Добірка наукової літератури з теми "PDMS-based"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "PDMS-based".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "PDMS-based"

1

Bergeron, V., P. Cooper, C. Fischer, J. Giermanska-Kahn, D. Langevin, and A. Pouchelon. "Polydimethylsiloxane (PDMS)-based antifoams." Colloids and Surfaces A: Physicochemical and Engineering Aspects 122, no. 1-3 (April 1997): 103–20. http://dx.doi.org/10.1016/s0927-7757(96)03774-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lopera, S., and R. D. Mansano. "Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding." ISRN Polymer Science 2012 (April 3, 2012): 1–5. http://dx.doi.org/10.5402/2012/767151.

Повний текст джерела
Анотація:
We present and compare two processes for plasma-based surface modification of Polydimethylsiloxane (PDMS) to achieve the antisticking behavior needed for PDMS-PDMS molding. The studied processes were oxygen plasma activation for vapor phase silanization and plasma polymerization with tetrafluoromethane/hydrogen mixtures under different processing conditions. We analyzed topography changes of the treated surfaces by atomic force microscopy and contact angle measurements. Plasma treatment were conducted in a parallel plate reactive ion etching reactor at a pressure of 300 mTorr, 30 Watts of RF power and a total flow rate of 30 sccm of a gas mixture. We found for both processes that short, low power, treatments are better to create long-term modifications of the chemistry of the polymer surface while longer processes or thicker films tend to degrade faster with the use leaving rough surfaces with higher adherence to the molded material.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Y., F. Karasu, C. Rocco, L. G. J. van der Ven, R. A. T. M. van Benthem, X. Allonas, C. Croutxé-Barghorn, A. C. C. Esteves, and G. de With. "PDMS-based self-replenishing coatings." Polymer 107 (December 2016): 249–62. http://dx.doi.org/10.1016/j.polymer.2016.11.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

You, Jae Bem, Kyowon Kang, Thanh Tinh Tran, Hongkeun Park, Wook Ryol Hwang, Ju Min Kim, and Sung Gap Im. "PDMS-based turbulent microfluidic mixer." Lab on a Chip 15, no. 7 (2015): 1727–35. http://dx.doi.org/10.1039/c5lc00070j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pergal, Marija, Jelena Nestorov, Gordana Tovilovic-Kovacevic, Petar Jovancic, Lato Pezo, Dana Vasiljevic-Radovic, and Jasna Djonlagic. "Surface characterization, hemo- and cytocompatibility of segmented poly(dimethylsiloxane)-based polyurethanes." Chemical Industry 68, no. 6 (2014): 731–41. http://dx.doi.org/10.2298/hemind141103082p.

Повний текст джерела
Анотація:
Segmented polyurethanes based on poly(dimethylsiloxane), currently used for biomedical applications, have sub-optimal biocompatibility which reduces their efficacy. Improving the endothelial cell attachment and blood-contacting properties of PDMS-based copolymers would substantially improve their clinical applications. We have studied the surface properties and in vitro biocompatibility of two series of segmented poly(urethane-dimethylsiloxane)s (SPU-PDMS) based on hydroxypropyl- and hydroxyethoxypropyl- terminated PDMS with potential applications in blood-contacting medical devices. SPU-PDMS copolymers were characterized by contact angle measurements, surface free energy determination (calculated using the van Oss-Chaudhury-Good and Owens-Wendt methods), and atomic force microscopy. The biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact assay, before and after pre-treatment of copolymers with multicomponent protein mixture, as well as by a competitive blood-protein adsorption assay. The obtained results suggested good blood compatibility of synthesized copolymers. All copolymers exhibited good resistance to fibrinogen adsorption and all favored albumin adsorption. Copolymers based on hydroxyethoxypropyl-PDMS had lower hydrophobicity, higher surface free energy, and better microphase separation in comparison with hydroxypropyl-PDMS-based copolymers, which promoted better endothelial cell attachment and growth on the surface of these polymers as compared to hydroxypropyl-PDMS-based copolymers. The results showed that SPU-PDMS copolymers display good surface properties, depending on the type of soft PDMS segments, which can be tailored for biomedical application requirements such as biomedical devices for short- and long-term uses.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kwon, Dae-Hyeon, Jaebum Jeong, Yongju Lee, Jun-Kyu Park, Suwoong Lee, Jin-Hyuk Bae, and Hyeok Kim. "Carbon Nano Tube-Polymer Hybrid Nanocomposite Electrodes for Porous Polydimethylsiloxane Sponge-Based Flexible Triboelectric Nanogenerators." Journal of Nanoscience and Nanotechnology 21, no. 9 (September 1, 2021): 4680–84. http://dx.doi.org/10.1166/jnn.2021.19297.

Повний текст джерела
Анотація:
Flexible triboelectric nanogenerators (TENGs) have attracted much attention because of its environmentally friendly, practical, and cost-producing advantages. In flexible TENGs, it is important to study the flexible electrodes in order to fabricate the fully flexible devices. Here, we compared electrical characteristics of the sponge porous polydimethylsiloxane (PDMS)-based flexible TENGs with two types of flexible electrodes, copper and carbon nanotube (CNT)-PDMS electrodes. The output voltage and maximum power density of sponge PDMS-based flexible TENGs with copper and CNTPDMS electrodes were compared. The voltage and power density of sponge PDMS-based flexible TENGs with CNT-PDMS electrodes were improved compare to those with copper electrodes. The output voltage and the maximum power density of sponge PDMS-based flexible TENGs with copper and CNT-PDMS electrodes increased 4 times and 7 times, respectively. It is attributed to higher electrical conductivity and stably flow electricity of CNT than those of copper.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tan, Xueqiang, and Jimin Zheng. "A Novel Porous PDMS-AgNWs-PDMS (PAP)-Sponge-Based Capacitive Pressure Sensor." Polymers 14, no. 8 (April 7, 2022): 1495. http://dx.doi.org/10.3390/polym14081495.

Повний текст джерела
Анотація:
The development of capacitive pressure sensors with low cost, high sensitivity and facile fabrication techniques is desirable for flexible electronics and wearable devices. In this project, a highly sensitive and flexible capacitive pressure sensor was fabricated by sandwiching a porous PAP sponge dielectric layer between two copper electrodes. The porous PAP sponge dielectric layer was fabricated by introducing highly conductive silver nanowires (AgNWs) into the PDMS sponge with 100% sucrose as a template and with a layer of polydimethylsiloxane (PDMS) film coating the surface. The sensitivity of the PAP sponge capacitive pressure sensor was optimized by increasing the load amount of AgNWs. Experimental results demonstrated that when the load amount of AgNWs increased to 150 mg in the PAP sponge, the sensitivity of the sensor was the highest in the low-pressure range of 0–1 kPa, reaching 0.62 kPa−1. At this point, the tensile strength and elongation of sponge were 1.425 MPa and 156.38%, respectively. In addition, the specific surface area of PAP sponge reached 2.0 cm2/g in the range of 0–10 nm pore size, and showed excellent waterproof performance with high elasticity, low hysteresis, light weight, and low density. Furthermore, as an application demonstration, ~110 LED lights were shown to light up when pressed onto the optimized sensor. Hence, this novel porous PAP-sponge-based capacitive pressure sensor has a wide range of potential applications in the field of wearable electronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Jinook, Mikyung Park, Gee Sung Chae, and In-Jae Chung. "Influence of un-cured PDMS chains in stamp using PDMS-based lithography." Applied Surface Science 254, no. 16 (June 2008): 5266–70. http://dx.doi.org/10.1016/j.apsusc.2008.02.074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Šustková, Alena, Klára Konderlová, Ester Drastíková, Stefan Sützl, Lenka Hárendarčíková, and Jan Petr. "Rapid Production of PDMS Microdevices for Electrodriven Separations and Microfluidics by 3D-Printed Scaffold Removal." Separations 8, no. 5 (May 14, 2021): 67. http://dx.doi.org/10.3390/separations8050067.

Повний текст джерела
Анотація:
In our work, we produced PDMS-based microfluidic devices by mechanical removal of 3D-printed scaffolds inserted in PDMS. Two setups leading to the fabrication of monolithic PDMS-based microdevices and bonded (or stamped) PDMS-based microdevices were designed. In the monolithic devices, the 3D-printed scaffolds were fully inserted in the PDMS and then carefully removed. The bonded devices were produced by forming imprints of the 3D-printed scaffolds in PDMS, followed by bonding the PDMS parts to glass slides. All these microfluidic devices were then successfully employed in three proof-of-concept applications: capture of magnetic microparticles, formation of droplets, and isotachophoresis separation of model organic dyes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Guang Tao, Yi Qing Gao, Feng Li, Xiao Feng Cui, and Guo Wen Kuang. "Design and Fabrication of PDMS MLA Based on Digital Maskless Lithography Method." Advanced Materials Research 1091 (February 2015): 71–76. http://dx.doi.org/10.4028/www.scientific.net/amr.1091.71.

Повний текст джерела
Анотація:
Polymer MLA is fabricated by used of the DMD-based maskless lithography method. The process flow is described in this paper. The obtained photoresist concave MLA, which is used as a pattern to fabricate PDMS convex MLA, and the resulted PDMS MLA are measured with 3D surface profiler based on scanning white light interferometry. Besides, the transmission and reflection spectrum of PDMS film sample are also measured and used to calculate the refractive index of the PDMS film.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "PDMS-based"

1

Vila, i. Planas Jordi. "PDMS-based opto uidic systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284136.

Повний текст джерела
Анотація:
Al llarg de la tesis, diversos elements òptics i fluidics s’han aconseguit integrar en sistemes optofluidics completament funcionals. La integració d’aquests s’ha realitzat fent servir la tècnica de soft-lithography i el PDMS com material constituent per garantir el baix cost i la felxibilitat dels sistemes LOC. Els elements desenvolupats s’han caracteritzat individualment i els LOCs s’han testat i caracteritzat com a eines per a l’analisis bioquímic per sobrepassar problemes actuals. Es resalta el diseny, optimització, fabricació i caracterització dels elements optics individuals. Els elements òptics es divideixen en dos grups, passius i actius. Els passius són aquells que no necessiten cap font d’energia externa per funcionar. Primerament, els més simples, i.e., lents col·limadores i estructures d’autoalineament, necessàries per crear estructures més complexes. Aquests elements s’havien publicat prèviament, però l’optimització feta així com el desenvolupament d’estructures auxiliars tot fabricat utilitzant la mateixa tecnologia i sense augmentar el passos necessaris doten els elements d’una gran robustesa i ens permeten crear estructures més complexes. Miralls d’aire i lents s’han combinat per formar divisors de feix. El principal problema dels divisors de feix és la desviació entre la intensitat als canals de sortida. Aquest problema indica que pot haver-hi un desalineament en la posició de les fibres, les lents col·limadores o els miralls d’aire. Utilitzant variacions de la tecnologia MIMIC un nou element òptic passiu s’ha dissenyat, fabricat i caracteritzat. PDMS dopat amb 3 pigments diferents s’ha utilitzat per crear filtres amb stopbands al llarg de l’espectr visible. Finalment, un element actiu, un emissor integrat, s’ha redissenyat utilitzant software de simulació òptica. Els resultats suggereixen que hi ha volums morts dins l’estructura i per tant, es proposa una reducció de tamany i un canvi de forma. La integració de molts d’aquests elements més alguns de fluídics es detalla. Primerament, connectors entre mòduls es dissenyen i testegen. L’emissor redissenyat es manufactura i caracteritza. El seu comportament concorda amb les simulacions i suggereig que encara es podria rediu més el volum. Tots els mòduls es fabriquen de dues repliques de PDMS. Cada mòdul és elàstic i pot ser connectat amb els altres en qualsevol substrat, les connexions entre mòduls no són permanents i es poden fer i desfer sense cap coneixement previ sobre microfluidica o LOC. Per tant, el sistema modular té prou flexibilitat per crear LOC a la carta a investigadors sense els coneixements necessaris per crear-los des de zero. Per provar-ho diversos mòduls s’han unit i utilitzat per determinar la concentració de Cristall violeta. Les lents col·limadores ja reportades s’han integrat monolíticament en un generador de microgotes monodisperses. S’han proposat dues configuracions òptiques per possibilitar les mesures en fluorescència i absorbància de les microgotes. Ambdues s’han testejat i comparat amb el set up previ demostrant resultats equiparables. A més, les configuracions proposades poden detectar gotes no etiquetades, una fet que no era possible amb el set up previ, amb la mateixa precisió i fiabilitat. Malgrat tot, degut a les nostres lents col·limadores i els equips de lectura, la velocitat de detecció de gotes està limitada a 160 gotes/s. Finalment, la determinació del medi interior de la gota s’ha demostrat experimentalment per primer cop en un sistema optofluidic. Finalment, s’ha contruit un FCOR comapcte i integrables utilitzant tècniques de soft-lithography i utilitzant únicament PDMS i aire per assegurar baix cost i robustesa. S’han utilitzat phaseguides per crear un FCOR amb un mirall mòbil sense parts mòbils. Aquest LOC és repetitiu i té una llarga durabilitat (no s’aprecia degradació o baixada de rendiment en tot l’espectre visible durant setmanes). Per últim, FCOR s’ha integrat amb dos LOC reportats amb anterioritat per fer mesures en paral·lel de glucosa i lactat amb una única font de llum. Un cop calibrat el sistema, el FCOR permet la mesura de glucosa i lactat amb coherència amb resultats previs. Validant, per tant, el FCOR per anàlisis en paral·lel.
Along the thesis, several optics and fluidics elements are succesfully integrated in fully functional optouidic systems. Integration of these elements using soft-lithography fabrication technique and PDMS as constituent material ensures low-cost, disposable and flexible LOCs systems. Developed elements are individually characterized and LOCs are characterized and tested as (bio)chemical tools to overcome unsolved issues of the present state of the art in LOC applications. Design, optimization, fabrication and characterization of individual optical elements is outlined. Optical elements have been divided in two categories, passive and active elements. Passive elements are those which do not require an energy source to work. Firstly, the most simple elements, i.e., collimation lenses and self-alignment structures, necessary to create more complex structures. Such elements usually were published previously, but our development and optimization of elements as well as auxiliary structures, e.g., stoppers and self-alignment channels, built using a single technology with no increase of fabrication steps, provide a robust approach to create more complex structures. Air mirrors and lenses are combined to create beam splitters. The major issue of the BS is the deviation of output power between channels. This result suggests that some misalignment in the fibre position, the lens collimation or the waveguide geometry has occurred. Using developed MIMIC variations a new passive optical element are designed, fabricated and characterized. PDMS doped with three different pigments are used to create filters with stopbands along the whole visible spectrum. Finally, an active element, an integrated emitter, is redesigned using TracePro simulation software. Simulation results suggest there are dead volumes inside the emitter chamber. Then, size reduction and shape change is proposed. Integration of many of the these optical plus some fluidic elements is explained. Firstly, different connectors between modules are designed and tested. The previously redesigned integrated emitter are manufactured and characterized. Its behaviour matches with simulations results and suggest a further size reduction is not only possible but also recommendable. All the modules are fabricated from two PDMS replicas. Each module is elastic and can be assembled with other modules in any substrate, modules connections are not permanent and can be plug and unplug with no previous knowledge in microfluidics or LOC. Hence, presented modular system have enough flexibility to create LOC on demand to researchers without the background required to design and manufacture LOC systems from scratch. In order to prove it several modules are tested together in a crystal violet concentration determination. Previously reported collimation lenses are monolithically integrated in a monodisperse microdroplets generator. Two different optical configurations have been proposed in order to make possible fluorescence and absorbance measurement of droplets. Both are tested and compared to previous set up with equivalent results. In addition, proposed configurations can detect unlabelled droplets, a feature that was not possible with the previous set up, with the same precision and reliability. However, due to our collimation lenses and readout equipment, the droplet generation rate is limited to 160 drops/s. Finally, screening of droplet inner medium is experimentally proved for first time in optofluidic system. Afterwards, a compact and integrable fluidically controlled optical router (FCOR) is build using soft-lithographic techniques and made entirely of PDMS and air ensuring low-cost and robustness. Phaseguides, has been exploited to create a FCOR with a movable mirror without mobile parts. The LOC is repetitive, and has a good durability (non appreciable degradation or performance deterioration for weeks, in the whole visible spectrum). Finally, FCOR is integrated in a previously reported LOC performing parallel measurements of glucose and lactate with a single light source. After setup calibration, the FCOR allows parallel measurement of glucose and lactate showing good agreement with previous results. Validating then, the FCOR for parallel analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ozkan, Ekrem. "PDMS-based antimicrobial surfaces for healthcare applications." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10044839/.

Повний текст джерела
Анотація:
This thesis describes two types of approaches for reducing the incidence of hospital-acquired infections (HAIs), which are chemical approaches that inactivate bacteria that adhere to the surface i.e. bactericidal activity and physical approaches that inhibit initial bacterial attachment to the surface i.e. anti-biofouling activity. Specifically, the antimicrobial polydimethylsiloxane (PDMS)-based systems detailed in this thesis are: (i) photosensitizer, crystal violet (CV),-coated PDMS for both medical device and hospital touch surface applications, (ii) crystal violet-coated, zinc oxide nanoparticle-encapsulated PDMS for hospital touch surface applications, (iii) superhydrophobic antibacterial copper coated PDMS films via aerosol assisted chemical vapour deposition (AACVD) for hospital touch surface applications and (iv) slippery copper-coated PDMS films to prevent biofilm formation on medical devices. The materials were characterized using techniques including: X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis absorbance spectroscopy, water-contact angle measurement and microbiology tests. Functional testing indicated that CV-coated samples were suitable for targeted applications and showed potent light-activated antimicrobial activity when tested against model Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli, associated with hospital-acquired infections, with > 4 log reduction in viable bacterial numbers observed. On the other hand, CVD modified samples demonstrated highly significant antibacterial activity against both bacteria (> 4 log reduction in bacterial numbers) under dark conditions. Moreover, they resulted in a significant reduction in bacterial cell adhesion compared to PDMS and glass controls. However, superhydrophobic materials accumulated biofilm of both bacteria over a 2-day period while slippery materials significantly prevented biofilm formation over the same period. The novel and highly efficacious antibacterial materials reported in this thesis show a very strong potential to be utilized in hospital environments for reducing the incidence of HAIs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lamperti, Emanuele. "PDMS based microfluidics membrane contactors for CO2 removal applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15261/.

Повний текст джерела
Анотація:
This work proposes a gas-liquid contactor study in microfluidics field, using dense membrane working with a concentration gradient; a microfluidic gas-liquid contactor was developed for CO2 removal and the general idea is to transport CO2 through a polymer dense membrane, followed by its capture by a liquid solvent with chemical absorption. Like recent studies demonstrate, this kind of devices could solve problems related to extracorporeal lung oxygenation (Garofalo, C. Quintavalle, G. Romano, C.M. Croce, 2013) for critical surgical support and critical care medicine, it can work like a real lung because can mimic the architecture of the human vasculature better than the existing technologies. Applications in this fields are related for example to the separation of Xenon from CO2 in anaesthesia. Xe is a very expensive element perfect for anaesthesia, is hemodynamically stable, low soluble in liquid and produces high regional blood flow reducing the risk of hypoxia (Malankowska et al., 2018). The major advantage of using microfluidics devices is that they could be reach a high surface to volume ratio and thanks to miniaturization can be tested reducing the time as well as the production of waste, thus increasing the number of experimental tests can be achieved. In the present thesis in particular one alveolar design channel based of literature results (Malankowska et al., 2018) was realized with soft lithography and tested in different experimental conditions. In particular, for the present geometry the transport of CO2 through the membrane was monitored, calculating the overall mass transfer coefficient and the molar flow of the gas through the membrane in different operating conditions. In additions, the production of other two microfluidics device with different channels configurations was attempted by using a 3-D printing technique that allows the generations of complex structures with high surface to volume ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sommer, Stacy Ann. "Siloxane-Polyurethane Fouling-Release Coatings Based On PDMS Macromers." Diss., North Dakota State University, 2011. https://hdl.handle.net/10365/29313.

Повний текст джерела
Анотація:
Marine biofouling is the accumulation of organisms onto surfaces immersed in sea water. Fouling of ships causes an increase in hydrodynamic drag which leads to performance issues such as increased fuel consumption and a reduced top operating speed. Fouling-release (FR) coatings are one way that paints have been used in combating biofouling by allowing for the easy removal of settled organisms. Traditional FR coatings are silicone elastomers which are soft, easily damaged, and require a tie coat for adhesion to marine primers. Siloxanepolyurethane FR coatings have shown promise as FR coatings, providing enhanced durability and toughness, better adhesion to marine primers, and comparable FR performance to commercial coatings. Preliminary studies were conducted to explore the use of PDMS macromers in the preparation of siloxane-polyurethane FR coatings. Attachment and removal of fouling organisms on the siloxane-polyurethane coatings based on PDMS macromers was comparable to commercial FR coatings. Extended water aging was also carried out to determine effects of extended water immersion on the fouling-release performance of the coatings. At up to four weeks of aging, the FR performance of the coatings was not affected. Static immersion marine field testing was performed to determine the fouling-release performance of siloxane-polyurethane coatings prepared with PDMS macromers. The performance was found to be comparable to commercial FR coatings for up to one year, including water jet removal of slimes, barnacle push-off removal, and soft sponging. The coatings showed good fouling-release performance until extremely heavy fouling was allowed to settle. Underwater hull cleaning was conducted for one siloxane-polyurethane composition identified as a top performer from static field testing. The coating was easily cleaned of fouling with rotating brushes for six months. The cleaning capability of the coating was reduced when large barnacles and other extremely heavy fouling was present. A commercial FR coating became heavily damaged with brush cleaning while the siloxane-polyurethane coating remained mostly undamaged. With more frequent cleaning, it is suspected that siloxanepolyurethane coatings would show cleaning capability for longer periods of time. Pigmentation of siloxane-polyurethane coatings based on difunctional PDMS and PDMS macromers was explored to investigate the effect on FR performance. Pigmentation with titanium dioxide caused a slight decrease in FR performance in some cases, but this was easily overcome by the addition of slightly more PDMS in the coating binder, thus illustrating the feasibility of siloxane-polyurethane coatings as effective, pigmented FR coatings. Finally, the exploration of unique PDMS polymer architectures has been explored for the development of additional, novel, fouling-release coatings. The incorporation of end-functional PDMS homopolymer molecular brushes and branched PDMS macromers into siloxane-polyurethane fouling-release coatings shows promise for the development of unique coatings where improved FR performance may be obtained.
Office of Naval Research (U.S.)
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gong, Xiuqing. "PDMS based microfluidic chips and their application in material synthesis /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?NSNT%202009%20GONG.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Samel, Björn. "Novel Microfluidic Devices Based on a Thermally Responsive PDMS Composite." Doctoral thesis, KTH, Mikrosystemteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4470.

Повний текст джерела
Анотація:
The field of micro total analysis systems (μTAS) aims at developments toward miniaturized and fully integrated lab-on-a-chip systems for applications, such as drug screening, drug delivery, cellular assays, protein analysis, genomic analysis and handheld point-of-care diagnostics. Such systems offer to dramatically reduce liquid sample and reagent quantities, increase sensitivity as well as speed of analysis and facilitate portable systems via the integration of components such as pumps, valves, mixers, separation units, reactors and detectors. Precise microfluidic control for such systems has long been considered one of the most difficult technical barriers due to integration of on-chip fluidic handling components and complicated off-chip liquid control as well as fluidic interconnections. Actuation principles and materials with the advantages of low cost, easy fabrication, easy integration, high reliability, and compact size are required to promote the development of such systems. Within this thesis, liquid displacement in microfluidic applications, by means of expandable microspheres, is presented as an innovative approach addressing some of the previously mentioned issues. Furthermore, these expandable microspheres are embedded into a PDMS matrix, which composes a novel thermally responsive silicone elastomer composite actuator for liquid handling. Due to the merits of PDMS and expandable microspheres, the composite actuator's main characteristic to expand irreversibly upon generated heat makes it possible to locally alter its surface topography. The composite actuator concept, along with a novel adhesive PDMS bonding technique, is used to design and fabricate liquid handling components such as pumps and valves, which operate at work-ranges from nanoliters to microliters. The integration of several such microfluidic components promotes the development of disposable lab-on-a-chip platforms for precise sample volume control addressing, e.g. active dosing, transportation, merging and mixing of nanoliter liquid volumes. Moreover, microfluidic pumps based on the composite actuator have been incorporated with sharp and hollow microneedles to realize a microneedle-based transdermal patch which exhibits on-board liquid storage and active dispensing functionality. Such a system represents a first step toward painless, minimally invasive and transdermal administration of macromolecular drugs such as insulin or vaccines. The presented on-chip liquid handling concept does not require external actuators for pumping and valving, uses low-cost materials and wafer-level processes only, is highly integrable and potentially enables controlled and cost-effective transdermal microfluidic applications, as well as large-scale integrated fluidic networks for point-of care diagnostics, disposable biochips or lab-on-a-chip applications. This thesis discusses several design concepts for a large variety of microfluidic components, which are promoted by the use of the novel composite actuator. Results on the successful fabrication and evaluation of prototype devices are reported herein along with comprehensive process parameters on a novel full-wafer adhesive bonding technique for the fabrication of PDMS based microfluidic devices.
QC 20100817
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Samel, Björn. "Novel microfluidic devices based on a thermally responsive PDMS composite /." Stockholm : Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tabarizadeh, Elham. "PDMS-based membranes for dehydration of Triethylene glycol using pervaporation technology." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Знайти повний текст джерела
Анотація:
This thesis is relying on membrane separation technology and it seeks to find an appropriate membrane to use in pervaporation setup for the subsea regeneration of triethylene glycol (TEG) in natural gas dehydration. Although some effort have been spent on membrane absorption for gas dehydration with glycols, there is still a lack of information about TEG dehydration using pervaporation technology with different membranes, therefore experimental data is needed to assess the feasibility of using membrane pervaporation for regeneration of TEG for subsea condition. In the present work, an experimental study of dehydration of TEG with pervaporation technology has been carried out using a composite membrane with the porous support of polysulfone (PSF) coated with a dense layer of Polydimethylsiloxane (PDMS). The membrane was characterized in terms of compatibility to TEG, chemical analysis identification using Fourier Transform Infrared (FTIR) spectroscopy, morphology and surface properties with scanning electron microscopy (SEM), and contact angle measurements. Furthermore, a method for analyzing low concentrations of TEG in aqueous solutions was used with gas chromatography (GC) as this was vital to the pervaporation study. The criteria for choosing PDMS polymer was the minimum TEG uptake, high flux, and lower price.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Forster, Simon. "Surface modification of PDMS-based microfluidic devices through plasma polymerisation : production and application." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abraham, Berhane Teclesenbet. "Degradation and recovery of polydimethylsiloxane (PDMS) based composites used as high voltage insulators." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49902.

Повний текст джерела
Анотація:
Thesis (MSc)--Stellenbosch University, 2004.
ENGLISH ABSTRACT: Polydimethylsiloxane (PDMS) compounds are utilized in outdoor high voltage insulation due to their low weight, vandalism resistance, better anti-contamination performance and their superior hydrophobic nature. Under severe environmental conditions and over prolonged service time, however, the hydrophobic surface can gradually become hydrophilic and then recover with adequate resting period. In this study, room temperature vulcanized (RTV) PDMS samples were prepared with different formulations and then exposed to corona discharge to evaluate its effect. The influence of different additives, such as different types and amount of fillers and additionally added low molar mass silicone oils, on the hydrophobicity recovery of the material was investigated. The effects of two types of corona treatment were also evaluated. Hydrophobicity recovery of corona and UV-C aged PDMS samples was evaluated by means of static contact angle measurements. Positron annihilation spectroscopy (PAS) gave important information on the micro structural change after corona treatment of RTV PDMS as well as naturally aged high temperature vulcanized (HTV) PDMS samples. The different formulations of the RTV PDMS samples and the effect of the additives were studied with this technique. The formation of a thin, highly crosslinked inorganic silica-like (SiOx) layer was confirmed even at the early stage of degradation. It was also possible to estimate the thickness of the silica-like layer formed during corona exposure that is responsible for the loss and recovery of hydrophobicity. The surface hardness and hydrophilicity change of PDMS samples due to corona treatment were studied simultaneously with force distance measurements by atomic force microscopy (AFM). The adhesive force calculated from the pull-off force-distance curves showed that the adhesive force between the probe and the sample decreased with increasing corona treatment time, indicating hydrophobicity recovery. In addition to this, the increase in hardness after corona exposure provides indirect evidence of the formation of a silica-like layer. In all cases the hydrophilicity and the surface hardness of the PDMS samples increased directly after corona treatment and recovered with time. Two types of FTIR spectroscopy were used to analyse the surface of the polymer.
AFRIKAANSE OPSOMMINGS: Polidimetielsiloksaan (PDMS) word in buitelug hoogspanninginsulasie gebruik as gevolg van sy lae massa, weerstand teen vandalisme, verbeterde anti-kontaminasie werkverrigting en superieure hidrofobiese karakter. Die hidrofobiese oppervlakte kan egter gelydelik hidrofillies word onder uiterste omgewingsomstandighede en oor langdurige dienstyd. PDMS materiaal herstel egter nadat dit genoeg rustyd toegelaat is. Kamertemperatuur-gevulkaniseerde (KTV) PDMS met verskillende formulasies is in hierdie studie voorberei, aan korona ontlading blootgestel, geëvalueer en vergelyk. Die invloed van bymiddels soos verskillende tipes en hoeveelhede vuiler, asook addisionele lae molekulêre massa silikoonolie, op die herstel van hidrofobisiteit van die materiaal is ondersoek. Twee verskillende metodes van korona behandeling is ook geëvalueer. Die herstel van hidrofobisiteit van korona en UV-C verouderde PDMS monsters is met statiese kontakhoekmeting geëvalueer. Positronvernietigingspektroskopie (PVS) is 'n kragtige tegniek wat belangrike inligting oor die mikrostrukturele verandering van korona behandelde van KTV PDMS sowel as natuurlik-verouderde hoë temperatuur gevulkaniseerde (HTV) PDMS monsters gee. Die verskillende formulasies van die KTV PDMS monsters, sowel as die effek van die vullers, is met behulp van hierdie tegniek ondersoek. Die vorming van 'n dun, hoogskruisgebinde, anorganiese silika-agtige (SiOx) laag op die PDMS oppervlak, selfs tydens die vroeë stadium van degradasie, is bevestig. Dit was ook moontlik om die dikte van die silika-agtige laag wat gedurende die korona blootstelling gevorm het, en wat verantwoordelik is vir die verlies aan hidrofobisiteit, te bepaal. Die oppervlakhardheid en hidrofilisiteit verandering van PDMS monsters as gevolg van korona behandeling, was gelyktydig met krag-afstand metings deur middel van atoomkragmikroskopie (AKM) bestudeer. Die kleefkrag, soos bereken van aftrek kragafstandkurwes, dui daarop dat kleefkragte tussen die taster en die monster afneem met toenemende korona behandelingstyd, wat beduidend is op die herstel van hidrofobisiteit. Daarbenewens is die toename van oppervlakhardheid na korona blootstelling "n indirekte bewys van die formasie van 'n silika-agtige laag. In alle gevalle het die hidrofilisiteit en die oppervlakhardheid van die PDMS monsters toegeneem direk na afloop van korona behandeling en gevolglik herstel met tyd. Twee tipes IR spektroskopie metodes is gebruik vir die chemiese-oppervlak analises
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "PDMS-based"

1

Wei, Li. Dual function magnetic PDMS microsphere-based microfluidic valve and mixer. 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "PDMS-based"

1

Bonifati, Angela, Gianvito Summa, Esther Pacitti, and Fady Draidi. "Query Reformulation in PDMS Based on Social Relevance." In Transactions on Large-Scale Data- and Knowledge-Centered Systems XIII, 59–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45942-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sharma, Amit, and Poonam Agarwal. "Triboelectric-Based Kinetic Energy Harvesting Using Polydimethylsiloxane (PDMS)." In Advances in Polymer Sciences and Technology, 75–81. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2568-7_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pires, Carlos Eduardo, Damires Souza, Thiago Pachêco, and Ana Carolina Salgado. "A Semantic-Based Ontology Matching Process for PDMS." In Lecture Notes in Computer Science, 124–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03715-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gallo, Simon, and Hannes Bleuler. "A Flexible PDMS-Based Multimodal Pulse and Temperature Display." In Lecture Notes in Electrical Engineering, 55–58. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55690-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yamamoto, T., T. Nojima, and T. Fujii. "Cell-Free Protein Synthesis in PDMS-Based Parallel Microreactors." In Micro Total Analysis Systems 2001, 69–71. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-1015-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Amiri, Sahar, Mohammad Ali Semsarzadeh, and Sanam Amiri. "Synthesis and Characterization of PDMS Based Triblock and Pentablock Copolymers." In SpringerBriefs in Molecular Science, 13–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09225-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Amiri, Sahar, Mohammad Ali Semsarzadeh, and Sanam Amiri. "Polyrotaxane Based on Inclusion Complexes of OH-PDMS-OH and Br-PDMS-Br with γ-Cyclodextrin Without Utilizing Sonic Energy." In SpringerBriefs in Molecular Science, 5–12. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09225-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nagai, Hidenori, Masayuki Matsubara, Kenji Chayama, Joji Urakawa, Yasuhiko Shibutani, Yoshihide Tanaka, Sahori Takeda, and Shinichi Wakida. "Fabrication of Electrophoretic PDMS/PDMS Lab-on-a-chip Integrated with Au Thin-Film Based Amperometric Detection for Phenolic Chemicals." In Atmospheric and Biological Environmental Monitoring, 275–84. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9674-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rehman, Tariq, Ahmad’ Athif Mohd Faudzi, Dyah Ekashanti Octorina Dewi, and Mohamed Sultan Mohamed Ali. "Finite Element Analysis for PDMS Based Dual Chamber Bellows Structured Pneumatic Actuator." In Communications in Computer and Information Science, 392–402. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6463-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Jun-Min, and Jong-Mo Seo. "Fabrication of Polydimethylsiloxane (PDMS) - Based Flexible Electrode Array for Improving Tissue Contact." In IFMBE Proceedings, 341–44. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11128-5_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "PDMS-based"

1

Argueta-Diaz, Victor, and Brianna Fitzpatrick. "PDMS-based microstructured biosensor." In Organic Photonic Materials and Devices XXI, edited by Christopher E. Tabor, François Kajzar, and Toshikuni Kaino. SPIE, 2019. http://dx.doi.org/10.1117/12.2506291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Henle, C., C. Hassler, F. Kohler, M. Schuettler, and T. Stieglitz. "Mechanical characterization of neural electrodes based on PDMS-parylene C-PDMS sandwiched system." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6090142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pires, Carlos Eduardo, Paulo Sousa, Zoubida Kedad, and Ana Carolina Salgado. "Summarizing ontology-based schemas in PDMS." In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). IEEE, 2010. http://dx.doi.org/10.1109/icdew.2010.5452706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Foland, Steven, Ke Liu, Kyung-Hak Choi, Duncan MacFarlane, and Jeong-Bong Lee. "A PDMS-based pressure-tunable nanograting." In 2011 IEEE 11th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2011. http://dx.doi.org/10.1109/nano.2011.6144497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Haichuan, Peinan Mao, Hongwei Lv, and Huiling Peng. "Flexible Pulse Sensor Based on PDMS/MWCNTs." In 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). IEEE, 2020. http://dx.doi.org/10.1109/aemcse50948.2020.00147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Riedl, X., C. Bolzmacher, R. Wagner, K. Bauer, and N. Schwesinger. "A novel PDMS based capacitive pressure sensor." In 2010 Ninth IEEE Sensors Conference (SENSORS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icsens.2010.5690709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simorangkir, Roy B. V. B., Shilun Feng, Abu Sadat Sayem, Karu P. Esselle, and Yang Yang. "PDMS-Embedded Conductive Fabric: A Simple Solution for Fabricating PDMS-Based Wearable Antennas with Robust Performance." In 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT). IEEE, 2018. http://dx.doi.org/10.1109/ismict.2018.8573690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Klammer, I., A. Buchenauer, G. Dura, W. Mokwa, and U. Schnakenberg. "A novel valve for microfluidic PDMS-based systems." In 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. IEEE, 2008. http://dx.doi.org/10.1109/memsys.2008.4443734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhan, Zhikun, Ping Yao, Zaili Dong, Steve Tung, Jacob Hohnbaum, Balaji Srinivasan, and Wen J. Li. "Insulin detection based on a PDMS microfluidic system." In 2010 IEEE 4th International Conference on Nano/Molecular Medicine and Engineering (NANOMED). IEEE, 2010. http://dx.doi.org/10.1109/nanomed.2010.5749815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zong-Ming Su, Xiao-Sheng Zhang, Meng-Di Han, Xiao-Liang Cheng, Xia Jiang, Xiang-Zhi Yin, and Hai-Xia Zhang. "Honeycomb-patterned PDMS membrane based on nanosphere lithography." In 2015 IEEE 10th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2015. http://dx.doi.org/10.1109/nems.2015.7147493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "PDMS-based"

1

Maiti, A., T. H. Weisgraber, and L. N. Dinh. Radiation-induced aging of PDMS Elastomer TR-55: a summary of constitutive, mesoscale, and population-based models. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1338168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Conrady, Morgan, Markus Bauer, Kyoo Jo, Donald Cropek, and Ryan Busby. Solid-phase microextraction (SPME) for determination of geosmin and 2-methylisoborneol in volatile emissions from soil disturbance. Engineer Research and Development Center (U.S.), October 2021. http://dx.doi.org/10.21079/11681/42289.

Повний текст джерела
Анотація:
A method is described here for the concentration and determination of geosmin and 2-methylisoborneol (2-MIB) from the gaseous phase, with translation to field collection and quantification from soil disturbances in situ. The method is based on the use of solid-phase microextraction (SPME) fibers for adsorption of volatile chemicals from the vapor phase, followed by desorption into a gas chromatograph-mass spectrometer (GC-MS) for analysis. The use of a SPME fiber allows simple introduction to the GC-MS without further sample preparation. Several fiber sorbent types were studied and the 50/30 μm DVB/CAR/PDMS was the best performer to maximize the detected peak areas of both analytes combined. Factors such as extraction temperature and time along with desorption temperature and time were explored with respect to analyte recovery. An extraction temperature of 30 ◦C for 10 min, with a desorption temperature of 230 ◦C for 4 min was best for the simultaneous analysis of both geosmin and 2-MIB without complete loss of either one. The developed method was used successfully to measure geosmin and 2-MIB emission from just above disturbed and undisturbed soils, indicating that this method detects both compounds readily from atmospheric samples. Both geosmin and 2-MIB were present as background concentrations in the open air, while disturbed soils emitted much higher concentrations of both compounds. Surprisingly, 2-MIB was always detected at higher concentrations than geosmin, indicating that a focus on its detection may be more useful for soil emission monitoring and more sensitive to low levels of soil disturbance.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії