Статті в журналах з теми "Partition of local density of optical states"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Partition of local density of optical states.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Partition of local density of optical states".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Mignuzzi, Sandro, Stefano Vezzoli, Simon A. R. Horsley, William L. Barnes, Stefan A. Maier, and Riccardo Sapienza. "Nanoscale Design of the Local Density of Optical States." Nano Letters 19, no. 3 (February 21, 2019): 1613–17. http://dx.doi.org/10.1021/acs.nanolett.8b04515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Titov, Evgenii. "On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis." Molecules 26, no. 14 (July 13, 2021): 4245. http://dx.doi.org/10.3390/molecules26144245.

Повний текст джерела
Анотація:
Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huang, C., A. Bouhelier, G. Colas des Francs, G. Legay, J. C. Weeber, and A. Dereux. "Far-field imaging of the electromagnetic local density of optical states." Optics Letters 33, no. 4 (February 5, 2008): 300. http://dx.doi.org/10.1364/ol.33.000300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McPhedran, R. C., N. A. Nicorovici, and L. C. Botten. "Resonant cloaking and local density of states." Metamaterials 4, no. 2-3 (August 2010): 149–52. http://dx.doi.org/10.1016/j.metmat.2010.02.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alatas, Husin, Tony I. Sumaryada, and Faozan Ahmad. "Characteristics of local density of optical states in a tapered grated waveguide at resonant states." Optik 127, no. 5 (March 2016): 2683–87. http://dx.doi.org/10.1016/j.ijleo.2015.11.202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nalewajski, Roman F. "Continuity Relations, Probability Acceleration Current Sources and Internal Communications in Interacting Fragments." Academic Journal of Chemistry, no. 56 (June 20, 2020): 58–68. http://dx.doi.org/10.32861/ajc.56.58.68.

Повний текст джерела
Анотація:
Classical issues of local continuities and density partition in molecular quantum mechanics are reexamined. An effective velocity of the probability current is identified as the current-per-particle and its properties are explored. The local probability acceleration and the associated force concept are introduced. They are shown to identically vanish in the stationary electronic states. This acceleration measure also determines the associated productions of physical currents, e.g., the local source of the resultant content of electronic gradient information. The probability partitioning between reactants is revisited and illustrated using the stockholder division rule of Hirshfeld. A simple orbital model is used to describe the polarized (disentangled) and equilibrium (entangled) molecular fragments containing the distinguishable and indistinguishable groups of electrons, respectively, and their mixed quantum character is emphasized. The fragment density matrix is shown to determine the subsystem internal electron communications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nicorovici, N. A. P., R. C. McPhedran, and L. C. Botten. "Relative local density of states for homogeneous lossy materials." Physica B: Condensed Matter 405, no. 14 (July 2010): 2915–19. http://dx.doi.org/10.1016/j.physb.2010.01.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Losev, A., S. J. Vlaev, and T. Mishonov. "Local Density of States for Solids in an Electric Field." physica status solidi (b) 220, no. 1 (July 2000): 747–52. http://dx.doi.org/10.1002/1521-3951(200007)220:1<747::aid-pssb747>3.0.co;2-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Di Stefano, O., N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini. "Calculation of the local optical density of states in absorbing and gain media." Journal of Physics: Condensed Matter 22, no. 31 (July 13, 2010): 315302. http://dx.doi.org/10.1088/0953-8984/22/31/315302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Jing, Xunpeng Jiang, Satoshi Ishii, Vladimir Shalaev, and Joseph Irudayaraj. "Quantifying the local density of optical states of nanorods by fluorescence lifetime imaging." New Journal of Physics 16, no. 6 (June 30, 2014): 063069. http://dx.doi.org/10.1088/1367-2630/16/6/063069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Colas des Francs, Gérard, Christian Girard, Jean-Claude Weeber, and Alain Dereux. "Relationship between scanning near-field optical images and local density of photonic states." Chemical Physics Letters 345, no. 5-6 (September 2001): 512–16. http://dx.doi.org/10.1016/s0009-2614(01)00914-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Schachinger, E., and J. P. Carbotte. "Vortex state Doppler shift on local density of states." Physica C: Superconductivity 341-348 (November 2000): 1689–90. http://dx.doi.org/10.1016/s0921-4534(00)00938-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

EMELLI, E., G. FANCHINI, and A. TAGLIAFERRO. "DENSITY-OF-STATES AND OPTICAL PROPERTIES IN AMORPHOUS CARBON THIN FILMS." International Journal of Modern Physics B 14, no. 02n03 (January 30, 2000): 243–55. http://dx.doi.org/10.1142/s0217979200000248.

Повний текст джерела
Анотація:
In this paper we will link the local structure of amorphous carbon and the semi-empirical model which assumes the density of π and π* states as having Gaussian shapes and to be symmetrical with respect to Fermi level. We will show that the effect of charge transfer from sp3 to sp2 sites due their difference in electron-negativity, when coupled with the disorder effect (taken into account by assuming Gaussian distribution of the amount of charge transfer) lead to a sum of Gaussian symmetrical bands. Moreover, we will show that the sp2 pairs are responsible for most of the joint density-of-states (i.e. the imaginary part of the dielectric constant) in the visible region. The limits of the approach will be discussed as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Sinjukow, P., D. Meyer, and W. Nolting. "Local Density of States in the Antiferromagnetic and Ferromagnetic Kondo Models." physica status solidi (b) 233, no. 3 (October 2002): 536–52. http://dx.doi.org/10.1002/1521-3951(200210)233:3<536::aid-pssb536>3.0.co;2-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hamza, Abdullah O., Francesco N. Viscomi, Jean-Sebastien G. Bouillard, and Ali M. Adawi. "Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps." Journal of Physical Chemistry Letters 12, no. 5 (February 3, 2021): 1507–13. http://dx.doi.org/10.1021/acs.jpclett.0c03702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nikolaev, Ivan S., Willem L. Vos, and A. Femius Koenderink. "Accurate calculation of the local density of optical states in inverse-opal photonic crystals." Journal of the Optical Society of America B 26, no. 5 (April 10, 2009): 987. http://dx.doi.org/10.1364/josab.26.000987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Yan, Yi, and Yangjun Luo. "Topological design of optical dirac-like cones by manipulating multiple local density of states." Optics & Laser Technology 164 (September 2023): 109558. http://dx.doi.org/10.1016/j.optlastec.2023.109558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

BAGAYOKO, D., and G. L. ZHAO. "DENSITY OF STATES, CHARGE TRANSFER, AND OPTICAL PROPERTIES OF MAGNESIUM DIBORIDE." International Journal of Modern Physics B 16, no. 04 (February 10, 2002): 571–81. http://dx.doi.org/10.1142/s0217979202010063.

Повний текст джерела
Анотація:
We performed ab-initio, local density functional calculations of the electronic structure, charge transfer, and optical properties of MgB2, using the LCAO formalism. The Fermi level of MgB 2 cuts through relatively narrow electron bands which have a dominant contribution from B (2p) states. There is a substantial charge transfer from magnesium to boron atoms. We found the ionic formula for this material to be [Formula: see text]. A clearly metallic distribution of the electronic charge density in the plane of boron atoms is interwoven with a visibly covalent one in the direction perpendicular to this plane. The calculated optical conductivities from the direct inter-band transitions exhibit a strong anisotropy between σxx(ω) or σyy(ω) and σzz(ω). Due to our application of the BZW procedure, major peaks in the density of states above the Fermi level are at markedly higher energies (1–1.5 eV) than the results of previously reported ones. A similar pattern is followed by our findings for optical conductivities.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hu, Xing-Hua, Bao-Jun Wu, and Xiao-Fei Zhang. "Local density of states of vortex state in mesoscopic superconductors." Physica C: Superconductivity 471, no. 5-6 (March 2011): 129–32. http://dx.doi.org/10.1016/j.physc.2011.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Nisar, Maria, Mubushra Umbreen, Sunaina Rafique, Bushra Liaqat, Kiran Batool, Iqra Shahzadi, Yasmin Zahra, and Hafiza Batool. "Optical Properties of ZnS and Effect of Doping with Transition Elements." JOURNAL OF NANOSCOPE (JN) 1, no. 01 (June 22, 2020): 21–33. http://dx.doi.org/10.52700/jn.v1i01.12.

Повний текст джерела
Анотація:
By the help of density functional theory for a Cu doped ZnS compound the charge density,Fermi surface and electronic structure have been examined. We have used (FP-LAPW)method, to deal with interchange relationship potential for solving of kohn-sham equations.We apply generalized gradient approximation (GGA), local density approximation (LDA)and Engel-Vosko GGA (EVGGA). Cu doped ZnS compound confirms that nature ofmaterial is metallic and Fermi energy (EF) is obtained by the overlapping of Cu-p and Znd state. At Fermi energy (EF) calculated density of states is 51.932, 18.655 and 13.235 states/ev, and low-temperature electronic specific heat co-efficient (?) is found to be9.008mJ/mol-K2 for GGA, 3.236mJ/mol-K2 for LDA, and it was 2.295mJ/mol-K2 forEVGGA respectively. The thermal properties and optical constant were also discussed andcalculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Indukuri, Chaitanya, Ravindra Kumar Yadav, and J. K. Basu. "Broadband room temperature strong coupling between quantum dots and metamaterials." Nanoscale 9, no. 32 (2017): 11418–23. http://dx.doi.org/10.1039/c7nr03008h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Cueff, Sebastien, Florian Dubois, Matthew Shao Ran Huang, Dongfang Li, Rashid Zia, Xavier Letartre, Pierre Viktorovitch, and Hai Son Nguyen. "Tailoring the Local Density of Optical States and Directionality of Light Emission by Symmetry Breaking." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 3 (May 2019): 1–7. http://dx.doi.org/10.1109/jstqe.2019.2902915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kasal, R. B., and E. V. L. de Mello. "Local density of states of a disordered superconductor applied to cuprates." Physica C: Superconductivity and its Applications 470 (December 2010): S984—S985. http://dx.doi.org/10.1016/j.physc.2009.11.175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Glass, B., and E. Lazo. "Impurity Effects on the Local Density of States of an Hexagonal Husumi Cactus." physica status solidi (b) 180, no. 1 (November 1, 1993): 163–74. http://dx.doi.org/10.1002/pssb.2221800115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lenk, R., and H. Solbrig. "Green Function, Local Density of States, and Statistical Equilibrium in Muffin-Tin Systems." physica status solidi (b) 132, no. 2 (December 1, 1985): 477–84. http://dx.doi.org/10.1002/pssb.2221320219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rath, B. K., and P. N. Ram. "Gap Modes and Local Density of States of Impurities in RbCl and KBr." physica status solidi (b) 156, no. 1 (November 1, 1989): 137–44. http://dx.doi.org/10.1002/pssb.2221560114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Savchenko, A. K., J. P. Holder, V. I. Falko, B. Jouault, G. Faini, F. Laruelle, and E. Bedel. "Resonant Tunnelling Spectroscopy of the Local Density of States in a Disordered Conductor." physica status solidi (b) 218, no. 1 (March 2000): 309–18. http://dx.doi.org/10.1002/(sici)1521-3951(200003)218:1<309::aid-pssb309>3.0.co;2-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

LIU Chun-xu, 刘春旭. "Multiphonon Relaxation of5D3→5D4and Local Density of States in β-NaGdF4∶Tb3+Nanocrystals". Chinese Journal of Luminescence 35, № 12 (2014): 1443–48. http://dx.doi.org/10.3788/fgxb20143512.1443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Muhammady, Shibghatullah, Yudhi Kurniawan, Suryana, and Yudi Darma. "Local-symmetry distortion, optical properties, and plasmonic states of monoclinic Hf0.5Zr0.5O2 system: a density-functional study." Materials Research Express 5, no. 9 (August 15, 2018): 096303. http://dx.doi.org/10.1088/2053-1591/aad88c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Jiménez-Solano, Alberto, Laura Martínez-Sarti, Antonio Pertegás, Gabriel Lozano, Henk J. Bolink, and Hernán Míguez. "Dipole reorientation and local density of optical states influence the emission of light-emitting electrochemical cells." Physical Chemistry Chemical Physics 22, no. 1 (2020): 92–96. http://dx.doi.org/10.1039/c9cp05505c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Litak, Grzegorz, and Mariusz Krawiec. "Superconducting pairing amplitude and local density of states in presence of repulsive centers." Physica B: Condensed Matter 378-380 (May 2006): 434–36. http://dx.doi.org/10.1016/j.physb.2006.01.533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Shuaibu, Alhassan, Md Mahmudur Rahman, Hishamuddin Zainuddin, and Zainal Abdib Talib. "Density Functional Study of Electronic and Optical Properties of Ternary Mixed Chalcogenides Topological Insulators." Materials Science Forum 846 (March 2016): 599–606. http://dx.doi.org/10.4028/www.scientific.net/msf.846.599.

Повний текст джерела
Анотація:
This paper presented a theoretical study of structural, electronic, and optical properties of the ternary mixed chalcogenides Topological Insulators with a formula M2X2Y (M = Bi, X = Te and Y= Se, S) using density functional theory (DFT) within the local density approximation (LDA). From the calculation, we have evaluated the bulk modulus and its corresponding pressure derivatives of these compounds. The linear photon-energy dependent of dielectric functions, some optical properties such as reflectivity, refraction index, conductivity function, and energy-loss spectra, have also been obtained and analyzed within the electronic band structures and density of states of these compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Narimani, M., and Z. Nourbakhsh. "Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds." Modern Physics Letters B 30, no. 14 (May 29, 2016): 1650159. http://dx.doi.org/10.1142/s0217984916501591.

Повний текст джерела
Анотація:
In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel–Vosco generalized gradient approximations and modified Becke–Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

STROCOV, V. N., P. O. NILSSON, T. SCHMITT, R. CLAESSEN, A. Yu, EGOROV, V. M. USTINOV, and Zh I. ALFEROV. "LOCAL ELECTRONIC STRUCTURE OF N ATOMS IN Ga(In)AsN BY SOFT-X-RAY ABSORPTION AND EMISSION: OPTICAL EFFICIENCY." International Journal of Nanoscience 03, no. 01n02 (February 2004): 95–103. http://dx.doi.org/10.1142/s0219581x04001869.

Повний текст джерела
Анотація:
The local electronic structure of N atoms in Ga ( In ) AsN diluted alloys ( N concentration of 3%) is determined by soft-X-ray emission and absorption spectroscopies as element specific probes. The experimental spectra reflect the local 2p orbital-projected density-of-states of N impurities, the main recombination centers in Ga ( In ) AsN , which appears to deviate dramatically from crystalline GaN in both valence and conduction bands. In particular, we observe a N local charge transfer from the valence band maximum to deeper valence states, which fundamentally limits the optical efficiency of Ga ( In ) AsN , unless different N local environments are formed. The incorporation of In in large concentrations forms In -rich N local environments such as In 4 N , which become the main recombination centers in Ga ( In ) AsN due to a local decrease of the band gap. A k-conserving process of resonant inelastic X-ray scattering is discovered, which allows probing of the k-character of valence and conduction states despite the random alloy nature of Ga ( In ) AsN .
Стилі APA, Harvard, Vancouver, ISO та ін.
35

El Amine Monir, M., H. Baltache, G. Murtaza, R. Khenata, S. Bin Omran, Ş. Uğur, S. Benalia, and D. Rached. "Ab initio study of structural, electronic, magnetic and optical properties of Ti-doped ZnTe and CdTe." International Journal of Modern Physics B 28, no. 11 (March 26, 2014): 1450080. http://dx.doi.org/10.1142/s0217979214500805.

Повний текст джерела
Анотація:
The full potential linearized augmented plane wave method within the framework of density functional theory (DFT) is employed to investigate the structural, magnetic, electronic and optical properties of Ti -doped ZnTe and CdTe in the zinc blende phase. In this approach the local spin density approximation (LSDA) is used for the exchange-correlation (XC) potential. Results are provided for the lattice constant, bulk modulus, pressure derivative, magnetic moment, band structure, density of states and refractive indices. Our results are compared with other theoretical works and good agreement is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Aimouch, D. E., S. Meskine, R. Hayn, A. Zaoui, and A. Boukortt. "Electronic and optical properties of K-doped ZnO: Ab initio study." Modern Physics Letters B 30, no. 23 (August 30, 2016): 1650291. http://dx.doi.org/10.1142/s0217984916502912.

Повний текст джерела
Анотація:
We present the results of ab initio calculations of K-doped ZnO in the wurtzite structure using a supercell of 32 atoms and density functional theory. A complete analysis of its electronic, optical and magnetic properties is provided. The local spin density approximation (LSDA) has been used to analyze the density of states and to understand the K influence at different concentration values. The material is revealed to become a [Formula: see text]-type doped semiconductor. The optical constant or refractive index, the dielectric function, and the absorption coefficient were determined and show a good agreement with available experimental data. Potassium doping leads to an absorption peak at about 380 nm. That peak might improve the absorption characteristics of ZnO for solar cell or optical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hensen, T. M., M. J. A. de Dood, and A. Polman. "Luminescence quantum efficiency and local optical density of states in thin film ruby made by ion implantation." Journal of Applied Physics 88, no. 9 (November 2000): 5142–47. http://dx.doi.org/10.1063/1.1314322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Князев, Ю. В., А. В. Лукоянов та Ю. И. Кузьмин. "Электронная структура соединения DyFe-=SUB=-2-=/SUB=-Si-=SUB=-2-=/SUB=-: зонный расчет и оптические исследования". Физика твердого тела 62, № 3 (2020): 364. http://dx.doi.org/10.21883/ftt.2020.03.48997.632.

Повний текст джерела
Анотація:
Investigations of electronic structure and optical properties of DyFe2Si2 compound have been carried out. Calculations of the band structure were made with employing local electron density approximation with correction for strong electron correlation effects in the 4f-shells of rare earth metal (GGA+U method). Optical properties were studied by ellipsometric technique in wide wavelength interval. A number of spectral and electronic characteristics were determined. It is shown that the optical conductivity of the compound in interband transitions range is interpreted satisfactorily by means of the density of states calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Mahdi, M., A. Djabri, M. M. Koc, R. Boukhalfa, M. Erkovan, Yu Chumakov, and F. Chemam. "Ab initio study of GdCo5 magnetic and magneto-optical properties." Materials Science-Poland 37, no. 2 (June 1, 2019): 182–89. http://dx.doi.org/10.2478/msp-2019-0017.

Повний текст джерела
Анотація:
AbstractThe full potential linearized augmented plane wave method (FLAPW) including the spin-orbit coupling has been used to study the structural, electronic and magnetic properties of GdCo5 compound. The calculations were performed within the local spin density approximation (LSDA) as well as Coulomb corrected LSDA + U approach. The study revealed that the LSDA + U method gave a better representation of the band structure, density of states and magnetic moments than LSDA. It was found that the spin magnetic moment of Co (2c) and Co (3g) atoms in the studied compound is smaller compared to the one in bulk Co. The optical and magneto-optical properties and the magneto-optical Kerr effect have also been investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Rhee, Joo Yull, Y. V. Kudryavtsev, K. W. Kim, and Y. P. Lee. "PECULIAR OPTICAL PROPERTIES OF Co2MnGa ALLOYS." ASEAN Journal on Science and Technology for Development 24, no. 1&2 (November 15, 2017): 1–6. http://dx.doi.org/10.29037/ajstd.181.

Повний текст джерела
Анотація:
Co2MnGa alloy was prepared by the conventional arc-melting method. The optical conductivity (OC) spectrum of the alloy was measured by a rotating-analyzer spectroscopic ellipsometer. The OC spectrum was also calculated based on the electronic structure by using the full-potential linearized-augmented-plane-wave method within the local-spin-density approximation to the density-functional theory. The calculated OC spectrum does not agree well with the experimental one. Since the Co2MnGa alloy could be a strongly-correlated material, the so-called 'LDA+U' method was applied with U = 5.4 eV. The calculated OC spectrum using the 'LDA+U' method agrees very well with the experimental one. The inclusion of the onsite Coulombpotential during the self-consistent calculation significantly modifies the minorityspin Co and Mn 3d bands, resulting in a contraction of the energy gaps between states which are strongly involved in interband absorption peaks.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Chicanne, C., T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs, and C. Girard. "Imaging the Local Density of States of Optical Corrals." Physical Review Letters 88, no. 9 (February 14, 2002). http://dx.doi.org/10.1103/physrevlett.88.097402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lunnemann, Per, and A. Femius Koenderink. "The local density of optical states of a metasurface." Scientific Reports 6, no. 1 (February 12, 2016). http://dx.doi.org/10.1038/srep20655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

de Dood, M. J. A., L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen. "Local optical density of states inSiO2spherical microcavities: Theory and experiment." Physical Review A 64, no. 3 (August 13, 2001). http://dx.doi.org/10.1103/physreva.64.033807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Trallero-Giner, C., S. E. Ulloa, and V. López-Richard. "Local density of states in parabolic quantum corrals." Physical Review B 69, no. 11 (March 24, 2004). http://dx.doi.org/10.1103/physrevb.69.115423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wubs, Martijn, and A. Lagendijk. "Local optical density of states in finite crystals of plane scatterers." Physical Review E 65, no. 4 (April 2, 2002). http://dx.doi.org/10.1103/physreve.65.046612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Pham, Aline, Martin Berthel, Quanbo Jiang, Joel Bellessa, Serge Huant, Cyriaque Genet, and Aurélien Drezet. "Chiral optical local density of states in a spiral plasmonic cavity." Physical Review A 94, no. 5 (November 28, 2016). http://dx.doi.org/10.1103/physreva.94.053850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Savasta, S., O. Di Stefano, R. Girlanda, and M. Pieruccini. "Comment on “Imaging the Local Density of States of Optical Corrals”." Physical Review Letters 93, no. 6 (August 6, 2004). http://dx.doi.org/10.1103/physrevlett.93.069701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Li, Songsong, Ping Xu, and Yadong Xu. "Local photonic density of states in hyperbolic metasurfaces." Journal of Optics, September 17, 2021. http://dx.doi.org/10.1088/2040-8986/ac27bc.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bena, Cristina, Sudip Chakravarty, Jiangping Hu, and Chetan Nayak. "Quasiparticle scattering and local density of states in thed-density-wave phase." Physical Review B 69, no. 13 (April 23, 2004). http://dx.doi.org/10.1103/physrevb.69.134517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Bena, Cristina, and Steven A. Kivelson. "Quasiparticle scattering and local density of states in graphite." Physical Review B 72, no. 12 (September 27, 2005). http://dx.doi.org/10.1103/physrevb.72.125432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії