Добірка наукової літератури з теми "Particules de polymère"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Particules de polymère".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Particules de polymère"
Chabert, Emmanuelle, Laurent Chazeau, Catherine Gauthier, Rémy Dendievel, and Jean-Yves Cavaillé. "Nanocomposites base polymère, renforcés par des particules rigides." Mécanique & Industries 5, no. 4 (July 2004): 489–96. http://dx.doi.org/10.1051/meca:2004049.
Повний текст джерелаGuyot, A., R. Audebert, R. Botet, B. Cabane, F. Lafuma, R. Jullien, E. Pefferkorn, C. Pichot, A. Revillon, and R. Varoqui. "Floculation de particules colloïdales par les polymères hydrosolubles." Journal de Chimie Physique 87 (1990): 1859–99. http://dx.doi.org/10.1051/jcp/1990871859.
Повний текст джерелаGuyot, A. "Synthèse de petites particules polymères sphérique de taille contrôlée." Journal de Chimie Physique 84 (1987): 1085–93. http://dx.doi.org/10.1051/jcp/1987841085.
Повний текст джерелаKausar, Ayesha. "Potential of Polymer/Fullerene Nanocomposites for Anticorrosion Applications in the Biomedical Field." Journal of Composites Science 6, no. 12 (December 16, 2022): 394. http://dx.doi.org/10.3390/jcs6120394.
Повний текст джерелаNellithala, Dheeraj, Parin Shah, and Paul Kohl. "(Invited) Durability and Accelerated Aging of Anion-Conducting Membranes and Ionomers." ECS Meeting Abstracts MA2022-02, no. 43 (October 9, 2022): 1606. http://dx.doi.org/10.1149/ma2022-02431606mtgabs.
Повний текст джерелаAl-Obaidi, Hisham, Mridul Majumder, and Fiza Bari. "Amorphous and Crystalline Particulates: Challenges and Perspectives in Drug Delivery." Current Pharmaceutical Design 23, no. 3 (February 20, 2017): 350–61. http://dx.doi.org/10.2174/1381612822666161107162109.
Повний текст джерелаWalton, Jeffrey H. "A Review of 129Xe NMR as a Probe of Polymer Morphology." Engineering Plastics 2, no. 1 (January 1994): 147823919400200. http://dx.doi.org/10.1177/147823919400200105.
Повний текст джерелаWalton, Jeffrey H. "A Review of 129Xe NMR as a Probe of Polymer Morphology." Polymers and Polymer Composites 2, no. 1 (January 1994): 35–41. http://dx.doi.org/10.1177/096739119400200105.
Повний текст джерелаShin, Dong Sig, Jae Hoon Lee, and Jeong Suh. "Microfabrication of Polymers Using KrF Excimer Laser Beam." Key Engineering Materials 326-328 (December 2006): 115–18. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.115.
Повний текст джерелаGünther, Roman, Walter Caseri, and Christof Brändli. "Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives." Materials 16, no. 7 (March 28, 2023): 2673. http://dx.doi.org/10.3390/ma16072673.
Повний текст джерелаДисертації з теми "Particules de polymère"
Quievryn, Caroline. "Incorporation de nano particules d'oxyde de terre rare dans un polymère commercial sous forme filamentaire." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20206.
Повний текст джерелаThis thesis focuses on the main theme of the incorporation of nanoparticles of rare earth oxide (Erbium and Praseodymium) in a commercial polymer, PVC, shaped as filaments. These fibers are made using a apparatus developped in the laboratory. The spinning method used is a wet solvent spinning process. Embedded nanoparticles are first commercial particles (Er203) but they show disadvantages, which leads to a study of synthesis of oxide nanoparticles Erbium and Praseodymium in the laboratory. This study bings to a production a laboratory pilot (KiloLab) in order to obtain 3Kg of nanoparticles composed with 60 wt% of Erbium oxide and 40 wt% of Praseodymium xide. Once these particles obtained, it have been dispersed in a solution of PVC/solvent. This "loaded" solution of nanoparticles is presses through a spinneret for the shaping. The filaments are spun in a coagulation bath in order to remove the solvent from the solution and obtain the PVC filaments (mono or multi) containing the nanoparticles of Erbium or Praseodymium oxide.A second theme is also studied in this thesis, the realization of oxicarbide boron and silicon fibers (SiBOC). This study focuses on the synthesis and conditions to obtain a poly(borosiloxane) polymer. This polymer is obtained by the synthesis of the dimetyldiethoxysilane (DMDES), méthyltriethoxysilane (MTES) and the boric acid which bring the hetero atom of boron in the final ceramic. Once the sol of borosiloxane obtained, it is semi-hydrolysed until obtention af a gel that can be spun by extrusion at ambiant temperature. The filament are wrapped around a graphite bobbin. The shaped polymer is then leaved in a stove at 60°C for a week allowing to complete the hydrolysis.Once the hydrolysis complete and the polymer fully hydrolyses, the fibers are pyrolysed under argon at high temperature to transform the fiber into ceramic fibers of SiBOC
Forey, Natacha. "Mousses renforcées en polymère ou particules : application à la remédiation des sols pollués." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0311.
Повний текст джерелаGiven the possible environmental and health issues occurring when facing a hydrocarbon polluted site, soil remediation is necessary. One of the in-situ technique to remediate a Light Non Aqueous Phase Liquid pollution is the use of foam. Because of its blocking effect, foam is able to create a water blocking barrier, to confine water beneath the floating pollutant. However, the main issue with this technique is the stability of foam facing the oily pollutant. Several options are currently under review to reinforce foam against oil, which includes polymer or particles addition.The present study thus describes the work performed to obtain an oil-resistant foam in porous media, with the use of polymer or solid colloidal particles.In the first part of the study, foamability and stability tests were performed in bulk to select a broad range of products used to formulate such foams. Then, sandpacks experiments were realized in 1D columns in order to optimize the foam injection parameters and finalize the choice of surfactant and additives. Column experiments showed how additives impacted foam strength. Polymer addition led to an increased flow resistance without improving foam strength while particles addition proved to reinforce foam resistance against oil. Those results were then applied to carry out 2D-tank experiments to study foam displacement in a vertical two dimensions’ porous medium. The 2D tank also helped to simulate a foam injection below an oily layer and observe foam behaviour. Finally, the methodology and constrains to take into account to perform a pumping test in a 3D-pilot, were presented in the outlook section
Nguyen, Tien Binh, and Tien Binh Nguyen. "Contrôle de l'interaction polymère/particules dans les membranes à matrice mixte." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31251.
Повний текст джерелаAu cours des dernières décennies, la technologie membranaire a montré de grandes performances dans les séparations en phase liquide telles que la production d’eau potable à partir d’eau de mer. Beaucoup d’efforts ont été faits pour étendre son application aux séparations de gaz. La séparation des composants de l’air, des gaz industriels de raffineries, la séparation et la récupération du CO2 du biogaz et du gaz naturel sont des exemples dans lesquels la technologie membranaire est appliquée au niveau industriel. La séparation par membranes a été substituée ou interfacée avec les méthodes conventionnelles telles que la distillation cryogénique pour produire de l’air enrichi en oxygène (fraction molaire >- 30%) qui est injecté dans les brûleurs industriels pour obtenir une température plus élevée, avec moins de consommation de gaz. Il est également possible d’utiliser la technologie membranaire pour capturer et recycler le CO2 émis par les gaz de combustion des centrales électriques et les aciéries pour résoudre le problème des gaz à effet de serre. Les membranes pour la séparation des gaz peuvent être classées en deux catégories principales, basées sur le matériau, polymère et inorganique, dans lesquelles les membranes polymériques sont plus populaires. Par rapport aux matériaux inorganiques, les membranes polymères présentent une meilleure facilité de traitement, une résistance mécanique et une densité de remplissage plus élevée, ce qui les rend appropriées pour des applications à grande échelle. Elles ne peuvent cependant pas supporter des températures élevées ou des agents chimiques agressifs. Leurs propriétés de séparation (perméabilité et sélectivité) peuvent être sévèrement compromises par les hydrocarbures condensables (C2+) lorsqu’elles sont appliquées dans les usines pétrochimiques, les raffineries et le traitement du gaz naturel. Pour améliorer les performances des membranes polymères, le nouveau concept, de membrane à matrice mixte (MMM), a été réalisé en dispersant des particules nanométriques ou microscopiques de matériaux inorganiques dans une matrice polymère. Dans ce travail, nous avons préparé de nouvelles MMMs en utilisant des polymères et des matériaux organo-métalliques (MOF) en tant que phases continue et dispersée, respectivement. Nous avons développé plusieurs techniques pour surmonter la faible adhérence interfaciale entre les deux phases qui diminue typiquement l’efficacité de séparation des MMM. Pour ce faire, dans la première partie de cette thèse (Chapitre 3), nous avons synthétisé des particules de MOF comportant des fonctions -NH2 et une série de polymères décorés de -OH pour la préparation de MMMs. La liaison physique entre les deux groupes fonctionnels s’est avérée améliorer nettement l’adhérence polymère/charge des MMMs obtenues ainsi que leur performance de séparation des gaz. Dans la partie suivante (Chapitre 4), nous avons introduit une modification post-synthétique pour former une liaison chimique entre le polymère et la charge dans les MMMs. Dans des conditions optimisées, un MOF fonctionnalisé portant des groupes réticulables a été amené à réagir avec un polymère déjà synthétisé contenant des extrémités de chaînes réactives pour produire, pour la première fois, des MMMs réticulées. Dans la dernière partie (Chapitre 5), nous avons décrit une nouvelle technique pour obtenir in-situ la liaison chimique polymère-charge pendant la synthèse du polymère. Dans cette technique, les particules de MOF ont été directement introduites dans le milieu de polymérisation. L’importance des liens polymère-charge a été étudiée en fonction du temps de polymérisation. Cette étude a montré une forte relation entre la qualité de l’interaction polymère-charge et les propriétés de séparation des gaz des MMMs.
In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs.
In recent decades, membrane technology has shown its great performance in liquid phase separations such as production of drinking water from seawater. It has now attracted much scientific attention to expand its application to gas separations. Separation of air components, H2 from refinery industrial gases, separation and recovery of CO2 from biogas and natural gas are some examples in which the membrane technology is potentially applied at industrial level. The membrane based separation was either partially substituted or integrated with conventional methods like cryogenic distillation to product oxygen-enriched air (mole fraction 30% ) that is injected into industrial burners to obtain higher temperature with less gas consumption. It is also possible to use membrane technology to capture and recycle CO2 emitted from flue gas streams of power plants and steel mills in solving the greenhouse effect. The membranes for gas separation can be classified in two main categories, based on material, polymeric and inorganic, in which polymeric membranes are more popular. Compared to the inorganic, the polymer membranes show better processability, mechanical strength and higher packing density, hence, being suitable for large-scale applications. They cannot, however, withstand high temperatures or aggressive chemical agents. Their separation properties (permeability and selectivity) may be severely affected by condensable hydrocarbons (C2+) when they are applied in petrochemical plants, refineries and natural gas treatment. To enhance the performance of polymer membranes, a new concept, mixed matrix membrane (MMM), has been proposed by dispersing nano- or micro-sized particles of inorganic materials into a polymer matrix. In this work, we have prepared novel MMMs using polymers and metal organic framework (MOF) as the continuous and dispersed phases, respectively. We have developed several techniques to overcome the weak interfacial adhesion between the two phases that typically decreases the separation efficiency of MMMs. To do so, in the first part of this thesis (Chapter 3), we have synthesized a -NH2 included MOF particle and a series of -OH decorated polymers for MMM preparation. The physical bonding between the two functional groups was found to clearly improve the polymer/filler adhesion of the obtained MMMs as well as their gas separation performance. Then, in the following part (Chapter 4), we have introduced a post-synthetic modification to form chemical bonding between the polymer and filler within MMMs. Under optimized conditions, a functionalized MOF bearing crosslinkable groups was reacted with an as-synthesized polymer containing reactive chain-ends to produce, for the first time, crosslinked MMMs. In the final part (Chapter 5), we have described a novel technique to obtain in-situ the polymer-filler chemical bonding during the polymer synthesis. In this technique, the MOF particles were directly introduced into the polymerization medium. The extent of the polymer-filler link was studied as a function of polymerization time. This study has shown a strong relationship between the quality of polymer-filler interaction and the gas separation properties of the MMMs.
Cenacchi, Pereira Ana Maria. "Synthèse de particules composites anisotropes polymère / inorganique par polymérisation RAFT en émulsion." Phd thesis, Université Claude Bernard - Lyon I, 2014. http://tel.archives-ouvertes.fr/tel-01067453.
Повний текст джерелаPonche, Arnaud. "Suspensions de particules dans des solutions de polymère : rhéométrie et observation microscopiques." Mulhouse, 2003. http://www.theses.fr/2003MULH0720.
Повний текст джерелаThis study deals with rheological properties of titanium dioxyde suspensions in polymer solutions. Rheological behaviour is strongly dépendent on particle-particle interactions and also on particle-polymer interactions in the continuons phase. These interactions really undergoes shape modification of aggregates. Consequently, we have developped tools to Observe titanium dioxyde aggregates under shear. The shape of aggregates is caracterised by a fractal dimension Df in two or three dimensions. This parameter can be correlated with the évolution of suspension viscosity. The last part of this work deals with flow instabilities obtained with glass beads dispersed in a solution of polyisobutylene. Saffman- Taylor instability appeared when cone and plate of the rheometer are removed from each other. In the case of titanium dioxyde suspensions, fractal shape can be observed and can be related to viscous fingering in hele-Shaw cells
Chong, Céline. "Élaboration de particules de polymère magnétiques multifonctionnelles pour la préparation d'échantillons biologiques." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10333/document.
Повний текст джерелаThis thesis describes the synthesis of magnetic latexes which are able to capture and release various microorganisms via non-specific and electrostatic interactions. Cationic iron oxide nanoparticles stabilized by nitrate counterions were synthesized by the co-precipitation of iron salts in water. The surface of the asobtained maghemite was then modified by a sol-gel process using a methacrylate-functionalized organosilane, in order to incorporate the iron oxide nanoparticles into latex particles by copolymerization reactions. Magnetic particles were obtained by dispersion, emulsion or miniemulsion polymerization of styrene or methyl methacrylate, performed in the presence of iron oxide. Due to the interaction between the stabilizers and iron oxides, dispersion polymerization was not a suitable approach. On the other hand, (mini-)emulsion polymerization led to a large range of particle diameters (140 – 650 nm), according to the process used to disperse iron oxides prior to the polymerization. These latexes contained between 2 and 37 % of magnetic particles, incorporating up to 91% of iron oxide. But the size distribution remained quite broad in all cases. The functionalization of the as-prepared magnetic particles was then undertaken by the introduction of either a charged co-monomer or polyelectrolytes or polyampholytes reactivable during the polymerization process. These kinds of polymers were synthesized by RAFT polymerization. Their ability to capture and release microorganisms was tested on silica-based model systems. Polyampholytes displayed good results on several microorganisms
Pont, Véronique. "Contribution à l'étude de la granulation des poudres en lit fluidisé : influence des paramètres du procédé et physico-chimiques sur la cinétique de granulation." Toulouse, INPT, 2000. http://www.theses.fr/2000INPT011G.
Повний текст джерелаEbengou, Roger H. "Mélanges siloxane - particules de silice : relaxation magnétique nucléaire, adsorption, gonflement cinétique de cristallisation polymère." Grenoble 1, 1992. http://www.theses.fr/1992GRE10062.
Повний текст джерелаGarg, Himani. "Particle laden inhomogeneous elastic turbulence." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I003/document.
Повний текст джерелаLaboratory experiments show that, even in very dilute solutions, the interaction of polymers with fluid flows can dramatically change the properties of turbulent flows or, if the flow is laminar, can trigger a new sort of irregular motion named “elastic turbulence”. Flows in such a dynamical regime are promising for enhancing mixing efficiency in microfluidic applications, which often involve the presence of suspended finite-size impurities, like small and heavy solid particles. The understanding of particle dispersion in high-Reynolds number flows of Newtonian, as well as non-Newtonian, fluids were addressed by previous investigations, and it is a subject of interest both at a fundamental level and for applications, e.g., environmental or industrial ones. However, the dynamics of particles in elastic turbulent flows are still quite unexplored.The present study aims at investigating the aggregation properties of pointlike material particles (heavier than the carrying fluid) in viscoelastic fluids in elastic turbulence conditions (i.e. in the limit of vanishing fluid inertia and large elasticity). We carry out extensive direct numerical simulations of the periodic Kolmogorov mean shear flow of two-dimensional dilute polymer solutions described by the Oldroyd-B model. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the underlying flow structure. Our analysis reveals that particles are preferentially clustered in regions of instantaneously maximally stretched polymers. The intensity of such a phenomenon depends on the interplay, parametrized by the Stokes number, between the particle inertia and the typical time scale associated with the elastic turbulence flow, and is the largest for intermediate values of particle inertia.In particular, it is shown that the preferential concentration of inertial particle suspensions in such turbulent-like flows follow from the dissipative nature of their dynamics. We provide a quantitative characterization of this phenomenon (using correlation and Kaplan-Yorke dimension) that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of fractal dimension slightly above 1.At larger scales, particles are found to undergo turbophoretic-like segregation along the non-homogeneity direction of the flow. Indeed, our results indicate that the particle distribution is strongly related to the mean turbulent-like structures of the flow. As an effect of turbophoresis, average density profiles peak in the regions of lowest turbulent eddy diffusivity. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables (such as root-mean-square deviation of the particle distribution, relative to the uniform one) are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing
Chevigny, Chloé. "Nanocomposites Polymère-Particules greffées : de la synthèse en solution colloidale à l'étude des propriétés macroscopiques." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00448878.
Повний текст джерелаКниги з теми "Particules de polymère"
Keller, Thomas. Use of fibre reinforced polymers in bridge construction. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2003. http://dx.doi.org/10.2749/sed007.
Повний текст джерелаAndriotis, A. N., R. M. Sheetz, E. Richter, and M. Menon. Structural, electronic, magnetic, and transport properties of carbon-fullerene-based polymers. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.21.
Повний текст джерелаPowder Technology in Plastics Processing. Hanser Publications, 2021.
Знайти повний текст джерелаPowder Technology in Plastics Processing. Hanser Publications, 2021.
Знайти повний текст джерелаSegal, David. Materials for the 21st Century. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198804079.001.0001.
Повний текст джерелаICAN/PART, particulate composite analyzer, user's manual and verification studies. [Washington, DC]: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаPatrick, Graham. Organic Chemistry: A Very Short Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/actrade/9780198759775.001.0001.
Повний текст джерелаErman, Burak, and James E. Mark. Structures and Properties of Rubberlike Networks. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195082371.001.0001.
Повний текст джерелаЧастини книг з теми "Particules de polymère"
Gooch, Jan W. "Particulates." In Encyclopedic Dictionary of Polymers, 519. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8440.
Повний текст джерелаCzarnecki, Lech, Dionys Van Gemert, Ru Wang, and Mahmoud Reda Taha. "Searching for a New C-PC Development Paradigm." In Springer Proceedings in Materials, 3–21. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_1.
Повний текст джерелаEyerer, Peter, Fabian Beilharz, Christof Hübner, Thilo Kupfer, and Christian Ulrich. "Opportunities and (in Particular) Risks of Use (Utilization Phase) of Plastic Structural Components." In Polymers - Opportunities and Risks I, 363–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-88417-0_7.
Повний текст джерелаYeon, Jung Heum, Yeoung-Geun Choi, Cheol-Jae Yang, and Kyu-Seok Yeon. "Effect of Polymer Paste Content on the Porosity and Strength of Pervious Polymer Concrete." In Springer Proceedings in Materials, 260–67. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72955-3_26.
Повний текст джерелаAyyanar, C. Balaji, and K. Marimuthu. "Characterization of Natural Particulates Filled and E-Glass Fiber-Reinforced Sandwich Polymer Composites." In Advances in Diverse Applications of Polymer Composites, 29–46. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003300526-2.
Повний текст джерелаHale, Robert C., Meredith E. Seeley, Ashley E. King, and Lehuan H. Yu. "Analytical Chemistry of Plastic Debris: Sampling, Methods, and Instrumentation." In Microplastic in the Environment: Pattern and Process, 17–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78627-4_2.
Повний текст джерелаEsmaeili, M., R. Ansari, and A. K. Haghi. "Progress on Carbon Nanotube Pull-Out Simulation With Particular Application on Polymer Matrix Via Finite Element Model Method." In Engineered Carbon Nanotubes and Nanofibrous Materials, 73–99. Toronto ; New Jersey : Apple Academic Press, 2019. | Series: AAP research notes on nanoscience and nanotechnology: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781351048125-4.
Повний текст джерелаElehinafe, Francis Boluwaji, and Augustine Omoniyi Ayeni. "Processing of Polymer-Based Nanocomposites in Advanced Engineering and Military Application." In Polymer Nanocomposites for Advanced Engineering and Military Applications, 1–9. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7838-3.ch001.
Повний текст джерела"Particulates." In Encyclopedic Dictionary of Polymers, 696. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_8300.
Повний текст джерелаNaz, A. "Nano Clay-Polymer Composite for Water Treatment." In Materials Research Foundations, 129–52. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902035-6.
Повний текст джерелаТези доповідей конференцій з теми "Particules de polymère"
Mondy, Lisa, Rekha Rao, Eric Lindgren, Amy Sun, Robert Lagasse, and Kyle Thompson. "Migration and Settling of Particulates in Filled Epoxies." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45780.
Повний текст джерелаMorlet-Savary, Christiane C., Christelle Heinis, and Daniel-Joseph Lougnot. "Particular holographic applications developed with self-processing polymer." In Lasers and Materials in Industry and Opto-Contact Workshop, edited by Roger A. Lessard. SPIE, 1998. http://dx.doi.org/10.1117/12.323492.
Повний текст джерелаZinchenko, T. O., and V. V. Antipenko. "APPLICATION OF POLYMER MATERIALS IN THE PRODUCTION OF SMART GLASSES." In Actual problems of physical and functional electronics. Ulyanovsk State Technical University, 2023. http://dx.doi.org/10.61527/appfe-2023.238-239.
Повний текст джерелаBharath, Sudharsan, and R. Prem Kumar. "Investigation of Various Material Properties in Polymer/Clay Nanocomposites." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52240.
Повний текст джерелаBeblo, Richard, and Lisa Mauck Weiland. "Polymer Chain Alignment in Shape Memory Polymer." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13703.
Повний текст джерелаPalanivel, Karthik, Aravindh Raj Babu Rudrakotti, Karthick Manjunathan, Pugazhenthi Nagarajan, Balaji Vasudevan, and Meikandan Megaraj. "Characterization hybrid polymer nano composite of bamboo fiber-reinforced saw-dust particulates." In THE 5TH INTERNATIONAL CONFERENCE ON BUILDINGS, CONSTRUCTION, AND ENVIRONMENTAL ENGINEERING: BCEE5, 020073. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0242150.
Повний текст джерелаFinegan, Ioana C., and Ronald F. Gibson. "Analytical and Experimental Characterization of Damping and Stiffness in Polymer Composites Having Coated Fibers as Reinforcement." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1037.
Повний текст джерелаAkle, Barbar J., Mathew D. Bennett, and Donald J. Leo. "High-Strain Ionomeric-Ionic Liquid Composites via Electrode Tailoring." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61246.
Повний текст джерелаAmbarsari, Novita, M. Ali Zulfikar, and M. Bachri Amran. "New lead(II) ion-imprinted polymer potentially for lead preconcentration in airborne particulates." In THE 3RD INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION: Flexibility in Research and Innovation on Science, Mathematics, Environment, and education for sustainable development. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0106312.
Повний текст джерелаAddagalla, A., G. Pietrangeli, and S. Mesa. "Strengthening Depleted Wellbores Using Nano Particulates." In SPE/IADC Asia Pacific Drilling Technology Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/219630-ms.
Повний текст джерела