Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Pd/Ru(0001) interface.

Статті в журналах з теми "Pd/Ru(0001) interface"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Pd/Ru(0001) interface".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Andersen, T. H., Z. Li, S. V. Hoffmann, L. Bech, and J. Onsgaard. "Photoelectron spectroscopy studies of the Pd/Ru(0001) and (Cu Pd)/Ru(0001) interfaces." Journal of Physics: Condensed Matter 14, no. 34 (August 22, 2002): 7853–64. http://dx.doi.org/10.1088/0953-8984/14/34/305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Changqing, Weiguang Chen, and Jingpei Xie. "Effects of Transition Element Additions on the Interfacial Interaction and Electronic Structure of Al(111)/6H-SiC(0001) Interface: A First-Principles Study." Materials 14, no. 3 (January 29, 2021): 630. http://dx.doi.org/10.3390/ma14030630.

Повний текст джерела
Анотація:
In this work, the effects of 20 transition element additions on the interfacial adhesion energy and electronic structure of Al(111)/6H-SiC(0001) interfaces have been studied by the first-principles method. For pristine Al(111)/6H-SiC(0001) interfaces, both Si-terminated and C-terminated interfaces have covalent bond characteristics. The C-terminated interface has higher binding energy, which is mainly due to the stronger covalent bond formed by the larger charge transfer between C and Al. The results show that the introduction of many transition elements, such as 3d transitional group Mn, Fe, Co, Ni, Cu, Zn and 4d transitional group Tc, Ru, Rh, Pd, Ag, can improve the interfacial adhesion energy of the Si-terminated Al(111)/6H-SiC(0001) interface. However, for the C-terminated Al(111)/6H-SiC(0001) interface, only the addition of Co element can improve the interfacial adhesion energy. Bader charge analysis shows that the increase of interfacial binding energy is mainly attributed to more charge transfer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Miao, Gang Liu, Min Huang, Yabo Fu, Changhong Lin, Jianbo Wu, and Vladimir A. Levchenko. "Investigation of the Adhesion Strength, Fracture Toughness, and Stability of M/Cr2N and M/V2N (M = Ti, Ru, Ni, Pd, Al, Ag, and Cu) Interfaces Based on First-Principles Calculations." Coatings 12, no. 1 (January 7, 2022): 66. http://dx.doi.org/10.3390/coatings12010066.

Повний текст джерела
Анотація:
Obtaining detailed information regarding the interfacial characteristics of metal/hexagonal-TMN composites is imperative for developing these materials with optimal mechanical properties. To this end, we systematically investigate the work of adhesion, fracture toughness, and interfacial stability of M/Cr2N and M/V2N interfaces using first-principles calculations. The orientation (0001) of hexagonal phases and (111) of fcc phases are selected as the interface orientations. Accordingly, we construct M/Cr2N interface models by considering 1N, 2N, and Cr terminations of Cr2N(0001), as well as two stacking sequences (top and hollow sites) for the 1N- and 2N-terminated interface models, respectively. The M/V2N interface models are constructed in the same way. The V-terminated Ni/V2N interface is demonstrated to provide a good combination of the work of adhesion, fracture toughness, and interfacial stability. Therefore, the Ni/V2N interface model can be regarded as the preferred configuration among the metal/hexagonal-TMN interface models considered. The present results offer a practical perspective for tailoring the interfaces in metal/hexagonal-TMN composite materials to obtain improved mechanical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tollefsen, H., E. O. Laastad, and S. Raaen. "Surface alloying and mixed valence in thin layers of Ce and Pd on Ru(0001)." Surface Science 603, no. 1 (January 2009): 197–202. http://dx.doi.org/10.1016/j.susc.2008.10.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gonzalez, Silvia, and Francesc Illas. "CO adsorption on monometallic Pd, Rh, Cu and bimetallic PdCu and RhCu monolayers supported on Ru(0001)." Surface Science 598, no. 1-3 (December 2005): 144–55. http://dx.doi.org/10.1016/j.susc.2005.08.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wasielewski, R., M. Grodzicki, J. Sito, K. Lament, P. Mazur, and A. Ciszewski. "Ru/GaN(0001) Interface Properties." Acta Physica Polonica A 132, no. 2 (August 2017): 354–57. http://dx.doi.org/10.12693/aphyspola.132.354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Farías, D., M. Minniti, and R. Miranda. "Reactivity of O2 on Pd/Ru(0001) and PdRu/Ru(0001) surface alloys." Journal of Chemical Physics 146, no. 20 (May 28, 2017): 204701. http://dx.doi.org/10.1063/1.4983994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Grodzicki, M., P. Mazur, S. Zuber, J. Pers, and A. Ciszewski. "Pd/GaN(0001) interface properties." Materials Science-Poland 32, no. 2 (June 1, 2014): 252–56. http://dx.doi.org/10.2478/s13536-013-0183-8.

Повний текст джерела
Анотація:
AbstractThis report concerns the properties of an interface formed between Pd films deposited onto the surface of (0001)-oriented n-type GaN at room temperature (RT) under ultrahigh vacuum. The surface of clean substrate and the stages of Pd-film growth were characterized in situ by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), ultraviolet photoelectron spectroscopy (UPS), and low energy electron diffraction (LEED).As-deposited Pd films are grainy, cover the substrate surface uniformly and reproduce its topography. Electron affinity of the clean n-GaN surface amounts to 3.1 eV. The work function of the Pd-film is equal to 5.3 eV. No chemical interaction has been found at the Pd/GaN interface formed at RT. The Schottky barrier height of the Pd/GaN contact is equal to 1.60 eV.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

GODOWSKI, P. J., Z. S. LI, J. BORK, and J. ONSGAARD. "STUDY OF THE Pt/Ru(0001) INTERFACE." Surface Review and Letters 14, no. 05 (October 2007): 911–14. http://dx.doi.org/10.1142/s0218625x07010378.

Повний текст джерела
Анотація:
The growth process of platinum on Ru (0001) near room temperature was characterized using photoelectron spectroscopy of high resolution. The binding energy position and intensity of the Pt 4f7/2 and Ru 3d5/2 core levels as well as the shape and structure of the valence band spectra corresponding to the different stages of the deposition were analyzed. Up to ca. two adsorbate monolayers, the intensity changes of the peaks indicated layer-by-layer growth mode. The surface core level shifts of Ru and Pt levels were evaluated as -0.33 and -0.476 eV, respectively. The valence band spectra show a rather weak interaction between the d-bands of Pt and Ru .
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tollefsen, H., E. O. Laastad, X. Yu, and S. Raaen. "Initial oxidation of the Ce–Ru(0001) interface." Philosophical Magazine 88, no. 5 (February 11, 2008): 665–75. http://dx.doi.org/10.1080/14786430801946625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yi, Cheol-Woo, and János Szanyi. "The thermal behavior of Pd on graphene/Ru(0001)." Surface Science 641 (November 2015): 154–58. http://dx.doi.org/10.1016/j.susc.2015.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Brankovic, S. R., J. McBreen, and R. R. Adžić. "Spontaneous deposition of Pd on a Ru(0001) surface." Surface Science 479, no. 1-3 (May 2001): L363—L368. http://dx.doi.org/10.1016/s0039-6028(01)01006-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Campbell, Robert A., José A. Rodriguez, and D. Wayne Goodman. "Chemical and electronic properties of ultrathin metal films: The Pd/Re(0001) and Pd/Ru(0001) systems." Physical Review B 46, no. 11 (September 15, 1992): 7077–87. http://dx.doi.org/10.1103/physrevb.46.7077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Jiang, De-en, Mao-Hua Du, and Sheng Dai. "First principles study of the graphene/Ru(0001) interface." Journal of Chemical Physics 130, no. 7 (February 21, 2009): 074705. http://dx.doi.org/10.1063/1.3077295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

PROKOP, J., M. PRZYBYLSKI, T. SLEZAK, and J. KORECKI. "NONMAGNETIC IRON LAYERS AT THE Fe/Ru INTERFACE." Surface Review and Letters 04, no. 06 (December 1997): 1239–43. http://dx.doi.org/10.1142/s0218625x97001607.

Повний текст джерела
Анотація:
Magnetic dead layers near the Fe/Ru interface in iron films grown on Ru(0001) and in Fe/Ru multilayers have been reported previously. In this paper the CEMS analysis is applied to explain why these interfacial Fe atoms are nonmagnetic. The CEMS spectra of the uncoated bcc-Fe surface clearly show the ferromagnetic order. After covering with ruthenium, the characteristic changes in the conversion electron Mössbauer spectrum were observed, which indicate existence of a nonferromagnetic phase near the Fe/Ru interface. The measured value of the isomer shift of the interface component suggests that the bcc phase persists after covering of the Fe film with Ru.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kim, Yong Su, Bongjin Simon Mun, and Philip N. Ross. "Photoemission study of Pd thin films on Ru(0001) surface." Current Applied Physics 11, no. 5 (September 2011): 1179–82. http://dx.doi.org/10.1016/j.cap.2011.02.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

ANDERSEN, T. H., L. BECH, J. ONSGAARD, S. V. HOFFMANN, and Z. LI. "HIGH RESOLUTION CORE LEVEL SPECTROSCOPY AT THE Cu/Ru(0001) INTERFACE." Surface Review and Letters 09, no. 02 (April 2002): 723–27. http://dx.doi.org/10.1142/s0218625x02002798.

Повний текст джерела
Анотація:
Copper adsorption on Ru(0001) has been studied by synchrotron radiation. The clean Ru 3d 5/2 spectra were found to consist of two components with a binding energy shift of 400 meV. The component with the lower binding energy represents the first layer of ruthenium atoms. Adsorption of copper gives rise to core level shifts of the Ru 3d 5/2 components, which were studied as a function of Cu coverage. Experiments were carried out with copper coverages varying from the submonolayer range up to two monolayers of copper. The binding energy of the Cu 2p 3/2 level was measured by X-ray photoemission spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yi, Cheol-Woo, and János Szanyi. "Pd overlayer on oxygen pre-covered graphene/Ru(0001): Thermal stability." Surface Science 648 (June 2016): 271–77. http://dx.doi.org/10.1016/j.susc.2015.12.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bech, L., Z. Li, and J. Onsgaard. "Valence band studies of Ag and Pd codeposited on Ru(0001)." Journal of Electron Spectroscopy and Related Phenomena 156-158 (May 2007): 102–6. http://dx.doi.org/10.1016/j.elspec.2006.11.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Godowski, P. J., J. Onsgaard, Z. Ryszka, Ł. Rok, and Zhe Shen Li. "Phase transformations of the Pt/Ru(0001) interface studied by photoemission." Surface Science 602, no. 2 (January 2008): 465–69. http://dx.doi.org/10.1016/j.susc.2007.10.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Houston, J. E., J. M. White, P. J. Feibelman, and D. R. Hamann. "Interface-state properties for strained-layer Ni adsorbed on Ru(0001)." Physical Review B 38, no. 17 (December 15, 1988): 12164–70. http://dx.doi.org/10.1103/physrevb.38.12164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jin, Li, Qiang Fu, Yang Yang, and Xinhe Bao. "A comparative study of intercalation mechanism at graphene/Ru(0001) interface." Surface Science 617 (November 2013): 81–86. http://dx.doi.org/10.1016/j.susc.2013.07.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Godowski, P. J., J. Onsgaard, and Z. S. Li. "CO-Induced Photoemission Structures of the CO/Pt/Ru(0001) Interface." Acta Physica Polonica A 130, no. 6 (December 2016): 1389–94. http://dx.doi.org/10.12693/aphyspola.130.1389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Park, C. "Growth of Ag, Au and Pd on Ru(0001) and CO chemisorption." Surface Science 203, no. 3 (September 1988): 395–411. http://dx.doi.org/10.1016/0039-6028(88)90090-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cosandey, F., та P. Lu. "Crystallography and structure of (0001)α-Al2O3//(110)Pd interface". Proceedings, annual meeting, Electron Microscopy Society of America 50, № 1 (серпень 1992): 226–27. http://dx.doi.org/10.1017/s0424820100121533.

Повний текст джерела
Анотація:
A fundamental understanding of the behavior of metal/oxide composites requires a detailed knowledge of interface properties and HREM studies have provided important information on interfacial structure and composition. The aim of the present investigation was to study the equilibrium shape, orientation relationship and atomic structure of low energy plane orientations in the Pd/α-Al2O3 system. Metal/Oxide interfaces were produced by first preparation of Pd-3wt%Al alloys followed by oxidation in air at 1000 °C for 48 hours leading to the formation of A13O3 particles. For the TEM observations we used an ISI-002B high resolution microscope with a resolution limit of ∼0.18 nm at 200 KeV.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Shin, Jinhyun, Astini Vita, Sari Windu, Jung-Hae Choi, Seung-Cheol Lee, and June Gunn Lee. "Energetics and Interdiffusion at the Cu/Ru(0001) Interface: Density Functional Calculations." Journal of Nanoscience and Nanotechnology 11, no. 7 (July 1, 2011): 6589–93. http://dx.doi.org/10.1166/jnn.2011.4460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Pötschke, G. O., and R. J. Behm. "Interface structure and misfit dislocations in thin Cu films on Ru(0001)." Physical Review B 44, no. 3 (July 15, 1991): 1442–45. http://dx.doi.org/10.1103/physrevb.44.1442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Weber, W., D. A. Wesner, D. Hartmann, and G. Güntherodt. "Spin-polarized interface states at the Pd(111)/Fe(110), Pd(111)/Co(0001), and Pt(111)/Co(0001) interfaces." Physical Review B 46, no. 10 (September 1, 1992): 6199–206. http://dx.doi.org/10.1103/physrevb.46.6199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Garcia-Ratés, Miquel, Rodrigo García-Muelas, and Núria López. "Solvation Effects on Methanol Decomposition on Pd(111), Pt(111), and Ru(0001)." Journal of Physical Chemistry C 121, no. 25 (June 21, 2017): 13803–9. http://dx.doi.org/10.1021/acs.jpcc.7b05545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wu Yue, Huang Han, Mao Hong-Ying, Yang Xin-Guo, Zhang Jian-Hua, Wang Mang, Li Hai-Yang, He Pi-Mo, and Bao Shi-Ning. "Study on the interface of an organic semiconductor grown on Ru(0001) surface." Acta Physica Sinica 53, no. 5 (2004): 1604. http://dx.doi.org/10.7498/aps.53.1604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Tatarkhanov, Mous, D. Frank Ogletree, Franck Rose, Toshiyuki Mitsui, Evgeny Fomin, Sabine Maier, Mark Rose, Jorge I. Cerdá, and Miquel Salmeron. "Metal- and Hydrogen-Bonding Competition during Water Adsorption on Pd(111) and Ru(0001)." Journal of the American Chemical Society 131, no. 51 (December 30, 2009): 18425–34. http://dx.doi.org/10.1021/ja907468m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Cored, Jorge, Mengen Wang, Nusnin Akter, Zubin Darbari, Yixin Xu, Burcu Karagoz, Iradwikanari Waluyo, et al. "Water Formation Reaction under Interfacial Confinement: Al0.25Si0.75O2 on O-Ru(0001)." Nanomaterials 12, no. 2 (January 6, 2022): 183. http://dx.doi.org/10.3390/nano12020183.

Повний текст джерела
Анотація:
Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of Al0.25Si0.75O2. We investigated the kinetics of WFR at elevated H2 pressures and various temperatures under interfacial confinement using ambient pressure X-ray photoelectron spectroscopy. The apparent activation energy was lower than that on bare Ru(0001) but higher than that on the BL-silica/Ru(0001). The apparent reaction order with respect to H2 was also determined. The increased residence time of water at the surface, resulting from the presence of the BL-aluminosilicate (and its subsequent electrostatic stabilization), favors the so-called disproportionation reaction pathway (*H2O + *O ↔ 2 *OH), but with a higher energy barrier than for pure BL-silica.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Houston, J. E., C. H. F. Peden, Peter J. Feibelman, and D. R. Hamann. "Observation of a true interface state in strained-layer Cu adsorption on Ru(0001)." Physical Review Letters 56, no. 4 (January 27, 1986): 375–77. http://dx.doi.org/10.1103/physrevlett.56.375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhong, Jian-Qiang, Mengen Wang, Nusnin Akter, Dario J. Stacchiola, Deyu Lu, and J. Anibal Boscoboinik. "Room-Temperature in Vacuo Chemisorption of Xenon Atoms on Ru(0001) under Interface Confinement." Journal of Physical Chemistry C 123, no. 22 (April 26, 2019): 13578–85. http://dx.doi.org/10.1021/acs.jpcc.9b01110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Mougel, Loic, Patrick M. Buhl, Qili Li, Anika Müller, Hung-Hsiang Yang, Matthieu J. Verstraete, Pascal Simon, Bertrand Dupé, and Wulf Wulfhekel. "Strong effect of crystal structure on the proximity effect between a superconductor and monolayer of cobalt." Applied Physics Letters 121, no. 23 (December 5, 2022): 231605. http://dx.doi.org/10.1063/5.0130313.

Повний текст джерела
Анотація:
We present an unexpectedly strong influence of the proximity effect between the bulk Ru(0001) superconductor and atomically thin layers of Co on the crystal structure of the latter. The Co monolayer grows in two different modifications, such as hcp stacking and a reconstructed ε-like phase. While hcp islands show a weak proximity effect on Co and a little suppression of superconductivity in the substrate next to it, the more complex ε-like stacking becomes almost fully superconducting. We explain the weak proximity effect between Ru and hcp Co and the rather abrupt jump of the superconducting order parameter by a low transparency of the interface. In contrast, the strong proximity effect without a jump of the order parameter in the ε-like phase indicates a highly transparent interface. This work highlights that the proximity effect between a superconductor and a normal metal strongly depends on the crystal structure of the interface, which allows to engineer the proximity effect in hybrid structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Mengen, Jian-Qiang Zhong, Dario J. Stacchiola, J. Anibal Boscoboinik, and Deyu Lu. "First-Principles Study of Interface Structures and Charge Rearrangement at the Aluminosilicate/Ru(0001) Heterojunction." Journal of Physical Chemistry C 123, no. 13 (September 9, 2018): 7731–39. http://dx.doi.org/10.1021/acs.jpcc.8b05853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wang, Mengen, Jian-Qiang Zhong, John Kestell, Iradwikanari Waluyo, Dario J. Stacchiola, J. Anibal Boscoboinik, and Deyu Lu. "Energy Level Shifts at the Silica/Ru(0001) Heterojunction Driven by Surface and Interface Dipoles." Topics in Catalysis 60, no. 6-7 (September 12, 2016): 481–91. http://dx.doi.org/10.1007/s11244-016-0704-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

AZIZI, A., J. ARABSKI, and A. DINIA. "GROWTH, MORPHOLOGICAL AND STRUCTURAL PROPERTIES OF Ag THIN FILMS ON A Ru (0001) SURFACE GROWN BY MBE." Surface Review and Letters 11, no. 06 (December 2004): 563–68. http://dx.doi.org/10.1142/s0218625x04006517.

Повний текст джерела
Анотація:
Ag thin films deposited on Ru (0001) surface by molecular beam epitaxy, at temperatures of 20°C and 450°C, have been investigated using reflection high-energy electron diffraction (RHEED), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. For both growth temperatures, the in situ RHEED patterns of the Ag films exhibited an in-plane six-fold symmetry, indicating that the Ag deposit is in epitaxy with the Ru buffer surface. At RT, the RHEED technique indicated a three-dimensional growth (3D), while a layer-by-layer growth (2D) takes place at HT. The AFM images showed a granular structure of the surface of the deposited Ag layers with a large variation of the roughness with the growth temperature. XRD analysis gave indication of a strongly textured thin film along the growth direction. The lattice mismatch between the Ag and Ru is at the origin of a stress at the interface and defects structure in the film.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Wong, K., Q. H. Zeng та A. B. Yu. "Electronic Structure of Metal (M = Au, Pt, Pd, or Ru) Bilayer Modified α-Fe2O3(0001) Surfaces". Journal of Physical Chemistry C 115, № 11 (28 лютого 2011): 4656–63. http://dx.doi.org/10.1021/jp1108043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Shirazi, Mehrnaz, Dhaivat Solanki, Kamyar Ahmadi, Jiming Bao, Ognjen Miljanic, and Stanko Brankovic. "(Invited) Pd Monolayer Catalyst As Transformative Concept for Electrolytic Hydrogen Isotope Separation." ECS Meeting Abstracts MA2022-01, no. 49 (July 7, 2022): 2050. http://dx.doi.org/10.1149/ma2022-01492050mtgabs.

Повний текст джерела
Анотація:
The effect of strain in Pd monolayer catalyst is explored for electrolytic hydrogen isotope separation. Positive/negative strain increases/decreases strength of adsorbed hydrogen bond in overpotential region where recombination of hydrogen atoms is the rate determining step in hydrogen evolution reaction. As a result, the increased/decreased hydrogen isotope separation efficiency of Pd monolayers is expected as compared to bulk Pd. The positive/negative strain rises/lowers diffusion barrier for adsorbed hydrogen atoms. This effect favors/retards recombination of isotopes with smaller mass. As the surface is stretched/compressed, the neighboring adsorption sites separate/approach each other which affects heavier hydrogen isotopes more/less and result in their lower/higher probability for recombination. All these fundamental consideration indicate that Pd monolayers with different level of strain should have much different separation factors than corresponding bulk electrodes. To study described effects, Pd monolayers we synthesized electrochemically on Au(111) and Ru(0001) electrodes each yielding qualitatively different strain levels (Au-positive, Ru-negative). The adsorption strength of hydrogen isotopes is studied by infra-red spectroscopy. These results are input in classical models for isotope separation[1] T calculations. The calculated ratio between the rates of hydrogen and deuterium recombination and separation factors for Pd monolayers and corresponding bulk electrodes are compared to experimentally measured ones. The following discussion focuses on understanding and quantification of strain effects on separation efficiency of Pd monolayers. [1] B. E. Conway, Proceedings of The Royal Society of London, A. Mathematical and Physical Sciences, 247, 400 (1958).
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, J., M. B. Vukmirovic, K. Sasaki, F. Uribe, and R. R. Adzic. "Platinum monolayer electrocatalysts for oxygen reduction: Effect of substrates, and long-term stability." Journal of the Serbian Chemical Society 70, no. 3 (2005): 513–25. http://dx.doi.org/10.2298/jsc0503513z.

Повний текст джерела
Анотація:
We describe a novel concept for a Pt monolayer electrocatalyst and present the results of our electrochemical, X-ray absorption spectroscopy, and scanning tunneling microscopy studies. The electrocatalysts were prepared by a new method for depositing Pt monolayers involving the galvanic displacement by Pt of an under potentially deposited Cu monolayer on substrates of Au (111), Ir(111), Pd(111), Rh(111) and Ru(0001) single crylstals, and Pd nanoparticles. The kinetics of O2 reduction showed significant enhancement with Pt monolayers on Pd(111) and Pd nanoparticle surfaces in comparisonwith the reaction on Pt(111) and Pt nanoparticles, respectively. This increase in catalytic activity is attributed partly to the decreased formation of PtOH, as shown by in situ X-ray absorption spectroscopy. The results illustrate that placing a Pt monolayer on a suitable substrate of metal nanoparticles is an attractive way of designing better O2 reduction electrocatalysts with very low Pt contents.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Süle, P., and M. Szendrő. "The classical molecular dynamics simulation of graphene on Ru(0001) using a fitted Tersoff interface potential." Surface and Interface Analysis 46, no. 1 (November 4, 2013): 42–47. http://dx.doi.org/10.1002/sia.5344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Pallassana, Venkataraman, and Matthew Neurock. "Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces." Journal of Catalysis 191, no. 2 (April 2000): 301–17. http://dx.doi.org/10.1006/jcat.1999.2724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

OGAWA, S., та S. ICHIKAWA. "FORMATION OF SURFACE DIPOLES FOR SMALL PALLADIUM CLUSTERS DEPOSITED ON α-(0001)Al2O3". Surface Review and Letters 03, № 01 (лютий 1996): 973–77. http://dx.doi.org/10.1142/s0218625x96001741.

Повний текст джерела
Анотація:
The Kelvin-probe method is utilized to measure the work function of a single-crystal aluminum covered with palladium clusters. It is found that formation of interface dipoles occurs by charge transfer from Al 2 O 3 to Pd clusters, particularly for those less than 2 nm in diameter. These results provide valuable clue to the understanding of metal-support electronic interactions, which is important in catalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Althikrallah, Hanan, Casper Kunstmann-Olsen, Elena F. Kozhevnikova, and Ivan V. Kozhevnikov. "Turnover Rate of Metal-Catalyzed Hydroconversion of 2,5-Dimethylfuran: Gas-Phase Versus Liquid-Phase." Catalysts 10, no. 10 (October 12, 2020): 1171. http://dx.doi.org/10.3390/catal10101171.

Повний текст джерела
Анотація:
Hydroconversion (hydrogenation and hydrogenolysis) of biomass-derived furanic compounds giving furan ring-hydrogenation and ring-cleavage products attracts interest for sustainable production of chemicals and fuels. Here, the hydroconversion of 2,5-dimethylfuran (DMF), chosen as a model furanic compound, was investigated at a gas-solid interface over carbon-supported Pt, Pd, Rh and Ru metal catalysts in a fixed-bed reactor at 70–90 °C and ambient pressure. Pt/C was mainly active in ring cleavage of DMF to produce 2-hexanone as the primary product, followed by its hydrogenation to 2-hexanol and hexane. In contrast, Pd/C, Rh/C and Ru/C selectively hydrogenated the furan ring to 2,5-dimethyltetrahydrofuran (DMTHF). The turnover frequency (TOF) of metal sites in the gas-phase DMF hydroconversion was determined from zero-order kinetics in the absence of diffusion limitations. The TOF values decreased in the sequence Pt > Rh > Pd >> Ru, similar to the liquid-phase reaction. The TOF values for the gas-phase reaction were found to be one order of magnitude greater than those for the liquid-phase reaction. This indicates that the gas-phase process is potentially more efficient than the liquid-phase process. TOF values for hydroconversion of ring-saturated furan derivatives, tetrahydrofuran and DMTHF, on Pt/C, were much lower than those for DMF.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Huang, Li, Yi Pan, Lida Pan, Min Gao, Wenyan Xu, Yande Que, Haitao Zhou, Yeliang Wang, Shixuan Du, and H. J. Gao. "Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces." Applied Physics Letters 99, no. 16 (October 17, 2011): 163107. http://dx.doi.org/10.1063/1.3653241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Dhar, Bijoya, Joshua Pollock, Jillian Gloria, and William E. Kaden. "TPD characterization of Al-OD-Si sites at the interface of bilayer Al0.42Si0.58O2/Ru(0001) thin-films." Surface Science 696 (June 2020): 121595. http://dx.doi.org/10.1016/j.susc.2020.121595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kołaczkiewicz, J., and E. Bauer. "Growth and thermal stability of ultrathin films of Fe, Ni, Rh and Pd on the Ru(0001) surface." Surface Science 423, no. 2-3 (March 1999): 292–302. http://dx.doi.org/10.1016/s0039-6028(98)00925-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Golfetto, E., A. Baraldi, M. Pozzo, D. Alfè, A. Sala, P. Lacovig, E. Vesselli, S. Lizzit, G. Comelli, and R. Rosei. "Determining the Chemical Reactivity Trends of Pd/Ru(0001) Pseudomorphic Overlayers: Core-Level Shift Measurements and DFT Calculations." Journal of Physical Chemistry C 114, no. 1 (October 27, 2009): 436–41. http://dx.doi.org/10.1021/jp908568v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Houston, J. E., C. H. F. Peden, P. J. Feibelman, and D. R. Hamann. "Summary Abstract: Studies of the interaction of CO with the interface states for strained‐layer Cu on Ru(0001)." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (July 1987): 688–89. http://dx.doi.org/10.1116/1.574377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії