Добірка наукової літератури з теми "Patial Frequency Domain Imaging"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Patial Frequency Domain Imaging".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Patial Frequency Domain Imaging"
Lin, Jingyu, Yebin Liu, Jinli Suo, and Qionghai Dai. "Frequency-Domain Transient Imaging." IEEE Transactions on Pattern Analysis and Machine Intelligence 39, no. 5 (May 1, 2017): 937–50. http://dx.doi.org/10.1109/tpami.2016.2560814.
Повний текст джерелаYang Hong, 杨虹, 黄远辉 Huang Yuanhui, 苗少峰 Miao Shaofeng, 宫睿 Gong Rui, 邵晓鹏 Shao Xiaopeng, and 毕祥丽 Bi Xiangli. "Frequency-domain photoacoustic imaging system." Infrared and Laser Engineering 45, no. 4 (2016): 0424001. http://dx.doi.org/10.3788/irla201645.0424001.
Повний текст джерелаJiang, Shan, Meiling Guan, Jiamin Wu, Guocheng Fang, Xinzhu Xu, Dayong Jin, Zhen Liu, et al. "Frequency-domain diagonal extension imaging." Advanced Photonics 2, no. 03 (June 2, 2020): 1. http://dx.doi.org/10.1117/1.ap.2.3.036005.
Повний текст джерелаZander, Dani S. "Volumetric Optical Frequency Domain Imaging." Chest 143, no. 1 (January 2013): 10–12. http://dx.doi.org/10.1378/chest.12-1864.
Повний текст джерелаHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland, and T. Douglas Mast. "Frequency-domain passive cavitation imaging." Journal of the Acoustical Society of America 141, no. 5 (May 2017): 3458. http://dx.doi.org/10.1121/1.4987172.
Повний текст джерелаZhang, Guang-Ming, Derek R. Braden, David M. Harvey, and David R. Burton. "Acoustic time-frequency domain imaging." Journal of the Acoustical Society of America 128, no. 5 (November 2010): EL323—EL328. http://dx.doi.org/10.1121/1.3505760.
Повний текст джерелаKonecky, Soren D. "Imaging scattering orientation with spatial frequency domain imaging." Journal of Biomedical Optics 16, no. 12 (December 1, 2011): 126001. http://dx.doi.org/10.1117/1.3657823.
Повний текст джерелаYun, S., G. Tearney, Johannes de Boer, N. Iftimia, and B. Bouma. "High-speed optical frequency-domain imaging." Optics Express 11, no. 22 (November 3, 2003): 2953. http://dx.doi.org/10.1364/oe.11.002953.
Повний текст джерелаHaworth, Kevin J., Kenneth B. Bader, Kyle T. Rich, Christy K. Holland, and T. Douglas Mast. "Quantitative Frequency-Domain Passive Cavitation Imaging." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 64, no. 1 (January 2017): 177–91. http://dx.doi.org/10.1109/tuffc.2016.2620492.
Повний текст джерелаVakoc, B. J., S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma. "Phase-resolved optical frequency domain imaging." Optics Express 13, no. 14 (2005): 5483. http://dx.doi.org/10.1364/opex.13.005483.
Повний текст джерелаДисертації з теми "Patial Frequency Domain Imaging"
Ségaud, Silvère. "Multispectral optical imaging in real-time for surgery." Electronic Thesis or Diss., Strasbourg, 2022. http://www.theses.fr/2022STRAD055.
Повний текст джерелаThe deployment of technology in operating rooms dramatically accelerated over the last decades. More precisely, the surgeons’ ability to distinguish healthy from diseased tissues is still mostly based on their own subjective perception. As tissue status assessment is of upmost importance in oncologic surgery, both for tumor resection and reconstruction procedures, the ability to assess the tissues intraoperatively and in real-time over a large field is crucial for surgical act guidance. The lack of tools for biological intraoperative tissue status assessment has been the main source of motivation for this thesis work. A clinically-compatible imaging platform has been developed for oxygenation and fluorescence imaging in real-time. The capability of the platform to detect and quantify ischemia has been demonstrated through preclinical trials, by comparison with standard of care methods. Furthermore, the multimodal nature of the developed imaging device has been exploited by combining endogenous imaging of optical properties with exogenous fluorescence imaging, in the context of oncologic surgery. A fluorescence quantification technique was validated in preclinical trials with colorectal and pancreatic cancer models, highlighting the limitations of conventional fluorescence imaging
Lee, Edward Chin Wang. "Optical frequency domain imaging of human retina and choroid." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38556.
Повний текст джерелаIncludes bibliographical references (p. 81-87).
Optical coherence tomography (OCT) has emerged as a practical noninvasive technology for imaging the microstructure of the human eye in vivo. Using optical interferometry to spatially-resolve backreflections from within tissue, this high-resolution technique provides cross-sectional images of the anterior and posterior eye segments that had previously only been possible with histology. Current commercially-available OCT systems suffer limitations in speed and sensitivity, preventing them from effective screening of the retina and having a larger impact on the clinical environment. While other technological advances have addressed this problem, they are inadequate for imaging the choroid, which can be useful for evaluating choroidal disorders as well as early stages of retinal diseases. The objective of this thesis was to develop a new ophthalmic imaging method, termed optical frequency domain imaging (OFDI), to overcome these limitations. Preliminary imaging of the posterior segment of human eyes in vivo was performed to evaluate the utility of this instrument for comprehensive ophthalmic examination.
(cont.) The 1050-nm OFDI system developed for this thesis comprised a novel wavelength-swept laser that delivered 2.7 mW of average power at a sweep rate of 18.8 kHz, representing a two-order-of-magnitude improvement in speed over previously-demonstrated lasers in the 1050-nm range and below. The system, with an optical exposure level of 550 gW, achieved resolution of 10 gm in tissue and sensitivity of >92 dB over a depth range of 2.4 mm. Two healthy volunteers were imaged with the OFDI system, with 200,000 A-lines over 10.6 seconds in each imaging session. In comparison to results from a state-of-the-art spectral-domain OCT system, the OFDI system provided deeper penetration into the choroid. This thesis demonstrates OFDI's capability for comprehensive imaging of the human retina, optic disc, and choroid in vivo. The deep penetration power of the system enabled the first simultaneous visualization of retinal and choroidal vasculature without the exogenous dyes required by angiography. The combined capability for imaging microstructure and vasculature using a single instrument may be a significant factor influencing clinical acceptance of ophthalmic OFDI technology.
by Edward Chin Wang Lee.
S.M.
Heffer, Erica Leigh. "Frequency-domain optical mammography for detection and oximetry of breast tumors /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.
Знайти повний текст джерелаAdviser: Sergio Fantini. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references (leaves 201-202). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Van, Vorst Daryl. "Cross-hole GPR imaging : traveltime and frequency-domain full-waveform inversion." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/51664.
Повний текст джерелаApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Yong, Kai Yaw. "Frequency domain optical techniques for imaging and spectroscopy of scattering media." Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404049.
Повний текст джерелаKujala, Naresh Gandhi Yu Ping. "Frequency domain fluorescent molecular tomography and molecular probes for small animal imaging." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7021.
Повний текст джерелаPetrack, Alec M. "Single-Pixel Camera Based Spatial Frequency Domain Imaging for Non-Contact Tissue Characterization." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1596066982589817.
Повний текст джерелаPoon, Chien Sing. "Early Assessment of Burn Severity in Human Tissue with Multi-Wavelength Spatial Frequency Domain Imaging." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1484582176416423.
Повний текст джерелаRasmussen, John C. "Development of a radiative transport based, fluorescence-enhanced, frequency-domain small animal imaging system." Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1067.
Повний текст джерелаDavies, Christopher W. "Quantification of Optical Parameters Using Frequency Domain Functional Near-Infrared Spectroscopy (FD-fNIRS)." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559369168541587.
Повний текст джерелаКниги з теми "Patial Frequency Domain Imaging"
Time-Frequency Transforms for Radar Imaging and Signal Analysis. Artech House Publishers, 2002.
Знайти повний текст джерелаMoukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерелаMoukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерелаMoukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерелаMoukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals: The Stockwell Transform Applied on Bio-signals and Electric Signals. Wiley-Interscience, 2014.
Знайти повний текст джерелаMoukadem, Ali, Djaffar Ould Abdeslam, and Alain Dieterlen. Time-Frequency Domain for Segmentation and Classification of Non-Stationary Signals: The Stockwell Transform Applied on Bio-Signals and Electric Signals. Wiley & Sons, Incorporated, John, 2014.
Знайти повний текст джерелаЧастини книг з теми "Patial Frequency Domain Imaging"
Bouma, Brett E., Guillermo J. Tearney, Benjamin Vakoc, and Seok Hyun Yun. "Optical Frequency Domain Imaging." In Optical Coherence Tomography, 225–54. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_8.
Повний текст джерелаBouma, B. E., G. J. Tearney, B. J. Vakoc, and S. H. Yun. "Optical Frequency Domain Imaging." In Optical Coherence Tomography, 209–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8_7.
Повний текст джерелаAllam, Mahmoud E., and James F. Greenleaf. "Two-Dimensional Frequency Domain Phase Aberration Correction." In Acoustical Imaging, 159–64. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_25.
Повний текст джерелаSubramanian, Sankaran, James B. Mitchell, and Murali C. Krishna. "Time-Domain Radio Frequency EPR Imaging." In In Vivo EPR (ESR), 153–97. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0061-2_7.
Повний текст джерелаBossuyt, A., R. Luypaert, J. Van Craen, F. Deconinck, and A. B. Brill. "Adaptive Frequency-Domain Filtering Of Dynamic Scintigraphies." In Information Processing in Medical Imaging, 207–15. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4261-5_15.
Повний текст джерелаMcKeon, James C. P. "Frequency Domain Filtering for Enhanced SAM Inspection of Microelectronic Components." In Acoustical Imaging, 353–61. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8606-1_45.
Повний текст джерелаMaier, J., S. Walker, and E. Gratton. "Frequency-Domain Optical Spectroscopy and Imaging of Tissues." In Biomedical Optical Instrumentation and Laser-Assisted Biotechnology, 121–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1750-7_11.
Повний текст джерелаShonat, Ross D., and Amanda C. Kight. "Frequency Domain Imaging of Oxygen Tension in the Mouse Retina." In Advances in Experimental Medicine and Biology, 243–47. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0205-0_40.
Повний текст джерелаVerveer, Peter J., Anthony Squire, and Philippe I. H. Bastiaens. "Frequency-Domain Fluorescence Lifetime Imaging Microscopy: A Window on the Biochemical Landscape of the Cell." In Methods in Cellular Imaging, 273–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_16.
Повний текст джерелаDong, Chen-Yuan, Christof Buehler, Peter T. C. So, Todd French, and Enrico Gratton. "Biological Applications of Time-Resolved, Pump-Probe Fluorescence Microscopy and Spectroscopy in the Frequency Domain." In Methods in Cellular Imaging, 324–40. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_19.
Повний текст джерелаТези доповідей конференцій з теми "Patial Frequency Domain Imaging"
Lee, Zhenghong, Pedro J. Diaz, and Errol M. Bellon. "Frequency domain clipping for volume rendering." In Medical Imaging 1996, edited by Yongmin Kim. SPIE, 1996. http://dx.doi.org/10.1117/12.238477.
Повний текст джерелаGratton, E. "Techniques C: frequency domain." In Medical Optical Tomography: Functional Imaging and Monitoring, edited by Gerhard J. Mueller. SPIE, 1993. http://dx.doi.org/10.1117/12.2283773.
Повний текст джерелаPanigrahi, Swapnesh, and Sylvain Gioux. "Spatial frequency domain imaging: frequency selection (Conference Presentation)." In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI, edited by Tuan Vo-Dinh, Anita Mahadevan-Jansen, and Warren S. Grundfest. SPIE, 2018. http://dx.doi.org/10.1117/12.2290220.
Повний текст джерелаFischer, Mani, and Doron Shaked. "Frequency domain design of cluster dot screens." In Electronic Imaging 2006, edited by Reiner Eschbach and Gabriel G. Marcu. SPIE, 2006. http://dx.doi.org/10.1117/12.641903.
Повний текст джерелаMantulin, William W., Todd E. French, and Enrico Gratton. "Optical imaging in the frequency domain." In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, edited by David M. Harris, Carl M. Penney, and Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147495.
Повний текст джерелаChue-Sang, Joseph, Aaron M. Goldfain, Jeeseong Hwang, and Thomas A. Germer. "Spatial frequency domain Mueller matrix imaging." In Polarized light and Optical Angular Momentum for biomedical diagnostics, edited by Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson, and Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2576350.
Повний текст джерелаSandhu, Gursharan Yash Singh, Cuiping Li, Olivier Roy, Erik West, Katelyn Montgomery, Michael Boone, and Neb Duric. "Frequency-domain ultrasound waveform tomography breast attenuation imaging." In SPIE Medical Imaging, edited by Neb Duric and Brecht Heyde. SPIE, 2016. http://dx.doi.org/10.1117/12.2218374.
Повний текст джерелаSandhu, Gursharan Yash, Erik West, Cuiping Li, Olivier Roy, and Neb Duric. "3D frequency-domain ultrasound waveform tomography breast imaging." In SPIE Medical Imaging, edited by Neb Duric and Brecht Heyde. SPIE, 2017. http://dx.doi.org/10.1117/12.2254399.
Повний текст джерелаEl-Sharkawy, Yasser H., and Bassam Abd-Elwahab. "Nonintrusive noncontacting frequency-domain photothermal radiometry of caries." In SPIE Medical Imaging. SPIE, 2010. http://dx.doi.org/10.1117/12.843769.
Повний текст джерелаdeJong, Max, Guy Perkins, Hamid Dehghani, and Adam Eggebrecht. "Multifrequency frequency domain diffuse optical tomography." In Diffuse Optical Spectroscopy and Imaging VIII, edited by Davide Contini, Yoko Hoshi, and Thomas D. O'Sullivan. SPIE, 2021. http://dx.doi.org/10.1117/12.2615390.
Повний текст джерелаЗвіти організацій з теми "Patial Frequency Domain Imaging"
Khavandi, Ali. Treatment of a Bifurcation Lesion Using a Two-stent ‘Reverse’ T and Small Protrusion Technique Via a Glidesheath Slender® and Optimisation using 3D Optical Frequency Domain Imaging. Radcliffe Cardiology, November 2017. http://dx.doi.org/10.15420/rc.2017.m018.
Повний текст джерела