Дисертації з теми "PDZ domain proteins"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "PDZ domain proteins".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Wei, Heng. "Split PH domain identification & redundancy analyses in the classification of PDZ domains /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?BICH%202006%20WEI.
Повний текст джерелаCheng, Shan Amy. "Structure-function studies of secreted PDZ domain-containing protein 2 (sPDZD2)." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558101.
Повний текст джерела鄭珊 and Shan Amy Cheng. "Structure-function studies of secreted PDZ domain-containing protein 2(sPDZD2)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558101.
Повний текст джерелаKlaavuniemi, T. (Tuula). "PDZ-LIM domain proteins and α-actinin at the muscle Z-disk". Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514282647.
Повний текст джерелаBombik, Izabela Agnieszka. "The role of PDZ domain-containing proteins in Frizzled-7 receptor signalling." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5846/.
Повний текст джерелаFetting, Doreen [Verfasser], and Kai [Akademischer Betreuer] Schuh. "Novel Cav1.2 and PMCA4b interacting PDZ domain containing proteins / Doreen [verh: Korb] Fetting. Betreuer: Kai Schuh." Würzburg : Universitätsbibliothek der Universität Würzburg, 2013. http://d-nb.info/103047558X/34.
Повний текст джерелаGardin, Chiara. "Interaction between fatz and myotilin families and enigma family proteins at the sarcomeric Z-DISC." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426618.
Повний текст джерелаIl disco-Z del muscolo striato è una struttura molecolare altamente specializzata a livello della quale si instaurano numerose interazioni proteina-proteina. Il disco-Z delinea il confine dei singoli sarcomeri, fornendo un punto di ancoraggio per i filamenti sottili di actina; il loro scorrimento sui filamenti spessi di miosina produce la forza meccanica responsabile della contrazione. Uno dei ruoli chiave del disco-Z, dunque, è quello di trasmettere la tensione generata dalla struttura seriale dei sarcomeri lungo le miofibrille e, di conseguenza, lungo tutto il muscolo. Al di là di un evidente significato strutturale, negli ultimi anni sta diventando sempre più consistente l’ipotesi di un suo coinvolgimento anche nella percezione e nella trasmissione di segnali. L’importanza delle interazioni tra le proteine del disco-Z è indicata dal fatto che mutazioni in molte di queste proteine possono risultare in distrofie muscolari e/o cardiomiopatie sia in uomo sia in topo. Una più ampia conoscenza delle interazioni che si articolano a livello del disco-Z e, in generale, degli eventi che le regolano, aiuterebbe a chiarire la biologia del disco-Z e l’insorgenza di eventuali patologie associate. Il mio progetto di Dottorato è stato incentrato su due gruppi di proteine sarcomeriche e sulle loro interazioni: le proteine delle famiglie FATZ e miotilina da un lato, e alcune proteine appartenenti alla famiglia enigma dall’altro. Questo lavoro ha portato all’identificazione di un’interazione specifica tra i domini PDZ delle proteine della famiglia enigma e gli ultimi cinque residui aminoacidici presenti nelle proteine delle famiglie FATZ e miotilina. Il lavoro di questa tesi fa parte di un progetto più ampio che coinvolge i gruppi coordinati dalla Dr.ssa G. Faulkner dell’ICGEB, Trieste, e il Prof. O. Carpen dell’Università di Turku, Finlandia. Grazie alla loro collaborazione, è stato possibile notare che i cinque residui C-terminali delle proteine FATZ-1 (ETEEL), FATZ-2 (ESEDL), FATZ-3 (ESEEL), miotilina (ESEEL), palladina (ESEDL) e miopalladina (ESDEL) sono molto simili. Una ricerca effettuata in database di sequenze proteiche ha rivelato che questo motivo, E-[S/T]-[D/E]-[D/E]-L, è quasi esclusivamente ristretto nei Vertebrati alle proteine delle famiglie FATZ e miotilina; inoltre, esso sembra essere conservato da zebrafish ad uomo, suggerendo la sua importanza per le proteine che lo contengono. Il programma ELM (che predice siti funzionali in proteine eucariotiche) ha predetto che gli ultimi quattro amino acidi delle proteine FATZ, miotilina, palladina e miopalladina costituiscono un motivo di legame per le proteine con domini PDZ di classe III (X-[D/E]-X-[V/I/L]). Il mio primo obiettivo è stato quello di verificare se le proteine caratterizzate da questo nuovo motivo C-terminale potessero effettivamente legare domini PDZ. E’ noto dalla letteratura che tutti e tre i componenti della famiglia FATZ legano il PDZ di ZASP, e che l’interazione tra ZASP e miotilina è mediata dalla regione C-terminale di quest’ultima. Oltre a ZASP, altri due membri della famiglia enigma, ALP e CLP-36, sono stati inclusi nello studio. Le proteine della famiglia FATZ e miotilina sono state prodotte sia in versione full-length sia priva degli ultimi cinque amino acidi per essere utilizzate in saggi di interazione AlphaScreen (Amplified Luminescence Proximity Homogeneous Assay). Peptidi biotinilati, fosforilati e non, corrispondenti ai cinque amino acidi finali delle FATZ, miotilina, palladina e miopalladina sono stati inoltre impiegati nei saggi AlphaScreen, così come un peptide di controllo avente in ultima posizione un acido glutammico (E) invece che una leucina (L). I risultati riportati in questa tesi dimostrano che gli ultimi cinque amino acidi delle proteine delle famiglie FATZ e miotilina sono responsabili del legame ai domini PDZ di ZASP, ALP e CLP-36, e che la natura dell’ultimo residuo aminoacidico è cruciale per questa interazione. Inoltre, la fosforilazione del residuo di serina o treonina del ligando C-terminale può influenzare il legame dei peptidi nei confronti dei domini PDZ della famiglia enigma. La proteina ?-actinina-2 è stata introdotta nello studio, poiché la sua sequenza C-terminale (GESDL) è classificata come motivo di legame per i domini PDZ di classe I (X-[S/T]-X-[V/I/L]). Gli esperimenti AlphaScreen hanno confermato l’interazione di ?-actinina-2 (sia della forma full-length sia dei peptidi C-terminali, fosforilati e non) con i PDZ di ZASP e ALP, e hanno fatto emergere una nuova interazione con il PDZ di CLP-36. Molte di queste interazioni sono state verificate con un altro metodo di interazione proteina-proteina in vitro, il TranSignal PDZ Domain Array. Sulla base dei risultati di PDZ array è stato possibile identificare un altro membro della famiglia di proteine enigma, RIL, in grado di legare il motivo E-[S/T]-[D/E]-[D/E]-L. Possiamo considerare questi cinque amino acidi C-terminali come un nuovo motivo di legame per le proteine con domini PDZ di classe III, specifico per i domini PDZ delle proteine enigma. Per poter meglio quantificare la forza delle interazioni studiate, alcuni esperimenti di SPR (Surface Plasmon Resonance) sono stati eseguiti nel laboratorio del Dr. A. Baines all’Università di Kent, UK. Le affinità delle interazioni tra il dominio PDZ di ZASP e alcuni dei peptidi fosforilati e non-fosforilati delle famiglie di proteine FATZ e miotilina risultano essere nell’ordine del nM. Gli esperimenti di SPR hanno portato anche all’identificazione di un’interazione tra il PDZ di ZASP e ANKRD2. Si pensa che questa proteina, membro della famiglia MARP, sia coinvolta nelle vie di risposta a stress muscolari. ANKRD2 può trovarsi sia nella banda-I del sarcomero sia nel nucleo ed è in grado di legare diversi fattori di trascrizione, come YB-1, PML e p53. La scoperta di questa interazione rafforza l’ipotesi che il disco-Z, oltre ad un ruolo specificamente strutturale, potrebbe essere coinvolto in vie di segnalazione. Dal momento che a livello del disco-Z molte proteine hanno più di un partner proteico, sarebbe utile cercare di definire il livello e il profilo di espressione delle singole proteine in tessuti muscolari con diverse caratteristiche. Un altro obiettivo del mio lavoro è stato quindi quello di valutare l’abbondanza degli mRNA di alcune delle proteine del disco-Z da me studiate con la Real-Time PCR. Allo scopo sono stati presi in considerazione quattro tessuti muscolari di topo adulto: il tibiale (un muscolo scheletrico a contrazione rapida), il soleo (un muscolo scheletrico a contrazione lenta), il gastrocnemio (un muscolo scheletrico con fibre miste) e il muscolo cardiaco. La differente distribuzione delle FATZ, miotilina e ZASP (con le sue varianti di splicing) suggerisce che, almeno in topo, le interazioni tra queste proteine potrebbero essere compartimentalizzate in distinte fibre muscolari.
Sun, Young Joo. "Engineering PDZ domain specificity." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/6865.
Повний текст джерелаYeung, Man-lung, and 楊文龍. "Proteolytic cleavage of PDZD2 generates a secreted peptide containing two PDZ domains." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B31245055.
Повний текст джерелаWolting, Cheryl Deanna. "LNX, a novel PDZ domain-containing protein." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0023/MQ50421.pdf.
Повний текст джерелаWat, Zee-man, and 屈詩曼. "The effect of mutating the PDZ domains within secreted PDZ-domain-containing protein 2 on its insulinotropic action in INS-1E cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B44668363.
Повний текст джерелаXu, Weiguang. "Solution structure of [Alpha]-syntrophin PH-PDZ tandem domain /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?BICH%202005%20XU.
Повний текст джерелаKarlsson, Andreas. "Characterization and Engineering of Protein-Protein Interactions Involving PDZ Domains." Doctoral thesis, Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-312872.
Повний текст джерелаSoliman, Ismail Faied Mohamed. "Characterization of FATZ-3 protein and its interaction with PDZ containing proteins." Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85980.
Повний текст джерелаPanel, Nicolas. "Étude computationnelle du domaine PDZ de Tiam1." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX062/document.
Повний текст джерелаSmall protein domains often direct protein-protein interactions and regulate eukaryotic signalling pathways. PDZ domains are among the most widespread and best-studied. They specifically recognize the 4-10 C-terminal amino acids of target proteins. Tiam1 is a Rac GTP exchange factor that helps control cellmigration and proliferation and whose PDZ domain binds the proteins syndecan-1 (Sdc1), Caspr4, and Neurexin. Short peptides and peptidomimetics can potentially inhibit or modulate its action and act as bioreagents or therapeutics. We used computational protein design (CPD) and molecular dynamics (MD) free energy simulations to understand and engineer its peptide specificity. CPD uses a structural model and an energy function to explore the space of sequences and structures and identify stable and functional protein or peptide variants. We used our in-house Proteus CPD package to completely redesign the Tiam1 PDZ domain. The designed sequences were similar to natural PDZ domains, with similarity and fold recognition scores comarable to the widely-used Rosetta CPD package. Selected sequences, containing around 60 mutated positions out of 90, were tested by microsecond MD simulations and biophysical experiments. Four of five sequences tested experimentally (by our collaborators) displayed reversible unfolding around 50°C. Proteus also accurately scored the binding specificity of several protein and peptide variants. As a more refined model for specificity, we parameterized a semi-empirical free energy model of the Poisson-Boltzmann Linear Interaction Energy or PB/LIE form, which scores conformations extracted from explicit solvent MD simulations of PDZ:peptide complexes. With three adjustable parameters, the model accurately reproduced the experimental binding affinities of 41 variants, with a mean unsigned error of just 0.4 kcal/mol, andgave predictions for 10 new variants. The PB/LIE model was tested further by comparing to non-empirical, alchemical, MD free energy simulations, which have no adjustable parameters and were found to give chemical accuracy for 12 Tiam1:peptide complexes. The tools and insights obtained should help discover new tight binding peptides or peptidomimetics and have broad implications for engineering PDZ:peptide interactions
Bennett, Elizabeth. "Modulating protein-protein interactions : Novel inhibitors of PDZ domains and tubulin dynamics." Thesis, University of Salford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502783.
Повний текст джерелаTam, Chun-wai. "Secreted PDZ domain-containing protein 2 (sPDZD2) a potential autocrine tumor suppressor /." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557376.
Повний текст джерелаTam, Chun-wai, and 談振偉. "Secreted PDZ domain-containing protein 2 (sPDZD2): a potential autocrine tumor suppressor." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557376.
Повний текст джерелаHultqvist, Greta. "Protein Folding, Binding and Evolution : PDZ domains and paralemmins as model systems." Doctoral thesis, Uppsala universitet, Institutionen för cell- och molekylärbiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-185573.
Повний текст джерелаRimbault, Charlotte. "Modulation des interactions impliquant les domaines PDZ par une approche d’évolution dirigée." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0438/document.
Повний текст джерелаComplex and dynamic protein-protein interactions are the core of protein-based networks in cells. At excitatory synapses, the postsynaptic density (PSD) is a typical example of protein-based network whose nanoscale structure and composition determines the cellular function. For instance, the dynamic regulation of PSD composition and glutamate receptors movements into or out of the PSD are the base of current molecular theories of learning and memory. In this context, during my PhD, I focused on a class of protein-protein interactions mediated by PDZ domains. Indeed, over the last decade, numerous studies have shown the critical implication of PDZ domain-mediated interactions from the PSD95 scaffolding protein family in the synaptic targeting and anchoring of glutamate receptors. However, in part due to the lack of adapted tools, the molecular mechanisms that dynamically govern their respective synaptic retention remain poorly understood. In order to investigate these PDZ domain-mediated interactions, I developed several selection strategies by phage-display based on the fibronectin type III (FN3) scaffold in order to either target the PDZ domain-binding motifs of the receptors complexes (e.g., stargazin for AMPARs and GluN2A for NMDARs) or the PDZ domains themselves. Using a multidisciplinary approach, my main objectives were to engineer small synthetic antibodies that will allow us to acutely and specifically disrupt or stabilize these protein complexes, as well as monitor endogenous interactions
Mignon, David. "Computational protein design : un outil pour l'ingénierie des protéines et la biologie synthétique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX089/document.
Повний текст джерелаComputational Protein Design, or CPD is the search for the amino acid sequences compatible with a targeted protein structure. The goal is to design a new function and/or add a new behavior. CPD has been developed in our laboratory for several years, with the software Proteus which has several successes to its credit. Our approach uses a physics-based energy model, and relies on the energy difference between the folded and unfolded states of the protein. During this thesis, we enriched Proteus on several points, including the addition of a Monte Carlo exploration method with Replica Exchange or REMC. We compared extensively three stochastic methods for the exploration of sequence space: REMC, plain Monte Carlo and a heuristic designed for CPD: Multistart Steepest Descent or MSD.These comparisons concerned nine proteins from three structural families: SH2, SH3 and PDZ. Using the exploration techniques above, we were able to identify the Global Minimum EnergyConformation, or GMEC for nearly all the test cases where up to10 positions of the polypeptide chain were free to mutate (the others retaining their native types). For the tests where 20positions were free to mutate, the GMEC was identified in 2/3 of the cases. Overall, REMC and MSD give very good sequences in terms of energy, often identical or very close to the GMEC. MSDperformed best in the tests with 30 mutating positions. REMCwith eight replicas and optimized parameters often gave the best result when all positions could mutate. Moreover, compared to an exact enumeration of the low energy sequences, REMC provided a sample of sequences with a high sequence diversity.In the second part of this work, we tested our CPD model forPDZ domain design. For the folded state, we used two variants ofa GB solvent model. The first used a mean, effective protein/solvent dielectric boundary; the second one, more rigorous, used an exact boundary that flucutated over the MCtrajectory. To characterize the unfolded state, we used a set of amino acid chemical potentials or reference energies. These reference energies were determined by maximizing a likelihoodfunction so as to reproduce the amino acid frequencies in naturalPDZ domains. The sequences designed by Proteus were compared to the natural sequences. Our sequences are globally similar to the Pfam sequences, in the sense of the BLOSUM40scores, with especially high scores for the residues in the core ofthe protein. The more rigorous GB variant always gives sequences similar to moderately distant natural homologues and perfect recognition by the the Super family fold recognition tool.Our sequences were also compared to those produced by the Rosetta software. The quality, according to the same criteria as before, was very similar, but the Rosetta sequences exhibit fewer mutations than the Proteus sequences
Chi, Celestine. "Post-synaptic Density Disc Large Zo-1 (PDZ) Domains : From Folding and Binding to Drug Targeting." Doctoral thesis, Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126129.
Повний текст джерелаBlanc, Jean-Michel. "Etude moléculaire et fonctionnelle des assemblages multiproteiques impliquant les proteines de la polarité planaire Vangl2 et Scribble1." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4131.
Повний текст джерелаThere are many mechanisms involved in the development of tissues that require cells or groups of cells orient and polarize. The proteins of the planar cell polarity (PCP) combine to form complexes with the membrane and create proximal-distal asymmetries. Vangl2 and Scrib1 have been identified as the first two genes involved in the PCP in mammals. In this study, I am interested in these two proteins and some of the complex in which they are involved. At first, using techniques of biochemistry, cell biology and biophysics, we showed the direct involvement of Scribble1 in traffic after endocytosis of NMDA receptors. Scrib1 interacts with NMDA receptors through its PDZ domains. Due to this binding motif between PDZ1 and PDZ2 of Scrib1, it can interact with the AP2 complex which is involved in receptor endocytosis. This study has identified a new mechanism in which Scrib1 regulates the amount of NMDA receptors on the membrane and is therefore involved in synaptic plasticity. Vangl2 is a transmembrane protein of the most upstream of the PCP pathway. We have identified a new partner named "Axin Interaction partner and Dorsalization Antagonist" (AIDA). We have shown, by yeast two-hybrid and pull down the interaction of Vangl2 with two isoforms of AIDA and collocation in COS7 and neurons. Together, these data show AIDA as a very good candidate for maintaining Vangl2 to adherens junctions and/or its membrane targeting. These studies have allowed us to improve our understanding of the mechanisms involving the planar polarity proteins
Pang, Bo, and 龐博. "Antiproliferative actions of melatonin and secreted PDZ domain-containing protein 2 (sPDZD2) on tumor cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224064.
Повний текст джерелаPang, Bo. "Antiproliferative actions of melatonin and secreted PDZ domain-containing protein 2 (sPDZD2) on tumor cells." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224064.
Повний текст джерелаSilvennoinen, L. (Laura). "ERp57—Characterization of its domains and determination of solution structures of the catalytic domains." Doctoral thesis, University of Oulu, 2006. http://urn.fi/urn:isbn:9514280547.
Повний текст джерелаVogrig, Alexandre. "Synthèse et évaluation d'antalgiques originaux : les inhibiteurs de protéines à domaines PDZ." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00803458.
Повний текст джерелаChan, Cho-yan. "Secreted PDZ domain-containing protein 2 (sPDZD2) exerts insulinotropic effects on INS-1E cells via a protein kinase A-dependent mechanism." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43572078.
Повний текст джерелаChan, Cho-yan, and 陳祖恩. "Secreted PDZ domain-containing protein 2 (sPDZD2) exerts insulinotropic effects on INS-1E cells via a protein kinase A-dependent mechanism." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43572078.
Повний текст джерелаDaher, Elias. "Phosphorylation of diacylglycerol kinase-zeta by protein kinase C regulates its interaction with the PDZ domain of syntrophins." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27236.
Повний текст джерелаTeoh, Kim Tat. "The E envelope protein of the SARS coronavirus interacts with the pals1 tight junction protein through its PDZ domain consequences for polarity of infected epithelial cells /." Click to view the E-thesis via HKUTO, 2010. http://sunzi.lib.hku.hk/hkuto/record/B43913210.
Повний текст джерелаGriffin, Jennifer. "An analysis of TEA domain proteins." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ43260.pdf.
Повний текст джерелаMurray, David Andrew. "The binding of proteins with modular domains to the cytoplasmic domain of the axon guidance receptor human Roundabout1." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58845.pdf.
Повний текст джерелаPatel, Shivarni. "The Rational Investigation of Anti-Cancer Peptide Specificity using the Knob-Socket Model." Scholarly Commons, 2017. https://scholarlycommons.pacific.edu/uop_etds/2984.
Повний текст джерелаTeoh, Kim Tat, and 張錦達. "The E envelope protein of the SARS coronavirus interacts with the pals1 tight junction protein through its PDZ domain: consequences for polarity of infected epithelial cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B43913210.
Повний текст джерелаKitano, Jun. "Tamalin, a PDZ Domain-containing Protein, Links a Protein Complex Formation of Group 1 Metabotropic Glutamate Receptors and the Guanine Nucleotide Exchange Factor Cytohesins." Kyoto University, 2002. http://hdl.handle.net/2433/149708.
Повний текст джерелаRenschler, Fabian Alexander [Verfasser]. "A versatile Scaffold : The binding specificities of the Par3 PDZ domains mediate multiple interactions with polarity proteins / Fabian Alexander Renschler." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1218073454/34.
Повний текст джерелаMunz, Marton. "Computational studies of protein dynamics and dynamic similarity." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:2fb76765-3e43-409b-aad3-b5202f4668b3.
Повний текст джерелаDavies, Joanna Marie. "The identification of novel POZ domain zinc finger proteins : characterisation of a heterodimeric partner of BCL-6." Thesis, Institute of Cancer Research (University Of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264995.
Повний текст джерелаHamazaki, Yoko. "Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule." Kyoto University, 2003. http://hdl.handle.net/2433/148697.
Повний текст джерелаCotton, Lucy. "An investigation into the effect of the PDZ domain-containing protein PICK1 on the expression of endogenous AMPA receptors in cultured hippocampal neurons." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404090.
Повний текст джерелаGößling, Enno Karl [Verfasser], and Hans-Jürgen [Akademischer Betreuer] Kreienkamp. "Untersuchungen zur Funktion und subzellulären Lokalisation von PIST (PDZ domain protein interacting specifically with TC10) in Neuronen / Enno Karl Gößling. Betreuer: Hans-Jürgen Kreienkamp." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2012. http://d-nb.info/102633294X/34.
Повний текст джерелаJervis, Eric J. "Immobilization of growth factors using cellulose binding domain-cytokine fusion proteins." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0014/NQ34558.pdf.
Повний текст джерелаBaker, Ruletha Deon Goodwin Douglas C. "Roles of an 'inactive' domain in catalase-peroxidase catalysis modulation of active site architecture and function by gene duplication /." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Fall/Dissertations/HARTFIELD-BAKER_RULETNA_19.pdf.
Повний текст джерелаTran, Thuy L. "Caenorhabditis elegans RHGF-2 is Required for Embryonic Elongation and Co-localizes in vivo with the PDZ-domain Containing Scaffold Protein MPZ-1." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333748525.
Повний текст джерелаHuyer, Gregory. "Specificity of SH2 domains and protein tyrosine phosphatases." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0018/NQ44864.pdf.
Повний текст джерелаFriend, Lexie Robyn. "An analysis of intermediate filament end domains /." [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17114.pdf.
Повний текст джерелаNorthey, Julian G. B. "Protein folding determinants and transition state analysis of the Fyn SH3 domain." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62902.pdf.
Повний текст джерелаPlant, Pamela J. "A role for the C2 domain of the ubiquitin-protein ligase Nedd4." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0026/NQ49821.pdf.
Повний текст джерелаYu, Yu. "Functional characterization of the cyclin, Nicta, CYCA3; 2, and the SET domain proteins in plants." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/YU_Yu_2006.pdf.
Повний текст джерелаThe development of plants, compared with that of animals, is largely post-embryonic and influenced much more by the environment, suggesting that the plants have evolved and distinct mechanisms to control plant development and growth. Cell division plays a vital role in plant development and growth. During the cell division, the G1-S transition is a crucial crossroad at the interface between cell proliferation and differentiation. By genetic, physiological, and molecular approaches, we demonstrate that Nicta;CYCA3;2 has important functions, analogous to those of cyclin E (an important regulator involved in G1-S transition) in animals, in the control of plant cell division and differentiation. Once S phase is initiated, DNA is replicated and chromatin is assembled. The establishment and maintenance of specific chromatin states provides an epigenetic mechanism for inheriting expression states throughout plant development. Our studies show that the tobacco SET domain protein NtSET1 methylates H3K9, which marks primarily heterochromatin. Ectopic expression of NtSET1 increases the amount of H3K9 dimethylation and induces chromosome segregation defects in tobacco BY2 cells. Furthermore, NtSET1 is shown to bind LHP1, the only Arabidopsis homologue of animal heterochromatin protein 1. By immunolocalization and in vivo target analysis, it shows that both NtSET1-YFP and LHP1-YFP bind heterochromatic regions, suggesting a mechanism of function in heterochromatin formation. Study of Arabidopsis SET domain group gene SDG8 reveals that SDG8 encodes a major enzyme controlling methylation of H3K36 in Arabidopsis, which positively regulates FLC transcription to prevent early flowering. In conclusion, my thesis work allows me to acquire a better understanding of plant development. The knowledge and techniques acquired in molecular and cellular biology will not only enable me to continue the research in plants but also adapt with the research on other organisms