Добірка наукової літератури з теми "Pasture dieback"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pasture dieback".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pasture dieback"

1

Whitton, Maria M., Xipeng Ren, Sung J. Yu, Tieneke Trotter, Dragana Stanley, and Yadav S. Bajagai. "Remediation of Pasture Dieback Using Plant Growth Promotant." Agronomy 12, no. 12 (December 12, 2022): 3153. http://dx.doi.org/10.3390/agronomy12123153.

Повний текст джерела
Анотація:
Pasture dieback is a syndrome of unknown cause affecting grasses in Australia, creating significant economic losses to farmers by reducing available livestock feed and paddock carrying capacity. RC3 is a commercial plant growth stimulant tri-sodium salt of trimercapto-S-triazine (TMT) and potassium humate as active ingredients. TMT is commonly used for soil and wastewater remediation by capturing and binding heavy metals, while potassium humate is an organic compound used as a plant growth promoter. We investigated the ability of RC3 to restore soil health and productivity under pasture dieback conditions. RC3 was applied on pasture dieback affected paddock replicate plots once, at a rate of 4 mL/m2, and soil core samples were taken weekly to analyse microbial communities. Plants were collected regularly to measure dry matter and plant morphometrics. Twenty weeks after a single application, dry matter increased in RC3 plots by 900 kg/ha compared to control plots, and at week 48, eleven months after the single application, RC3 plots showed a trend of more grass and dicot species than the control. Morphometric measures suggest minor improvements in dicotyledon plants. Alpha diversity did not change with the application of RC3. Temporal correlation analysis shows that RC3 steadily reduced the presence of genera predominant in poor soils and with extreme environmental conditions over time and prevented the decline of beneficial genera, such as Marmoricola, Actinomadura, Dactylosporangium, and mle1-7.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Whitton, Maria M., Xipeng Ren, Sung J. Yu, Andrew D. Irving, Tieneke Trotter, Yadav S. Bajagai, and Dragana Stanley. "Sea Minerals Reduce Dysbiosis, Improve Pasture Productivity and Plant Morphometrics in Pasture Dieback Affected Soils." Sustainability 14, no. 22 (November 10, 2022): 14873. http://dx.doi.org/10.3390/su142214873.

Повний текст джерела
Анотація:
Pasture dieback (PD) is a grassland deteriorating syndrome resulting in grass loss and weed expansion in Australian pastures, with current estimates indicating that over four million hectares are affected. PD creates financial losses to the industry by reducing animal carrying capacity and producing poor-quality feed, resulting in diminished productivity. After more than a decade since PD first appeared in Australia, the causes and effective treatments are still unknown. Suggested causes include soil microbiota dysbiosis, pathogens, insects, climate change and overuse of chemical fertilisers. Sea minerals have been suggested as capable of improving plants’ yield, quality, taste, and nutritional value, but were never brought into conventional practice as an alternative to chemical fertilisers. Here, we investigated the capacity of sea minerals to improve grass health and yield of PD-affected soil. The replicate plots were treated with water or with 4 mL/m2 of commercially available sea mineral product to investigate the soil chemistry profile, plant morphometrics, pasture productivity, soil microbiota profile, and microbiota-nutrient interactions. Sea mineral application significantly increased total dry matter 20 weeks after a single application, translating to an additional 967 kg/ha; this benefit was still present at 498 kg/ha six months post a single application. Sea mineral application improved soil microbiota by boosting beneficial taxa while reducing genera associated with arid and toxic soils. Additionally, sea mineral application increased the number of grassroots up to six months post a single application. Our data suggest the benefits of sea mineral application to damaged, unproductive or exhausted soils could be further explored as a natural, affordable, and non-toxic alternative to chemical fertilisers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ren, Xipeng, Maria M. Whitton, Sung J. Yu, Tieneke Trotter, Yadav S. Bajagai, and Dragana Stanley. "Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback." Microorganisms 11, no. 3 (February 23, 2023): 561. http://dx.doi.org/10.3390/microorganisms11030561.

Повний текст джерела
Анотація:
Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klavina, Darta, Lauma Bruna, Astra Zaluma, Natalija Burnevica, Kaspars Polmanis, Talis Gaitnieks, and Tuula Piri. "Infection and Spread of Root Rot Caused by Heterobasidion Parviporum in Picea Abies Stands after Thinning: Case Studies on Former Pasture and Meadow Lands." Environmental Sciences Proceedings 3, no. 1 (November 12, 2020): 2. http://dx.doi.org/10.3390/iecf2020-07950.

Повний текст джерела
Анотація:
Afforestation of former agricultural lands is a well-established practice in several countries. It is beneficial for avoiding previous-generation forest diseases and expanding forest areas. However, several biotic and abiotic risks have been reported for such stands as well as a higher risk of Heterobasidion root rot after thinning. Therefore, this study investigates the spread patterns of Heterobasidion root rot in three Picea abies (L.) Karst. Plantations established on former pasture and meadow lands and subjected to forest management practices. First of all, to get an insight into the average infection rate we sampled all standing trees (157 in total) within a transect all along the sampling area. It showed slightly lower infection in pastures than in former meadows (16% vs. 29% and 33%, respectively). Based on those data and the observed dieback all over the stand, we established circle sample plots in disease centres where all trees and stumps were analysed, and the average infection rate there was 34–41%. All obtained Heterobasidion isolates belonging to Heterobasidion parviporum Niemelä & Korhonen. Isolates were paired to detect genotype size and infection origin. Of 141 genets examined, 99 were single-tree, indicating primary infection, and 42 formed territorial clones (160 trees and or stumps) indicating the spread of infection through root contacts. The following conclusions were reached: (i) on average, primary infection in such stands is essential, but in older stands secondary infection predominates; (ii) H. parviporum can form large (up to 137 m2) territorial clones in forests on former pasture and meadow lands causing extensive tree dieback and mortality. This study was financially supported by European Regional Development Fund’s Post-doctoral Research project No. 1.1.1.2/VIAA/2/18/298 “Determining the risk of Heterobasidion root-rot and fungal communities in roots of Norway spruce stands on former agricultural land”.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Whitton, Maria M., Xipeng Ren, Sung J. Yu, Andrew D. Irving, Tieneke Trotter, Yadav S. Bajagai, and Dragana Stanley. "Humate application alters microbiota–mineral interactions and assists in pasture dieback recovery." Heliyon 9, no. 2 (February 2023): e13327. http://dx.doi.org/10.1016/j.heliyon.2023.e13327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Klavina, Darta, Lauma Bruna, Astra Zaluma, Natalija Burnevica, Kaspars Polmanis, Talis Gaitnieks, and Tuula Piri. "Infection and Spread of Root Rot Caused by Heterobasidion parviporum in Picea abies Stands after Thinning: Case Studies on Former Pasture and Meadow Lands." Forests 12, no. 1 (January 9, 2021): 70. http://dx.doi.org/10.3390/f12010070.

Повний текст джерела
Анотація:
Afforestation of former agricultural lands is a common practice in several countries. This is beneficial for avoiding diseases carry-over from previous forest generations and to expand forest areas. However, several biotic and abiotic risks have been reported in such stands, including a higher risk of Heterobasidion root rot after thinning. Therefore, this study investigates the spread of Heterobasidion root rot in three Picea abies (L.) Karst. plantations in Latvia established on former pasture and meadow lands and subjected to forest management practices. Initially, to determine average infection rate, we sampled all standing trees (157 in total) along transects within sampling areas. On the transects, the proportion of trees suffering from Heterobasidion root rot varied from 16 to 33% among stands. Based on those data and observed dieback over all the stands, we established circular sample plots in disease centres where all trees and stumps were analysed. The average infection rate in the circular plots varied from 34 to 41%. Obtained Heterobasidion isolates were analysed with species-specific primers and were all determined to be Heterobasidion parviporum Niemelä & Korhonen. Isolates were paired to detect the number and size of genotypes. Of 141 genets examined, 99 were isolated from only one tree or stump, while 42 formed genets including two or more trees or stumps indicating spread of infection through root contacts. The total number of Heterobasidion genets per hectare in studied stands varied from 72 to 484. The following conclusions were reached: (i) stands on former non-forest lands (pastures and meadows) can be highly susceptible to Heterobasidion infection after thinning, (ii) the pathogen may form expanding territorial clones in both former pasture and meadows and (iii) stump treatment with biological or chemical control agents is recommended to prevent Heterobasidion infections.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klavina, Darta, Lauma Bruna, Astra Zaluma, Natalija Burnevica, Kaspars Polmanis, Talis Gaitnieks, and Tuula Piri. "Infection and Spread of Root Rot Caused by Heterobasidion parviporum in Picea abies Stands after Thinning: Case Studies on Former Pasture and Meadow Lands." Forests 12, no. 1 (January 9, 2021): 70. http://dx.doi.org/10.3390/f12010070.

Повний текст джерела
Анотація:
Afforestation of former agricultural lands is a common practice in several countries. This is beneficial for avoiding diseases carry-over from previous forest generations and to expand forest areas. However, several biotic and abiotic risks have been reported in such stands, including a higher risk of Heterobasidion root rot after thinning. Therefore, this study investigates the spread of Heterobasidion root rot in three Picea abies (L.) Karst. plantations in Latvia established on former pasture and meadow lands and subjected to forest management practices. Initially, to determine average infection rate, we sampled all standing trees (157 in total) along transects within sampling areas. On the transects, the proportion of trees suffering from Heterobasidion root rot varied from 16 to 33% among stands. Based on those data and observed dieback over all the stands, we established circular sample plots in disease centres where all trees and stumps were analysed. The average infection rate in the circular plots varied from 34 to 41%. Obtained Heterobasidion isolates were analysed with species-specific primers and were all determined to be Heterobasidion parviporum Niemelä & Korhonen. Isolates were paired to detect the number and size of genotypes. Of 141 genets examined, 99 were isolated from only one tree or stump, while 42 formed genets including two or more trees or stumps indicating spread of infection through root contacts. The total number of Heterobasidion genets per hectare in studied stands varied from 72 to 484. The following conclusions were reached: (i) stands on former non-forest lands (pastures and meadows) can be highly susceptible to Heterobasidion infection after thinning, (ii) the pathogen may form expanding territorial clones in both former pasture and meadows and (iii) stump treatment with biological or chemical control agents is recommended to prevent Heterobasidion infections.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Moxham, Claire, and Josh Dorrough. "Recruitment of Eucalyptus strzeleckii (Myrtaceae) in intensive livestock production landscapes." Australian Journal of Botany 56, no. 6 (2008): 469. http://dx.doi.org/10.1071/bt07187.

Повний текст джерела
Анотація:
Eucalyptus strzeleckii K. Rule (Strzelecki gum) is a medium-to-tall forest swamp gum, endemic to Victoria and listed as Nationally Vulnerable in Australia. This species occurs in the high rainfall (up to 1600 mm) region of Gippsland in south-eastern Victoria. The region has been intensively developed for agriculture, in particular dairy production. Surviving trees are often old and in varying stages of dieback and natural recruitment is rarely observed. The removal of cattle-grazing as a sole mechanism to encourage recruitment is rarely sufficient to promote regeneration of this species. The aim of this study was to examine the role of soil disturbance, weed competition, seed supply and parent plant competition, in the absence of cattle-grazing, in the recruitment of E. strzeleckii. Seed availability, distance from mature tree, soil disturbance, soil moisture and pasture competition all influenced seedling establishment and survival in the field. Removal of ground layer vegetation immediately before seedling emergence appears to be essential for successful establishment of E. strzeleckii. However, both soil disturbance and pasture removal by spraying had similar effects, suggesting that competition rather than soil disturbance per se is a limiting factor in these environments. In the absence of understorey vegetation manipulation, regeneration by this species is unlikely even in the absence of grazing.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thomson, Melody B., Shane D. Campbell, and Anthony J. Young. "Ground pearls (Hemiptera: Margarodidae) in crops and pastures: biology and options for management." Crop and Pasture Science 72, no. 9 (2021): 762. http://dx.doi.org/10.1071/cp20235.

Повний текст джерела
Анотація:
Ground pearls (Hemiptera: Margarodidae), so called for their shiny spherical cyst stage, are important root-feeding pests of a broad range of plants predominantly belonging to the family Poaceae. In the tropical and subtropical regions of eastern Australia, ground pearl species cause significant damage on sugarcane and turf grasses and have been identified at multiple sites of pasture dieback in Queensland. The potential impact of ground pearls on pasture production in Australia and elsewhere is largely unknown. This paper reviews Australian and international literature on the biology and management of this poorly understood group of pests. Ground pearls have several features that make control difficult, including a resilient cyst which provides resistance to drought and excessive moisture, a relative impermeability to insecticides, and ease of dispersal through movement of soil. Ground pearls can also modulate the period of encystment to survive adverse environmental conditions, with some species capable of surviving for years while disassociated from a host. No insecticide effectively controls ground pearl cysts. Biological control agents have been identified for some species; however, these pathogens are relatively ineffective on subterranean ground pearl cysts. Cultural control methods such as cultivation and fallowing have helped to reduce ground pearl populations in sugarcane. In turf, practices that maintain plant health such as adequate irrigation and nutrition can mask signs of ground pearl infestation. The paucity of research conducted on the biology and impact of ground pearls represents a constraint to improving management of this pest.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Williams, Gordon Terrell. "Cost-effective landscape revegetation and restoration of a grazing property on the Northern Tablelands of New South Wales: 65 years of change and adaptation at ‘Eastlake'." Rangeland Journal 39, no. 6 (2017): 461. http://dx.doi.org/10.1071/rj17110.

Повний текст джерела
Анотація:
This paper describes the restoration of woody vegetation on my family’s grazing property, ‘Eastlake’ (1202 ha) on the Northern Tablelands of New South Wales. We commenced revegetating ‘Eastlake’ in 1981 to reverse the loss of native tree cover due to New England dieback and improve shelter for livestock and pastures to increase farm profitability. We treated the revegetation program as a long-term business investment and, apart from a 5-year period of overseas employment, have allocated annual funding in the farm business plan ever since. Our decision was based on the benefits of shelter to livestock and pasture production. Once we began revegetation, aesthetics, amenity and the positive impact on the capital value of the farm became important motivations. More recently, increasing the farm’s biodiversity and resilience, and conserving native flora and fauna, have also motivated us. Our strategy is to link upland areas of remnant timber with ridgeline corridors of planted vegetation to maximise shelter, minimise pasture production losses and provide dispersal corridors for fauna and wildlife habitat. Initially, we planted introduced species of tree and shrub, but now we revegetate mainly with native species, as well as fencing off remnant timber to encourage natural regeneration and direct seeding understorey species (mainly acacias) in degraded remnants and elsewhere. Our target is to increase the area of fenced-off and planted timber cover from 8% to 10% over the next few years, which will take the proportion of total effective timber cover from ~8% in 1980 to 18% of the property. The key lessons are to: (1) plan, prepare, plant the right tree or shrub in the right place for the right purpose, and post-planting care (the ‘4 Ps’); (2) integrate revegetation into the whole-farm business plan; (3) finance the work slowly over time with the aid of a spatial farm plan; and (4) adapt to changing circumstances, values and understanding. Research is required to help farmers understand the role of on-farm biodiversity in contributing to the health of the farm business, owner–managers and their families and the farm environment, as well as to regional economies, communities, landscapes and society more generally.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії