. The Pelican" Pedestrian Crossings Regulations and General Directions 1987 (Statutory Instruments: 1987: 16). Stationery Office Books, 1987.
Знайти повний текст джерелаBritain, Great. The Pelican and Puffin Pedestrian Crossings General (Amendment) Directions 1998 (Statutory Instruments: 1998: 901). Stationery Office Books, 1998.
Знайти повний текст джерелаThe Zebra, Pelican and Puffin Pedestrian Crossings Regulations and General Directions (Statutory Instruments: 1997: 2400). Stationery Office Books, 1997.
Знайти повний текст джерелаComfort, Kelly, and Marylaura Papalas. New Directions in Flânerie: Global Perspectives for the Twenty-First Century. Taylor & Francis Group, 2021.
Знайти повний текст джерелаNew Directions in Flânerie: Global Perspectives for the Twenty-First Century. Taylor & Francis Group, 2021.
Знайти повний текст джерелаComfort, Kelly, and Marylaura Papalas. New Directions in Flânerie: Global Perspectives for the Twenty-First Century. Routledge, 2021.
Знайти повний текст джерелаComfort, Kelly, and Marylaura Papalas. New Directions in Flânerie: Global Perspectives for the Twenty-First Century. Taylor & Francis Group, 2021.
Знайти повний текст джерелаЧастини книг з теми "PEDESTRIAN DIRECTION"
Dominguez-Sanchez, Alex, Sergio Orts-Escolano, and Miguel Cazorla. "Recognizing Pedestrian Direction Using Convolutional Neural Networks." In Advances in Computational Intelligence, 235–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59147-6_21.
Повний текст джерелаLv, Jiaqi, Zhenyu Na, Xin Liu, Tingting Yao, and Zhian Deng. "Outlier Filtering Algorithm for Indoor Pedestrian Walking Direction Estimation." In Lecture Notes in Electrical Engineering, 2421–28. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6571-2_295.
Повний текст джерелаZhu, Wei, and Harry Timmermans. "Bounded Rationality Choice Model Incorporating Attribute Threshold, Mental Effort, and Risk Attitude: Illustration to Pedestrian Walking Direction Choice Decision in Shopping Streets." In Pedestrian and Evacuation Dynamics 2008, 425–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04504-2_36.
Повний текст джерелаLu, Shunbao, Zhongliang Deng, Chen Xue, Yeqing Fang, Ruoyu Zheng, and Hui Zeng. "A Pedestrian Movement Direction Recognition Method Based on Inertial Sensors." In Lecture Notes in Electrical Engineering, 781–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46632-2_67.
Повний текст джерелаHu, Zhichao, Gabrielle Halberg, Carolynn R. Jimenez, and Marilyn A. Walker. "Entrainment in Pedestrian Direction Giving: How Many Kinds of Entrainment?" In Signals and Communication Technology, 151–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21834-2_14.
Повний текст джерелаChraibi, Mohcine, Martina Freialdenhoven, Andreas Schadschneider, and Armin Seyfried. "Modeling the Desired Direction in a Force-Based Model for Pedestrian Dynamics." In Traffic and Granular Flow '11, 263–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39669-4_25.
Повний текст джерелаSantoshi, G., and S. R. Mishra. "Pedestrian with Direction Detection Using the Combination of Decision Tree Learning and SVM." In Advances in Intelligent Systems and Computing, 249–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13728-5_28.
Повний текст джерелаTubino, Federica. "Probabilistic Analysis of Human-Structure Interaction in the Vertical Direction for Pedestrian Bridges." In Conference Proceedings of the Society for Experimental Mechanics Series, 117–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-54777-0_15.
Повний текст джерелаTachikawa, Yuji. "Conclusions and Further Directions." In N=2 Supersymmetric Dynamics for Pedestrians, 201–5. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08822-8_13.
Повний текст джерелаEledeisy, Mohamed. "Inclusive Neighborhoods in a Healthy City: Walkability Assessment and Guidance in Rome." In The Urban Book Series, 959–67. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_85.
Повний текст джерелаТези доповідей конференцій з теми "PEDESTRIAN DIRECTION"
Larabi, S., and A. Bensebaa. "Pedestrian walking direction from video." In 8th International Conference on Imaging for Crime Detection and Prevention (ICDP 2017). Institution of Engineering and Technology, 2017. http://dx.doi.org/10.1049/ic.2017.0045.
Повний текст джерелаLarabi, Slimane, and Amina Bensebaa. "Estimation of pedestrian walking direction from video." In 2017 International Conference on Mathematics and Information Technology (ICMIT). IEEE, 2017. http://dx.doi.org/10.1109/mathit.2017.8259689.
Повний текст джерелаAyub, Shahid, Behzad Momahed Heravi, Alireza Bahraminasab, and Bahram Honary. "Pedestrian Direction of Movement Determination Using Smartphone." In 2012 6th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST). IEEE, 2012. http://dx.doi.org/10.1109/ngmast.2012.36.
Повний текст джерелаMao, Lina, and Linyan Tang. "Pedestrian Detection Based on Gradient Direction Histogram." In 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). IEEE, 2022. http://dx.doi.org/10.1109/ipec54454.2022.9777626.
Повний текст джерелаHe, Bate, and Eisuke Kita. "Pedestrian Walking Direction Prediction Using Generative Adversarial Networks." In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020. http://dx.doi.org/10.1109/smc42975.2020.9283115.
Повний текст джерелаS, Sukesh Babu V., and Rahul Raman. "Pedestrian Direction Estimation: An Approach via Perspective Distortion Patterns." In 2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT). IEEE, 2023. http://dx.doi.org/10.1109/icitiit57246.2023.10068588.
Повний текст джерелаHoshi, Hisashi, Masahiro Fujii, Atsushi Ito, Yu Watanabe, and Hiroyuki Hatano. "A Study on Direction Estimation for Pedestrian Dead Reckoning." In 2014 Second International Symposium on Computing and Networking (CANDAR). IEEE, 2014. http://dx.doi.org/10.1109/candar.2014.68.
Повний текст джерелаManos, Adi, Itzik Klein, and Tamir Hazan. "Gravity Direction Estimation and Heading Determination for Pedestrian Navigation." In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2018. http://dx.doi.org/10.1109/ipin.2018.8533689.
Повний текст джерелаItoh, Makoto, Toshiyuki Inagaki, and Hiroto Tanaka. "Haptic steering direction guidance for pedestrian-vehicle collision avoidance." In 2012 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2012. http://dx.doi.org/10.1109/icsmc.2012.6378305.
Повний текст джерелаKolcu, Cihangir, and Bulent Bolat. "Yayaların yürüyüş rotalarının belirlenmesi detection of walking direction for pedestrian." In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT). IEEE, 2018. http://dx.doi.org/10.1109/ebbt.2018.8391426.
Повний текст джерелаЗвіти організацій з теми "PEDESTRIAN DIRECTION"
Simizu, Hiroaki, and Tomaso Poggio. Direction Estimation of Pedestrian from Images. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada459729.
Повний текст джерелаKulhandjian, Hovannes. AI-based Pedestrian Detection and Avoidance at Night using an IR Camera, Radar, and a Video Camera. Mineta Transportation Institute, November 2022. http://dx.doi.org/10.31979/mti.2022.2127.
Повний текст джерелаMartinez, Kimberly D., and Gaojian Huang. Exploring the Effects of Meaningful Tactile Display on Perception and Preference in Automated Vehicles. Mineta Transportation Institute, October 2022. http://dx.doi.org/10.31979/mti.2022.2164.
Повний текст джерела