Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Particle methods (Numerical analysis).

Дисертації з теми "Particle methods (Numerical analysis)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Particle methods (Numerical analysis)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Shanmugam, Bala Priyadarshini. "Investigation of kernels for the reproducing kernel particle method." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009m/shanmugam.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Weixuan. "Temperature-dependent homogenization technique and nanoscale meshfree particle methods." Diss., University of Iowa, 2007. http://ir.uiowa.edu/etd/147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bunch, Peter Joseph. "Particle filtering and smoothing for challenging time series models." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borovies, Drew A. "Particle filter based tracking in a detection sparse discrete event simulation environment." Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion.exe/07Mar%5FBorovies.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Modeling, Virtual Environment, and Simulation (MOVES))--Naval Postgraduate School, March 2007.
Thesis Advisor(s): Christian Darken. "March 2007." Includes bibliographical references (p. 115). Also available in print.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhojwani, Shekhar. "Smoothed particle hydrodynamics modeling of the friction stir welding process." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Piqueras, García Miguel Ángel. "Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107948.

Повний текст джерела
Анотація:
Multitud de problemas en ciencia e ingeniería se plantean como ecuaciones en derivadas parciales (EDPs). Si la frontera del recinto donde esas ecuaciones han de satisfacerse se desconoce a priori, se habla de "Problemas de frontera libre", propios de sistemas estacionarios no dependientes del tiempo, o bien de "Problemas de frontera móvil", asociados a problemas de evolución temporal, donde la frontera cambia con el tiempo. La solución a dichos problemas viene dada por la expresión de la(s) variable(s) dependiente(s) de la(s) EDP(s) junto con la función que determina la posición de la frontera. Dado que este tipo de problemas carece en la mayoría de los casos de solución analítica conocida, se hace preciso recurrir a métodos numéricos que permitan obtener una solución lo suficientemente aproximada, y que además mantenga propiedades cualitativas de la solución del modelo continuo de EDP(s). En este trabajo se ha abordado el estudio numérico de algunos problemas de frontera móvil provenientes de diversas disciplinas. La metodología aplicada consta de dos pasos sucesivos: aplicación de la transformación de Landau o "Front-fixing transformation" al modelo en EDP(s) con el fin de mantener inmóvil la frontera del dominio, y posterior discretización a través de un esquema en diferencias finitas. De ahí se obtienen esquemas numéricos que se implementan por medio de la herramienta MATLAB. Mediante un exhaustivo análisis numérico, se estudian propiedades del esquema y de la solución numérica (positividad, estabilidad, consistencia, monotonía, etc.). En el primer capítulo de este trabajo se revisa el estado del arte del campo objeto de estudio, se justifica la necesidad de disponer de métodos numéricos adaptados a este tipo de problemas y se describe brevemente la metodología empleada en nuestro enfoque. El Capítulo 2 se dedica a un problema perteneciente a la Biología Matemática y que consiste en determinar la evolución de la población de una especie invasora que se propaga en un hábitat. Este modelo consiste en una ecuación de difusión-reacción unida a una condición tipo Stefan. Los resultados del análisis numérico confirman la existencia de una dicotomía propagación-extinción en la evolución a largo plazo de la densidad de población de la especie invasora. En particular, se ha podido precisar el valor del coeficiente de la condición de Stefan que separa el comportamiento de propagación del de extinción. Los Capítulos 3 y 4 se centran en un problema de Química del Hormigón con interés en Ingeniería Civil: el proceso de carbonatación del hormigón, fenómeno evolutivo que lleva consigo la degradación progresiva de la estructura afectada y finalmente su ruina, si no se toman medidas preventivas. En el Capítulo 3 se considera un sistema de dos EDPs de tipo parabólico con dos incógnitas. Para su resolución, hay que considerar además las condiciones iniciales, las de contorno y las de tipo Stefan en la frontera. Los resultados numéricos confirman la tendencia de la ley de evolución de la frontera móvil hacia una función del tipo "raíz cuadrada del tiempo". En el Capítulo 4 se considera un modelo más general que el anterior, en el que intervienen seis especies químicas que se encuentran tanto en la zona carbonatada como en la no carbonatada. En el Capítulo 5 se aborda un problema de transmisión de calor que aparece en diversos procesos industriales; en este caso, en el enfriamiento durante la colada de metal fundido, donde la fase sólida avanza y la líquida se va extinguiendo. La frontera móvil (frente de solidificación) separa ambas fases, siendo su posición en cada instante la variable a determinar, junto con las temperaturas en cada fase. Después de la adecuada transformación y discretización, se implementa un esquema en diferencias finitas, subdividiendo el proceso en tres estadios temporales, a fin de tratar las singularidades asociadas a posicione
Many problems in science and engineering are formulated as partial differential equations (PDEs). If the boundary of the domain where these equations are to be solved is not known a priori, we face "Free-boundary problems", which are characteristic of non-time dependent stationary systems; besides, we have "Moving-boundary problems" in temporal evolution processes, where the border changes over time. The solution to these problems is given by the expression of the dependent variable(s) of PDE(s), together with the function that determines the position of the boundary. Since the analytical solution of this type of problems is lacked in most cases, it is necessary to resort to numerical methods that allow an accurate enough solution to be obtained, and which also maintain the qualitative properties of the solution(s) of the continuous model. This work approaches the numerical study of some moving-boundary problems that arise in different disciplines. The applied methodology consists of two successive steps: firstly, the so-called Landau transformation, or "Front-fixing transformation", which is used in the PDE(s) model to maintain the boundary of the domain immobile; later, we proceed to its discretization with a finite difference scheme. Different numerical schemes are obtained and implemented through the MATLAB computational tool. Properties of the scheme and the numerical solution (positivity, stability, consistency, monotonicity, etc.) are studied by an exhaustive numerical analysis. The first chapter of this work reports the state of the art of the field under study, justifies the need to adapt numerical methods to this type of problem, and briefly describes the methodology used in our approach. Chapter 2 presents a problem in Mathematical Biology that consists in determining over time the evolution of an invasive species population that spreads in a habitat. This problem is modelled by a diffusion-reaction equation linked to a Stefan-type condition. The results of the numerical analysis confirm the existence of a spreading-vanishing dichotomy in the long-term evolution of the population density of the invasive species. In particular, it is possible to determine the value of the coefficient of the Stefan condition that separates the propagation behaviour from extinction. Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon that leads to the progressive degradation of the affected structure and its eventual ruin if preventive measures are not taken. Chapter 3 considers a system of two parabolic type PDEs with two unknowns. For its resolution, the initial and boundary conditions have to be considered together with the Stefan conditions on the carbonation front. The numerical analysis results agree with those obtained in a previous theoretical study. The dynamics of the concentrations and the moving boundary confirm the long-term behaviour of the evolution law for the moving boundary as a "square root of time". Chapter 4 considers a more general model than the previous one, which includes six chemical species, defined in both the carbonated and non-carbonated zones, whose concentrations have to be found. Chapter 5 addresses a heat transfer problem that appears in various industrial processes; in this case, the solidification of metals in casting processes, where the solid phase advances and liquid reduces until it is depleted. The moving boundary (the solidification front) separates both phases. Its position in each instant is the variable to be determined together with the temperature profiles in both phases. After suitable transformation, discretization is carried out to obtain a finite difference scheme to be implemented. The process was subdivided into three temporal stages to deal with the singularities associated with the moving boundary position in the initialisation and depletion stages.
Multitud de problemes en ciència i enginyeria es plantegen com a equacions en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de satisfer-se es desconeix a priori, es parla de "Problemas de frontera lliure", propis de sistemes estacionaris no dependents del temps, o bé de "Problemas de frontera mòbil", associats a problemes d'evolució temporal, on la frontera canvia amb el temps. Atés que este tipus de problemes manca en la majoria dels casos de solució analítica coneguda, es fa precís recórrer a mètodes numèrics que permeten obtindre una solució prou aproximada a l'exacta, i que a més mantinga propietats qualitatives de la solució del model continu d'EDP(s). En aquest treball s'ha abordat l'estudi numèric d'alguns problemes de frontera mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos passos successius: en primer lloc, s'aplica l'anomenada transformació de Landau o "Front-fixing transformation" al model en EDP(s) a fi de mantindre immòbil la frontera del domini; posteriorment, es procedix a la seva discretització a través d'un esquema en diferències finites. D'ací s'obtenen esquemes numèrics que s'implementen per mitjà de la ferramenta informàtica MATLAB. Per mitjà d'una exhaustiva anàlisi numèrica, s'estudien propietats de l'esquema i de la solució numèrica (positivitat, estabilitat, consistència, monotonia, etc.). En el primer capítol d'aquest treball es revisa l'estat de l'art del camp objecte d'estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest tipus de problemes i es descriu breument la metodologia emprada en el nostre enfocament. El Capítol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i que consistix a determinar l'evolució en el temps de la distribució de la població d'una espècie invasora que es propaga en un hàbitat. Este model consistix en una equació de difusió-reacció unida a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a determinar. Els resultats de l'anàlisi numèrica confirmen l'existència d'una dicotomia propagació-extinció en l'evolució a llarg termini de la densitat de població de l'espècie invasora. En particular, s'ha pogut precisar el valor del coeficient de la condició de Stefan que separa el comportament de propagació del d'extinció. Els Capítols 3 i 4 se centren en un problema de Química del Formigó amb interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evolutiu que comporta la degradació progressiva de l'estructura afectada i finalment la seua ruïna, si no es prenen mesures preventives. En el Capítol 3 es considera un sistema de dos EDPs de tipus parabòlic amb dos incògnites. Per a la seua resolució, cal considerar a més, les condicions inicials, les de contorn i les de tipus Stefan en la frontera. Els resultats de l'anàlisi numèrica s'ajusten als obtinguts en un estudi teòric previ. S'han dut a terme experiments numèrics, comprovant la tendència de la llei d'evolució de la frontera mòbil cap a una funció del tipus "arrel quadrada del temps". En el Capítol 4 es considera un model més general, en el que intervenen sis espècies químiques les concentracions de les quals cal trobar, i que es troben tant en la zona carbonatada com en la no carbonatada. En el Capítol 5 s'aborda un problema de transmissió de calor que apareix en diversos processos industrials; en aquest cas, en el refredament durant la bugada de metall fos, on la fase sòlida avança i la líquida es va extingint. La frontera mòbil (front de solidificació) separa ambdues fases, sent la seua posició en cada instant la variable a determinar, junt amb les temperatures en cada una de les dos fases. Després de l'adequada transformació i discretització, s'implementa un esquema en diferències finites, subdividint el procés en tres estadis temporals, per tal de tractar les singularitats asso
Piqueras García, MÁ. (2018). Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107948
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Casas, González Guillermo. "Numerical analysis of particle-laden flows with the finite element method." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/666324.

Повний текст джерела
Анотація:
In this work we study the numerical simulation of particle-laden fluids, with a focus on Newtonian fluids and spherical, rigid particles. We are thus dealing with a multi-phase (more precisely, a multi-component) problem, with two phases: the fluid (continuous phase) and the the particles (disperse phase). Our general strategy consists in using the discrete element method (DEM) to model the particles and the finite element method (FEM) to discretize the Navier-Stokes equations, which model the continuous phase. The interaction model between both phases is (must be) based on a multiscale concept, since the smallest scales resolved of the continuous phase are considered much bigger than the particles. In other words, the resolution of the numerical model for the particles is finer than that used for the fluid. Consequently, whether implicit or explicit, there must be a filtering or averaging operation involved in the interaction between both phases, where the details of their motions smaller than the smallest resolution scale of the fluid are soothed out, since the latter is the coarsest of the two different resolutions considered. The spatial discretization of the continuous phase is performed with the FEM, using equal-order spaces of shape functions for the velocity and for the pressure. It is a well-known fact that this type of combination involves the violation of the Ladyzenskaja-Babuška-Brezzi (LBB) condition, resulting in an unstable numerical method. Moreover, the presence of the convective term in Eulerian description of the flow also leads to numerical instabilities. Both effects are treated with the sub-grid scale stabilization methods here. About the disperse phase, the trajectory of each particle is calculated based both on the fluid-interaction forces and on the contact forces between them and the surrounding rigid boundaries. The differential equation that describes the motion of particles in between successive collisions, given the mean (averaged) far field and for particles much smaller than the smallest scales of the flow (the Kolmogorov scale in turbulence) is the Maxey-Riley equation (MRE). This equation is the subject of chapter 2. The objective of this theoretical study is to establish quantitative (up to order-of-magnitude accuracy) limits to its range of validity and to the relative importance of its various terms. The method employed is dimensional analysis, which is systematically applied to derive the 'first effects' of a series of phenomena that are neglected in the derivation of the MRE. Chapter 3 is dedicated to the numerical resolution of the MRE. Here we present improvements to the method of van Hinsberg et al. (2011) for the calculation of the history term and analyse the method thoroughly. We include several tests to show the efficiency and utility of the proposed approach. The MRE is directly applicable to flows where the particle-based Reynolds number is Re << 1. But its relevance reaches further, as its structure is the basis for the majority of extensions that model the movement of suspended particles outside the range of validity of the MRE. Chapter 4 is markedly more applied than the two preceding ones. It treats various industrial flux types with particles where we employ several extensions of the MRE of the type mentioned above. In the first part of this chapter we review the most important of these extensions and study the process of derivative recovery, necessary to calculate several terms in the equation of motion. The tests examples considered include bubble trapping in 'T'-junction tubes, the simulation of drilling systems of the oil industry based on the bombardment of steel particles and fluidized beds. For the latter we use a discrete filtering-based coupling approach, that mirrors the continuous theory sketched above. This set of three chapters (2, 3, 4) is the core of the Thesis, which is completed with an introduction (chapter 1) and the conclusions (chapter 5).
En este trabajo se estudia la simulación numérica de fluidos con partículas en suspensión, con énfasis en fluidos newtonianos y partículas esféricas y rígidas. El problema es, pues, multi-fásico (o, más precisamente, multi-componente) en donde dos son las fases: el fluido (fase continua) y las partículas (fase dispersa). La estrategia general consiste en la modelización de las partículas mediante el método de los elementos discretos (DEM) y el método de los elementos finitos (FEM) para la discretización de las ecuaciones de Navier-Stokes, que modelan la fase continua. El modelo de interacción entre fases se basa (debe basarse) en una concepción multiescala del sistema, puesto que las escalas más pequeñas resueltas para el fluido se consideran mucho mayores a las partículas. Dicho de otro modo, ya sea implícita o explícitamente, en la interacción interviene un proceso de filtrado o promediado en que se suavizan los detalles del movimiento más pequeños que la escala de resolución del fluido. Par la fase continua la discretización del dominio se realiza con el FEM, con espacios de funciones de forma de igual orden para la velocidad y para la presión. Como es bien sabido, ello conlleva la violación de la condición de Ladyzenskaja-Babuška-Brezzi (LBB), dando un método numérico inestable. Además, la presencia del término convectivo en la descripción euleriana del flujo también resulta en inestabilidad. Ambos son tratados con métodos de estabilización basada en la modelización de 'escalas sub-malla'. En cuanto a la fase dispersa, se calcula la trayectoria de cada una de las partículas en función de fuerzas de contacto con las demás partículas y las superficies sólidas que limitan el dominio de cálculo por un lado, y de las fuerzas de interacción con el fluido por otro. La ecuación que describe el movimiento entre colisiones para partículas menores que las escalas más pequeñas del flujo (escala de Kolmogorov en flujos turbulentos), dado el campo lejano (promediado) de velocidades es la de Maxey-Riley (MRE). Esta ecuación es el objeto de estudio del capítulo 2. El objetivo de este estudio teórico es establecer de forma cuantitativa (en orden de magnitud) su rango de validez y la importancia relativa de sus distintos términos. El método empleado es el análisis dimensional aplicado sistemáticamente al estudio de los 'primeros efectos' de distintos fenómenos físicos que se desprecian en el planteamiento de la ecuación. El capítulo 3 se centra en la resolución numérica de la MRE. En él se presenta una mejora y estudio sistemático del método de van Hinsberg et al. (2011) para el cálculo del término histórico de la ecuación. Se incluyen distintos tests para demostrar la eficiencia del método y su aplicabilidad práctica. La MRE es de directa aplicación en flujos en los que el número de Reynolds relativo a la partícula es Re << 1. Sin embargo, su relevancia va más allá, pues en su estructura se basan la mayoría de modelos para el movimiento de partículas en suspensión, fuera del rango de aplicación de la MRE. El capítulo 4 es de índole más aplicada que los dos anteriores, y trata diversos ejemplos industriales de flujos con partículas en los que se emplean extensiones de la MRE de este tipo. En la primera parte se revisan las extensiones más importantes y la recuperación de derivadas, proceso necesario para el cálculo de varios términos de la ecuación de movimiento de las partículas. Las aplicaciones prácticas tratadas incluyen el aprisionamiento de burbujas en juntas en 'T', la simulación de sistemas de perforación petrolífera basados en el bombardeo con partículas de acero y los lechos fluidificados. Para esta última, se usa una técnica de filtrado discreto inspirada en la teoría esbozada más arriba. Estos tres capítulos (2, 3, 4) se completan con la introducción (capítulo 1) y las conclusiones (capítulo 5).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kwok, Ting On. "Adaptive meshless methods for solving partial differential equations." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stewart, Dawn L. "Numerical Methods for Accurate Computation of Design Sensitivities." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30561.

Повний текст джерела
Анотація:
This work is concerned with the development of computational methods for approximating sensitivities of solutions to boundary value problems. We focus on the continuous sensitivity equation method and investigate the application of adaptive meshing and smoothing projection techniques to enhance the basic scheme. The fundamental ideas are first developed for a one dimensional problem and then extended to 2-D flow problems governed by the incompressible Navier-Stokes equations. Numerical experiments are conducted to test the algorithms and to investigate the benefits of adaptivity and smoothing.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bréhier, Charles-Edouard. "Numerical analysis of highly oscillatory Stochastic PDEs." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.

Повний текст джерела
Анотація:
In a first part, we are interested in the behavior of a system of Stochastic PDEs with two time-scales- more precisely, we focus on the approximation of the slow component thanks to an efficient numerical scheme. We first prove an averaging principle, which states that the slow component converges to the solution of the so-called averaged equation. We then show that a numerical scheme of Euler type provides a good approximation of an unknown coefficient appearing in the averaged equation. Finally, we build and we analyze a discretization scheme based on the previous results, according to the HMM methodology (Heterogeneous Multiscale Method). We precise the orders of convergence with respect to the time-scale parameter and to the parameters of the numerical discretization- we study the convergence in a strong sense - approximation of the trajectories - and in a weak sense - approximation of the laws. In a second part, we study a method for approximating solutions of parabolic PDEs, which combines a semi-lagrangian approach and a Monte-Carlo discretization. We first show in a simplified situation that the variance depends on the discretization steps. We then provide numerical simulations of solutions, in order to show some possible applications of such a method.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Meng. "Intrinsic meshless methods for PDEs on manifolds and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/528.

Повний текст джерела
Анотація:
Radial basis function (RBF) methods for partial differential equations (PDEs), either in bulk domains, on surfaces, or in a combination of the formers, arise in a wide range of practical applications. This thesis proposes numerical approaches of RBF-based meshless techniques to solve these three kinds of PDEs on stationary and nonstationary surfaces and domains. In Chapter 1, we introduce the background of RBF methods, some basic concepts, and error estimates for RBF interpolation. We then provide some preliminaries for manifolds, restricted RBFs on manifolds, and some convergence properties of RBF interpolation. Finally, implicit-explicit time stepping schemes are briefly presented. In Chapter 2, we propose methods to implement meshless collocation approaches intrinsically to solve elliptic PDEs on smooth, closed, connected, and complete Riemannian manifolds with arbitrary codimensions. Our methods are based on strong-form collocations with oversampling and least-squares minimizations, which can be implemented either analytically or approximately. By restricting global kernels to the manifold, our methods resemble their easy-to-implement domain-type analogies, that is, Kansa methods. Our main theoretical contribution is a robust convergence analysis under some standard smoothness assumptions for high-order convergence. We simulate reaction-diffusion equations to generate Turing patterns and solve shallow water problems on manifolds. In Chapter 3, we consider convective-diffusion problems that model surfactants or heat transport along moving surfaces. We propose two time-space algorithms by combining the methods of lines and kernel-based meshless collocation techniques intrinsic to surfaces. We use a low-order time discretization for fair comparison, and higher-order schemes in time are possible. The proposed methods can achieve second-order convergence. They use either analytic or approximated spatial discretization of the surface operators, which do not require regeneration of point clouds at each temporal iteration. Thus, they are alternatively applied to handle models on two types of evolving surfaces, which are defined as prescribed motions and governed by geometric evolution laws, respectively. We present numerical examples on various evolving surfaces for the performance of our algorithms and apply the approximated one to merging surfaces. In Chapter 4, a kernel-based meshless method is developed to solve coupled second-order elliptic PDEs in bulk domains and on surfaces, subject to Robin boundary conditions. It combines a least-squares kernel-based collocation method with a surface-type intrinsic approach. We can thus use each pair for discrete point sets, RBF kernels (globally and restrictedly), trial spaces, and some essential assumptions, to search for least-squares solutions in bulks and on surfaces, respectively. We first analyze error estimates for a domain-type Robin-boundary problem. Based on this analysis and the existing results for surface PDEs, we discuss the theoretical requirements for the Sobolev kernels used. We then select the orders of smoothness for the kernels in bulks and on surfaces. Finally, several numerical experiments are demonstrated to test the robustness of the coupled method in terms of accuracy and convergence rates under different settings.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Cheung, Ka Chun. "Meshless algorithm for partial differential equations on open and singular surfaces." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/278.

Повний текст джерела
Анотація:
Radial Basis function (RBF) method for solving partial differential equation (PDE) has a lot of applications in many areas. One of the advantages of RBF method is meshless. The cost of mesh generation can be reduced by playing with scattered data. It can also allow adaptivity to solve some problems with special feature. In this thesis, RBF method will be considered to solve several problems. Firstly, we solve the PDEs on surface with singularity (folded surface) by a localized method. The localized method is a generalization of finite difference method. A priori error estimate for the discreitzation of Laplace operator is given for points selection. A stable solver (RBF-QR) is used to avoid ill-conditioning for the numerical simulation. Secondly, a {dollar}H^2{dollar} convergence study for the least-squares kernel collocation method, a.k.a. least-square Kansa's method will be discussed. This chapter can be separated into two main parts: constraint least-square method and weighted least-square method. For both methods, stability and consistency analysis are considered. Error estimate for both methods are also provided. For the case of weighted least-square Kansa's method, we figured out a suitable weighting for optimal error estimation. In Chapter two, we solve partial differential equation on smooth surface by an embedding method in the embedding space {dollar}\R^d{dollar}. Therefore, one can apply any numerical method in {dollar}\R^d{dollar} to solve the embedding problem. Thus, as an application of previous result, we solve embedding problem by least-squares kernel collocation. Moreover, we propose a new embedding condition in this chapter which has high order of convergence. As a result, we solve partial differential equation on smooth surface with a high order kernel collocation method. Similar to chapter two, we also provide error estimate for the numerical solution. Some applications such as pattern formation in the Brusselator system and excitable media in FitzHughNagumo model are also studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

YAGAMI, Hisanori, and Tomomi UCHIYAMA. "Numerical Simulation of Particle-Laden Plane Mixing Layer by Three-Dimensional Vortex Method." The Japan Society of Mechanical Engineers, 2006. http://hdl.handle.net/2237/9219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Schmidt, Daniel. "Kinetic Monte Carlo Methods for Computing First Capture Time Distributions in Models of Diffusive Absorption." Scholarship @ Claremont, 2017. https://scholarship.claremont.edu/hmc_theses/97.

Повний текст джерела
Анотація:
In this paper, we consider the capture dynamics of a particle undergoing a random walk above a sheet of absorbing traps. In particular, we seek to characterize the distribution in time from when the particle is released to when it is absorbed. This problem is motivated by the study of lymphocytes in the human blood stream; for a particle near the surface of a lymphocyte, how long will it take for the particle to be captured? We model this problem as a diffusive process with a mixture of reflecting and absorbing boundary conditions. The model is analyzed from two approaches. The first is a numerical simulation using a Kinetic Monte Carlo (KMC) method that exploits exact solutions to accelerate a particle-based simulation of the capture time. A notable advantage of KMC is that run time is independent of how far from the traps one begins. We compare our results to the second approach, which is asymptotic approximations of the FPT distribution for particles that start far from the traps. Our goal is to validate the efficacy of homogenizing the surface boundary conditions, replacing the reflecting (Neumann) and absorbing (Dirichlet) boundary conditions with a mixed (Robin) boundary condition.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Rana, Muhammad Sohel. "Analysis and Implementation of Numerical Methods for Solving Ordinary Differential Equations." TopSCHOLAR®, 2017. https://digitalcommons.wku.edu/theses/2053.

Повний текст джерела
Анотація:
Numerical methods to solve initial value problems of differential equations progressed quite a bit in the last century. We give a brief summary of how useful numerical methods are for ordinary differential equations of first and higher order. In this thesis both computational and theoretical discussion of the application of numerical methods on differential equations takes place. The thesis consists of an investigation of various categories of numerical methods for the solution of ordinary differential equations including the numerical solution of ordinary differential equations from a number of practical fields such as equations arising in population dynamics and astrophysics. It includes discussion what are the advantages and disadvantages of implicit methods over explicit methods, the accuracy and stability of methods and how the order of various methods can be approximated numerically. Also, semidiscretization of some partial differential equations and stiff systems which may arise from these semidiscretizations are examined.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Squires, Timothy Richard. "Efficient numerical methods for ultrasound elastography." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:332c7b2b-10c3-4dff-b875-ac1ee2c5d4fb.

Повний текст джерела
Анотація:
In this thesis, two algorithms are introduced for use in ultrasound elastography. Ultrasound elastography is a technique developed in the last 20 years by which anomalous regions in soft tissue are located and diagnosed without the need for biopsy. Due to this, the relativity cheap cost of ultrasound imaging and the high level of accuracy in the methods, ultrasound elastography methods have shown great potential for the diagnosis of cancer in soft tissues. The algorithms introduced in this thesis represent an advance in this field. The first algorithm is a two-step iteration procedure consisting of two minimization problems - displacement estimation and elastic parameter calculation that allow for diagnosis of any anomalous regions within soft tissue. The algorithm represents an improvement on existing methods in several ways. A weighting factor is introduced for each different point in the tissue dependent on the confidence in the accuracy of the data at that point, an exponential substitution is made for the elasticity modulus, an adjoint method is used for efficient calculation of the gradient vector and a total variation regularization technique is used. Most importantly, an adaptive mesh refinement strategy is introduced that allows highly efficient calculation of the elasticity distribution of the tissue though using a number of degrees of freedom several orders lower than methods that use a uniform mesh refinement strategy. Results are presented that show the algorithm is robust even in the presence of significant noise and that it can locate a tumour of 4mm in diameter within a 5cm square region of tissue. Also, the algorithm is extended into 3 dimensions and results are presented that show that it can calculate a 3 dimensional elasticity distribution efficiently. This extension into 3-d is a significant advance in the field. The second algorithm is a one-step algorithm that seeks to combine the two problems of elasticity distribution and displacement calculation into one. As in the two-step algorithm, a weighting factor, exponential substitution for the elasticity parameter, adjoint method for calculation of the gradient vector, total variation regularization and adaptive mesh refinement strategy are incorporated. Results are presented that show that this original approach can locate tumours of varying sizes and shapes in the presence of varying levels of added artificial noise and that it can determine the presence of a tumour in images taken from breast tissue in vivo.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Arjmand, Doghonay. "Analysis and Applications of Heterogeneous Multiscale Methods for Multiscale Partial Differential Equations." Doctoral thesis, KTH, Numerisk analys, NA, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160122.

Повний текст джерела
Анотація:
This thesis centers on the development and analysis of numerical multiscale methods for multiscale problems arising in steady heat conduction, heat transfer and wave propagation in heterogeneous media. In a multiscale problem several scales interact with each other to form a system which has variations over a wide range of scales. A direct numerical simulation of such problems requires resolving the small scales over a computational domain, typically much larger than the microscopic scales. This demands a tremendous computational cost. We develop and analyse multiscale methods based on the heterogeneous multiscale methods (HMM) framework, which captures the macroscopic variations in the solution at a cost much lower than traditional numerical recipes. HMM assumes that there is a macro and a micro model which describes the problem. The micro model is accurate but computationally expensive to solve. The macro model is inexpensive but incomplete as it lacks certain parameter values. These are upscaled by solving the micro model locally in small parts of the domain. The accuracy of the method is then linked to how accurately this upscaling procedure captures the right macroscopic effects. In this thesis we analyse the upscaling error of existing multiscale methods and also propose a micro model which significantly reduces the upscaling error invarious settings. In papers I and IV we give an analysis of a finite difference HMM (FD-HMM) for approximating the effective solutions of multiscale wave equations over long time scales. In particular, we consider time scales T^ε = O(ε−k ), k =1, 2, where ε represents the size of the microstructures in the medium. In this setting, waves exhibit non-trivial behaviour which do not appear over short time scales. We use new analytical tools to prove that the FD-HMM accurately captures the long time effects. We first, in Paper I, consider T^ε =O(ε−2 ) and analyze the accuracy of FD-HMM in a one-dimensional periodicsetting. The core analytical ideas are quasi-polynomial solutions of periodic problems and local time averages of solutions of periodic wave equations.The analysis naturally reveals the role of consistency in HMM for high order approximation of effective quantities over long time scales. Next, in paperIV, we consider T^ε = O(ε−1 ) and use the tools in a multi-dimensional settingto analyze the accuracy of the FD-HMM in locally-periodic media where fast and slow variations are allowed at the same time. Moreover, in papers II and III we propose new multiscale methods which substantially improve the upscaling error in multiscale elliptic, parabolic and hyperbolic partial differential equations. In paper II we first propose a FD-HMM for solving elliptic homogenization problems. The strategy is to use the wave equation as the micro model even if the macro problem is of elliptic type. Next in paper III, we use this idea in a finite element HMM setting and generalize the approach to parabolic and hyperbolic problems. In a spatially fully discrete a priori error analysis we prove that the upscaling error can be made arbitrarily small for periodic media, even if we do not know the exact period of the oscillations in the media.

QC 20150216


Multiscale methods for wave propagation
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Camacho, Fernando F. "A Posteriori Error Estimates for Surface Finite Element Methods." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/21.

Повний текст джерела
Анотація:
Problems involving the solution of partial differential equations over surfaces appear in many engineering and scientific applications. Some of those applications include crystal growth, fluid mechanics and computer graphics. Many times analytic solutions to such problems are not available. Numerical algorithms, such as Finite Element Methods, are used in practice to find approximate solutions in those cases. In this work we present L2 and pointwise a posteriori error estimates for Adaptive Surface Finite Elements solving the Laplace-Beltrami equation −△Γ u = f . The two sources of errors for Surface Finite Elements are a Galerkin error, and a geometric error that comes from replacing the original surface by a computational mesh. A posteriori error estimates on flat domains only have a Galerkin component. We use residual type error estimators to measure the Galerkin error. The geometric component of our error estimate becomes zero if we consider flat domains, but otherwise has the same order as the residual one. This is different from the available energy norm based error estimates on surfaces, where the importance of the geometric components diminishes asymptotically as the mesh is refined. We use our results to implement an Adaptive Surface Finite Element Method. An important tool for proving a posteriori error bounds for non smooth functions is the Scott-Zhang interpolant. A refined version of a standard Scott-Zhang interpolation bound is also proved during our analysis. This local version only requires the interpolated function to be in a Sobolev space defined over an element T instead of an element patch containing T. In the last section we extend our elliptic results to get estimates for the surface heat equation ut − △Γ u = f using the elliptic reconstruction technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Asner, Liya. "Efficient numerical methods for the solution of coupled multiphysics problems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a38b0c37-f18e-4c05-adbb-b57c911feeb9.

Повний текст джерела
Анотація:
Multiphysics systems with interface coupling are used to model a variety of physical phenomena, such as arterial blood flow, air flow around aeroplane wings, or interactions between surface and ground water flows. Numerical methods enable the practical application of these models through computer simulations. Specifically a high level of detail and accuracy is achieved in finite element methods by discretisations which use extremely large numbers of degrees of freedom, rendering the solution process challenging from the computational perspective. In this thesis we address this challenge by developing a twofold strategy for improving the efficiency of standard finite element coupled solvers. First, we propose to solve a monolithic coupled problem using block-preconditioned GMRES with a new Schur complement approximation. This results in a modular and robust method which significantly reduces the computational cost of solving the system. In particular, numerical tests show mesh-independent convergence of the solver for all the considered problems, suggesting that the method is well-suited to solving large-scale coupled systems. Second, we derive an adjoint-based formula for goal-oriented a posteriori error estimation, which leads to a time-space mesh refinement strategy. The strategy produces a mesh tailored to a given problem and quantity of interest. The monolithic formulation of the coupled problem allows us to obtain expressions for the error in the Lagrange multiplier, which often represents a physically relevant quantity, such as the normal stress on the interface between the problem components. This adaptive refinement technique provides an effective tool for controlling the error in the quantity of interest and/or the size of the discrete system, which may be limited by the available computational resources. The solver and the mesh refinement strategy are both successfully employed to solve a coupled Stokes-Darcy-Stokes problem modelling flow through a cartridge filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Macias, Diaz Jorge. "A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein-Gordon Equation." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/167.

Повний текст джерела
Анотація:
In this paper we develop a finite-difference scheme to approximate radially symmetric solutions of a dissipative nonlinear modified Klein-Gordon equation in an open sphere around the origin, with constant internal and external damping coefficients and nonlinear term of the form G' (w) = w ^p, with p an odd number greater than 1. We prove that our scheme is consistent of quadratic order, and provide a necessary condition for it to be stable order n. Part of our study will be devoted to study the effects of internal and external damping.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Li, Siqing. "Kernel-based least-squares approximations: theories and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/539.

Повний текст джерела
Анотація:
Kernel-based meshless methods for approximating functions and solutions of partial differential equations have many applications in engineering fields. As only scattered data are used, meshless methods using radial basis functions can be extended to complicated geometry and high-dimensional problems. In this thesis, kernel-based least-squares methods will be used to solve several direct and inverse problems. In chapter 2, we consider discrete least-squares methods using radial basis functions. A general l^2-Tikhonov regularization with W_2^m-penalty is considered. We provide error estimates that are comparable to kernel-based interpolation in cases in which the function being approximated is within and is outside of the native space of the kernel. These results are extended to the case of noisy data. Numerical demonstrations are provided to verify the theoretical results. In chapter 3, we apply kernel-based collocation methods to elliptic problems with mixed boundary conditions. We propose some weighted least-squares formulations with different weights for the Dirichlet and Neumann boundary collocation terms. Besides fill distance of discrete sets, our weights also depend on three other factors: proportion of the measures of the Dirichlet and Neumann boundaries, dimensionless volume ratios of the boundary and domain, and kernel smoothness. We determine the dependencies of these terms in weights by different numerical tests. Our least-squares formulations can be proved to be convergent at the H^2 (Ω) norm. Numerical experiments in two and three dimensions show that we can obtain desired convergent results under different boundary conditions and different domain shapes. In chapter 4, we use a kernel-based least-squares method to solve ill-posed Cauchy problems for elliptic partial differential equations. We construct stable methods for these inverse problems. Numerical approximations to solutions of elliptic Cauchy problems are formulated as solutions of nonlinear least-squares problems with quadratic inequality constraints. A convergence analysis with respect to noise levels and fill distances of data points is provided, from which a Tikhonov regularization strategy is obtained. A nonlinear algorithm is proposed to obtain stable solutions of the resulting nonlinear problems. Numerical experiments are provided to verify our convergence results. In the final chapter, we apply meshless methods to the Gierer-Meinhardt activator-inhibitor model. Pattern transitions in irregular domains of the Gierer-Meinhardt model are shown. We propose various parameter settings for different patterns appearing in nature and test these settings on some irregular domains. To further simulate patterns in reality, we construct different kinds of domains and apply proposed parameter settings on different patches of domains found in nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Gyurko, Lajos Gergely. "Numerical methods for approximating solutions to rough differential equations." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a.

Повний текст джерела
Анотація:
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 along with some auxiliary claims on the continuity of the solution in a certain sense, including an RDE-version of Gronwall's lemma. In Chapter 3, numerical schemes for approximating solutions to differential equations driven by rough paths of inhomogeneous degree of smoothness are constructed. We start with setting up some principles of approximations. Then a general class of local approximations is introduced. This class is used to construct global approximations by pasting together the local ones. A general sufficient condition on the local approximations implying global convergence is given and proved. The next step is to construct particular local approximations in finite dimensions based on solutions to ordinary differential equations derived locally and satisfying the sufficient condition for global convergence. These local approximations require strong conditions on the one-form defining the rough differential equation. Finally, we show that when the local ODE-based schemes are applied in combination with rough polynomial approximations, the conditions on the one-form can be weakened. In Chapter 4, the results of Gyurko & Lyons (2010) on path-wise approximation of solutions to stochastic differential equations are recalled and extended to the truncated signature level of the solution. Furthermore, some practical considerations related to the implementation of high order schemes are described. The effectiveness of the derived schemes is demonstrated on numerical examples. In Chapter 5, the background theory of the Kusuoka-Lyons-Victoir (KLV) family of weak approximations is recalled and linked to the results of Chapter 4. We highlight how the different versions of the KLV family are related. Finally, a numerical evaluation of the autonomous ODE-based versions of the family is carried out, focusing on SDEs in dimensions up to 4, using cubature formulas of different degrees and several high order numerical ODE solvers. We demonstrate the effectiveness and the occasional non-effectiveness of the numerical approximations in cases when the KLV family is used in its original version and also when used in combination with partial sampling methods (Monte-Carlo, TBBA) and Romberg extrapolation.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chen, Yujia. "Geometric multigrid and closest point methods for surfaces and general domains." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:56a3bf12-ff09-4ea5-b406-9d77054770e2.

Повний текст джерела
Анотація:
This thesis concerns the analytical and practical aspects of applying the Closest Point Method to solve elliptic partial differential equations (PDEs) on smooth surfaces and domains with smooth boundaries. A new numerical scheme is proposed to solve surface elliptic PDEs and a novel geometric multigrid solver is constructed to solve the resulting linear system. The method is also applied to coupled bulk-surface problems. A new embedding equation in a narrow band surrounding the surface is formulated so that it agrees with the original surface PDE on the surface and has a unique solution which is constant along the normals to the surface. The embedding equation is then discretized using standard finite difference scheme and barycentric Lagrange interpolation. The resulting scheme has 2nd-order accuracy in practice and is provably 2nd-order convergent for curves without boundary embedded in ℝ2. To apply the method to solve elliptic equations on surfaces and domains with boundaries, the "ghost" point approach is adopted to handle Dirichlet, Neumann and Robin boundary conditions. A systematic method is proposed to represent values of ghost points by values of interior points according to boundary conditions. A novel geometric multigrid method based on the closest point representation of the surface is constructed to solve the resulting large sparse linear systems. Multigrid solvers are designed for surfaces with or without boundaries and domains with smooth boundaries. Numerical results indicate that the convergence rate of the multigrid solver stays roughly the same as we refine the mesh, as is desired of a multigrid algorithm. Finally the above methods are combined to solve coupled bulk-surface PDEs with some applications to biology.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Abdolmaleki, Kourosh. "Modelling of wave impact on offshore structures." University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0055.

Повний текст джерела
Анотація:
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Rebaza-Vasquez, Jorge. "Computation and continuation of equilibrium-to-periodic and periodic-to-periodic connections." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/28991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

内山, 知実, Tomomi UCHIYAMA, 賢司 村上, Kenji MURAKAMI, 直洋 大槻 та Naohiro OTSUKI. "二次元混合層における物質拡散の粒子法解析". 日本機械学会, 2004. http://hdl.handle.net/2237/9209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

El-Fakharany, Mohamed Mostafa Refaat. "Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/53917.

Повний текст джерела
Анотація:
[EN] In the stock markets, the process of estimating a fair price for a stock, option or commodity is consider the corner stone for this trade. There are several attempts to obtain a suitable mathematical model in order to enhance the estimation process for evaluating the options for short or long periods. The Black-Scholes partial differential equation (PDE) and its analytical solution, 1973, are considered a breakthrough in the mathematical modeling for the stock markets. Because of the ideal assumptions of Black-Scholes several alternatives have been developed to adequate the models to the real markets. Two strategies have been done to capture these behaviors; the first modification is to add jumps into the asset following Lévy processes, leading to a partial integro-differential equation (PIDE); the second is to allow the volatility to evolve stochastically leading to a PDE with two spatial variables. Here in this work, we solve numerically PIDEs for a wide class of Lévy processes using finite difference schemes for European options and also, the associated linear complementarity problem (LCP) for American option. Moreover, the models for options under stochastic volatility incorporated with jump-diffusion are considered. Numerical analysis for the proposed schemes is studied since it is the efficient and practical way to guarantee the convergence and accuracy of numerical solutions. In fact, without numerical analysis, careless computations may waste good mathematical models. This thesis consists of four chapters; the first chapter is an introduction containing historically review for stochastic processes, Black-Scholes equation and preliminaries on numerical analysis. Chapter two is devoted to solve the PIDE for European option under CGMY process. The PIDE for this model is solved numerically using two distinct discretization approximations; the first approximation guarantees unconditionally consistency while the second approximation provides unconditional positivity and stability. In the first approximation, the differential part is approximated using the explicit scheme and the integral part is approximated using the trapezoidal rule. In the second approximation, the differential part is approximated using the Patankar-scheme and the integral part is approximated using the four-point open type formula. Chapter three provides a unified treatment for European and American options under a wide class of Lévy processes as CGMY, Meixner and Generalized Hyperbolic. First, the reaction and convection terms of the differential part of the PIDE are removed using appropriate mathematical transformation. The differential part for European case is explicitly discretized , while the integral part is approximated using Laguerre-Gauss quadrature formula. Numerical properties such as positivity, stability and consistency for this scheme are studied. For the American case, the differential part of the LCP is discretized using a three-time level approximation with the same integration technique. Next, the Projected successive over relaxation and multigrid techniques have been implemented to obtain the numerical solution. Several numerical examples are given including discussion of the errors and computational cost. Finally in Chapter four, the PIDE for European option under Bates model is considered. Bates model combines both stochastic volatility and jump diffusion approaches resulting in a PIDE with a mixed derivative term. Since the presence of cross derivative terms involves the existence of negative coefficient terms in the numerical scheme deteriorating the quality of the numerical solution, the mixed derivative is eliminated using suitable mathematical transformation. The new PIDE is solved numerically and the numerical analysis is provided. Moreover, the LCP for American option under Bates model is studied.
[ES] El proceso de estimación del precio de una acción, opción u otro derivado en los mercados de valores es objeto clave de estudio de las matemáticas financieras. Se pueden encontrar diversas técnicas para obtener un modelo matemático adecuado con el fin de mejorar el proceso de valoración de las opciones para periodos cortos o largos. Históricamente, la ecuación de Black-Scholes (1973) fue un gran avance en la elaboración de modelos matemáticos para los mercados de valores. Es un modelo práctico para estimar el valor razonable de una opción. Sobre unos supuestos determinados, F. Black y M. Scholes obtuvieron una ecuación diferencial parcial lineal y su solución analítica. Desde entonces se han desarrollado modelos más complejos para adecuarse a la realidad de los mercados. Un tipo son los modelos con volatilidad estocástica que vienen descritos por una ecuación en derivadas parciales con dos variables espaciales. Otro enfoque consiste en añadir saltos en el precio del subyacente por medio de modelos de Lévy lo que lleva a resolver una ecuación integro-diferencial parcial (EIDP). En esta memoria se aborda la resolución numérica de una amplia clase de modelos con procesos de Lévy. Se desarrollan esquemas en diferencias finitas para opciones europeas y también para opciones americanas con su problema de complementariedad lineal (PCL) asociado. Además se tratan modelos con volatilidad estocástica incorporando difusión con saltos. Se plantea el análisis numérico ya que es el camino eficiente y práctico para garantizar la convergencia y precisión de las soluciones numéricas. De hecho, la ausencia de análisis numérico debilita un buen modelo matemático. Esta memoria está organizada en cuatro capítulos. El primero es una introducción con un breve repaso de los procesos estocásticos, el modelo de Black-Scholes así como nociones preliminares de análisis numérico. En el segundo capítulo se trata la EIDP para las opciones europeas según el modelo CGMY. Se proponen dos esquemas en diferencias finitas; el primero garantiza consistencia incondicional de la solución mientras que el segundo proporciona estabilidad y positividad incondicionales. Con el primer enfoque, la parte diferencial se discretiza por medio de un esquema explícito y para la parte integral se usa la regla del trapecio. En la segunda aproximación, para la parte diferencial se usa un esquema tipo Patankar y la parte integral se aproxima por medio de la fórmula de tipo abierto con cuatro puntos. En el capítulo tercero se propone un tratamiento unificado para una amplia clase de modelos de opciones en procesos de Lévy como CGMY, Meixner e hiperbólico generalizado. Se eliminan los términos de reacción y convección por medio de un apropiado cambio de variables. Después la parte diferencial se aproxima por un esquema explícito mientras que para la parte integral se usa la fórmula de cuadratura de Laguerre-Gauss. Se analizan positividad, estabilidad y consistencia. Para las opciones americanas, la parte diferencial del LCP se discretiza con tres niveles temporales mediante cuadratura de Laguerre-Gauss para la integración numérica. Finalmente se implementan métodos iterativos de proyección y relajación sucesiva y la técnica de multimalla. Se muestran varios ejemplos incluyendo estudio de errores y coste computacional. El capítulo 4 está dedicado al modelo de Bates que combina los enfoques de volatilidad estocástica y de difusión con saltos derivando en una EIDP con un término con derivadas cruzadas. Ya que la discretización de una derivada cruzada comporta la existencia de coeficientes negativos en el esquema que deterioran la calidad de la solución numérica, se propone un cambio de variables que elimina dicha derivada cruzada. La EIDP transformada se resuelve numéricamente y se muestra el análisis numérico. Por otra parte se estudia el LCP para opciones americanas con el modelo de Bates.
[CAT] El procés d'estimació del preu d'una acció, opció o un altre derivat en els mercats de valors és objecte clau d'estudi de les matemàtiques financeres . Es poden trobar diverses tècniques per a obtindre un model matemàtic adequat a fi de millorar el procés de valoració de les opcions per a períodes curts o llargs. Històricament, l'equació Black-Scholes (1973) va ser un gran avanç en l'elaboració de models matemàtics per als mercats de valors. És un model matemàtic pràctic per a estimar un valor raonable per a una opció. Sobre uns suposats F. Black i M. Scholes van obtindre una equació diferencial parcial lineal amb solució analítica. Des de llavors s'han desenrotllat models més complexos per a adequar-se a la realitat dels mercats. Un tipus és els models amb volatilitat estocástica que ve descrits per una equació en derivades parcials amb dos variables espacials. Un altre enfocament consistix a afegir bots en el preu del subjacent per mitjà de models de Lévy el que porta a resoldre una equació integre-diferencial parcial (EIDP) . En esta memòria s'aborda la resolució numèrica d'una àmplia classe de models baix processos de Lévy. Es desenrotllen esquemes en diferències finites per a opcions europees i també per a opcions americanes amb el seu problema de complementarietat lineal (PCL) associat. A més es tracten models amb volatilitat estocástica incorporant difusió amb bots. Es planteja l'anàlisi numèrica ja que és el camí eficient i pràctic per a garantir la convergència i precisió de les solucions numèriques. De fet, l'absència d'anàlisi numèrica debilita un bon model matemàtic. Esta memòria està organitzada en quatre capítols. El primer és una introducció amb un breu repàs dels processos estocásticos, el model de Black-Scholes així com nocions preliminars d'anàlisi numèrica. En el segon capítol es tracta l'EIDP per a les opcions europees segons el model CGMY. Es proposen dos esquemes en diferències finites; el primer garantix consistència incondicional de la solució mentres que el segon proporciona estabilitat i positivitat incondicionals. Amb el primer enfocament, la part diferencial es discretiza per mitjà d'un esquema explícit i per a la part integral s'empra la regla del trapezi. En la segona aproximació, per a la part diferencial s'usa l'esquema tipus Patankar i la part integral s'aproxima per mitjà de la fórmula de tipus obert amb quatre punts. En el capítol tercer es proposa un tractament unificat per a una àmplia classe de models d'opcions en processos de Lévy com ara CGMY, Meixner i hiperbòlic generalitzat. S'eliminen els termes de reacció i convecció per mitjà d'un apropiat canvi de variables. Després la part diferencial s'aproxima per un esquema explícit mentres que per a la part integral s'usa la fórmula de quadratura de Laguerre-Gauss. S'analitzen positivitat, estabilitat i consistència. Per a les opcions americanes, la part diferencial del LCP es discretiza amb tres nivells temporals amb quadratura de Laguerre-Gauss per a la integració numèrica. Finalment s'implementen mètodes iteratius de projecció i relaxació successiva i la tècnica de multimalla. Es mostren diversos exemples incloent estudi d'errors i cost computacional. El capítol 4 està dedicat al model de Bates que combina els enfocaments de volatilitat estocástica i de difusió amb bots derivant en una EIDP amb un terme amb derivades croades. Ja que la discretización d'una derivada croada comporta l'existència de coeficients negatius en l'esquema que deterioren la qualitat de la solució numèrica, es proposa un canvi de variables que elimina dita derivada croada. La EIDP transformada es resol numèricament i es mostra l'anàlisi numèrica. D'altra banda s'estudia el LCP per a opcions americanes en el model de Bates.
El-Fakharany, MMR. (2015). Finite Difference Schemes for Option Pricing under Stochastic Volatility and Lévy Processes: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/53917
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wissmann, Rasmus. "Expansion methods for high-dimensional PDEs in finance." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:c791d5e9-dfa3-4bd1-86ec-82e29839aea9.

Повний текст джерела
Анотація:
We develop expansion methods as a new computational approach towards high-dimensional partial differential equations (PDEs), particularly of such type as arising in the valuation of financial derivatives. The proposed methods are extended from [41] and use principal component analysis (PCA) of the underlying process in combination with a Taylor expansion of the value function into solutions to low-dimensional PDEs. They enable calculation of highly accurate approximate solutions with computational complexity polynomial in the number of dimensions for PDEs with a low number of dominant principal components. For the case of PDEs with constant coefficients, we show existence of expansion solutions and prove theoretical error bounds. We give a precise characterisation of when our methods can be applied and construct specific examples of a first and second order version. We provide numerical results showing that the empirically observed convergence speeds are in agreement with the theoretical predictions. For the case of PDEs with varying coefficients, we give a heuristic motivation using the Parametrix approach and empirically test the methods' accuracy for a range of variable parameter stock models. We demonstrate the applicability of our expansion methods to real-world securities pricing problems by considering path-dependent and early-exercise options in the LIBOR market model. Using the example of Bermudan swaptions and Ratchet floors, which are considered difficult benchmark problems, we give a careful analysis of the numerical accuracy and computational complexity. We are able to demonstrate that for problems with medium to high dimensionality, around 60-100, and moderate time horizons, the presented PDE methods deliver results comparable in accuracy to benchmark state-of-the-art Monte Carlo methods in similar or (significantly) faster run time.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Heryudono, Alfa R. H. "Adaptive radial basis function methods for the numerical solution of partial differential equations, with application to the simulation of the human tear film." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 178 p, 2008. http://proquest.umi.com/pqdweb?did=1601513551&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

内山, 知実, Tomomi UCHIYAMA, 正章 成瀬 та Masaaki NARUSE. "Vortex in Cell 法による固気二相自由乱流の数値解析 (数値解法と二次元混合層への適用)". 日本機械学会, 2003. http://hdl.handle.net/2237/9211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Einav, Amit. "Two problems in mathematical physics: Villani's conjecture and trace inequality for the fractional Laplacian." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42788.

Повний текст джерела
Анотація:
The presented work deals with two distinct problems in the field of Mathematical Physics. The first part is dedicated to an 'almost' solution of Villani's conjecture, a known conjecture related to a Statistical Mechanics model invented by Kac in 1956, giving a rigorous explanation of some simple cases of the Boltzmann equation. In 2003 Villani conjectured that the time it will take the system of particles in Kac's model to equilibrate is proportional to the number of particles in the system. Our main result in this part is a proof, up to an epsilon, of that conjecture, showing that for all practical purposes we can consider it to be true. The second part of the presentation is based on a joint work with Prof. Michael Loss and is dedicated to a newly developed trace inequality for the fractional Laplacian, connecting between the fractional Laplacian of a function and its restriction to intersection of hyperplanes. The newly found inequality is sharp and the functions that attain equality in it are completely classified.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kayhan, Belgin. "Parameter Estimation In Generalized Partial Linear Modelswith Tikhanov Regularization." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612530/index.pdf.

Повний текст джерела
Анотація:
Regression analysis refers to techniques for modeling and analyzing several variables in statistical learning. There are various types of regression models. In our study, we analyzed Generalized Partial Linear Models (GPLMs), which decomposes input variables into two sets, and additively combines classical linear models with nonlinear model part. By separating linear models from nonlinear ones, an inverse problem method Tikhonov regularization was applied for the nonlinear submodels separately, within the entire GPLM. Such a particular representation of submodels provides both a better accuracy and a better stability (regularity) under noise in the data. We aim to smooth the nonparametric part of GPLM by using a modified form of Multiple Adaptive Regression Spline (MARS) which is very useful for high-dimensional problems and does not impose any specific relationship between the predictor and dependent variables. Instead, it can estimate the contribution of the basis functions so that both the additive and interaction effects of the predictors are allowed to determine the dependent variable. The MARS algorithm has two steps: the forward and backward stepwise algorithms. In the rst one, the model is built by adding basis functions until a maximum level of complexity is reached. On the other hand, the backward stepwise algorithm starts with removing the least significant basis functions from the model. In this study, we propose to use a penalized residual sum of squares (PRSS) instead of the backward stepwise algorithm and construct PRSS for MARS as a Tikhonov regularization problem. Besides, we provide numeric example with two data sets
one has interaction and the other one does not have. As well as studying the regularization of the nonparametric part, we also mention theoretically the regularization of the parametric part. Furthermore, we make a comparison between Infinite Kernel Learning (IKL) and Tikhonov regularization by using two data sets, with the difference consisting in the (non-)homogeneity of the data set. The thesis concludes with an outlook on future research.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Sayi, Mbani T. "High Accuracy Fitted Operator Methods for Solving Interior Layer Problems." University of the Western Cape, 2020. http://hdl.handle.net/11394/7320.

Повний текст джерела
Анотація:
Philosophiae Doctor - PhD
Fitted operator finite difference methods (FOFDMs) for singularly perturbed problems have been explored for the last three decades. The construction of these numerical schemes is based on introducing a fitting factor along with the diffusion coefficient or by using principles of the non-standard finite difference methods. The FOFDMs based on the latter idea, are easy to construct and they are extendible to solve partial differential equations (PDEs) and their systems. Noting this flexible feature of the FOFDMs, this thesis deals with extension of these methods to solve interior layer problems, something that was still outstanding. The idea is then extended to solve singularly perturbed time-dependent PDEs whose solutions possess interior layers. The second aspect of this work is to improve accuracy of these approximation methods via methods like Richardson extrapolation. Having met these three objectives, we then extended our approach to solve singularly perturbed two-point boundary value problems with variable diffusion coefficients and analogous time-dependent PDEs. Careful analyses followed by extensive numerical simulations supporting theoretical findings are presented where necessary.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lao, Kun Leng. "Multigrid algorithm based on cyclic reduction for convection diffusion equations." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Magni, Adrien. "Méthodes particulaires avec remaillage : analyse numérique nouveaux schémas et applications pour la simulation d'équations de transport." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00623128.

Повний текст джерела
Анотація:
Les méthodes particulaires sont des méthodes numériques adaptées à la résolution d'équations de conservation. Leur principe consiste à introduire des particules ''numériques'' conservant localement l'inconnue sur un petit volume, puis à les transporter le long de leur trajectoire. Lorsqu'un terme source est présent dans les équations, l'évolution de la solution le long des caractéristiques est prise en compte par une intéraction entre les particules. Ces méthodes possèdent de bonnes propriétés de conservation et ne sont pas soumises aux conditions habituelles de CFL qui peuvent être contraignantes pour les méthodes Eulériennes. Cependant, une contrainte de recouvrement entre les particules doit être satisfaite pour vérifier des propriétés de convergence de la méthode. Pour satisfaire cette condition de recouvrement, un remaillage périodique des particules est souvent utilisé. Elle consiste à recréer régulièrement de nouvelles particules uniformément réparties, à partir de celles ayant été advectées à l'itération précédente. Quand cette étape de remaillage est effectuée à chaque pas de temps, l'analyse numérique de ces méthodes particulaires remaillées nécessite d'être reconsidérée, ce qui représente l'objectif de ces travaux de thèse. Pour mener à bien cette analyse, nous nous basons sur une analogie entre méthodes particulaires avec remaillage et schémas de grille. Nous montrons que pour des grands pas de temps les schémas numériques obtenus souffrent d'une perte de précision. Nous proposons des méthodes de correction, assurant la consistance des schémas en tout point de grille, le pas de temps étant contraint par une condition sur le gradient du champ de vitesse. Cette méthode est construite en dimension un. Des techniques de limitation sont aussi introduites de manière à remailler les particules sans créer d'oscillations en présence de fortes variations de la solution. Enfin, ces méthodes sont généralisées aux dimensions plus grandes que un en s'inspirant du principe de splitting d'opérateurs. Les applications numériques présentées dans cette thèse concernent la résolution de l'équation de transport sous forme conservative en dimension un à trois, dans des régimes linéaires ou non-linéaires.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yang, Xin-She. "Mathematical modelling of compaction and diagenesis in sedimentary basins." Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:0bdc6c43-4534-4f08-97e2-8a33d6b13e61.

Повний текст джерела
Анотація:
Sedimentary basins form when water-borne sediments in shallow seas are deposited over periods of millions of years. Sediments compact under their own weight, causing the expulsion of pore water. If this expulsion is sufficiently slow, overpressuring can result, a phenomenon which is of concern in oil drilling operations. The competition between pore water expulsion and burial is complicated by a variety of factors, which include diagenesis (clay dewatering), and different modes (elastic or viscous) of rheological deformation via compaction and pressure solution, which may also include hysteresis in the constitutive behaviours. This thesis is concerned with models which can describe the evolution of porosity and pore pressure in sedimentary basins. We begin by analysing the simplest case of poroelastic compaction which in a 1-D case results in a nonlinear diffusion equation, controlled principally by a dimensionless parameter lambda, which is the ratio of the hydraulic conductivity to the sedimentation rate. We provide analytic and numerical results for both large and small lambda in Chapter 3 and Chapter 4. We then put a more realistic rheological relation with hysteresis into the model and investigate its effects during loading and unloading in Chapter 5. A discontinuous porosity profile may occur if the unloaded system is reloaded. We pursue the model further by considering diagenesis as a dehydration model in Chapter 6, then we extend it to a more realistic dissolution-precipitation reaction-transport model in Chapter 7 by including most of the known physics and chemistry derived from experimental studies. We eventually derive a viscous compaction model for pressure solution in sedimentary basins in Chapter 8, and show how the model suggests radically different behaviours in the distinct limits of slow and fast compaction. When lambda << 1, compaction is limited to a basal boundary layer. When lambda >> 1, compaction occurs throughout the basin, and the basic equilibrium solution near the surface is a near parabolic profile of porosity. But it is only valid to a finite depth where the permeability has decreased sufficiently, and a transition occurs, marking a switch from a normally pressured environment to one with high pore pressures.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Murali, Vasanth Kumar. "Code verification using the method of manufactured solutions." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-11112002-121649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

von, Glehn Ingrid. "A closest point penalty method for evolution equations on surfaces." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:29385f90-b927-4151-b5df-cf877cef00ef.

Повний текст джерела
Анотація:
This thesis introduces and analyses a numerical method for solving time-dependent partial differential equations (PDEs) on surfaces. This method is based on the closest point method, and solves the surface PDE by solving a suitably chosen equation in a band surrounding the surface. As it uses an implicit closest point representation of the surface, the method has the advantages of being simple to implement for very general surfaces, and amenable to discretization with a broad class of numerical schemes. The method proposed in this work introduces a new equation in the embedding space, which satisfies a key consistency property with the surface PDE. Rather than alternating between explicit time-steps and re-extensions of the surface function as in the original closest point method, we investigate an alternative approach, in which a single equation can be solved throughout the embedding space, without separate extension steps. This is achieved by creating a modified embedding equation with a penalty term, which enforces a constraint on the solution. The resulting equation admits a method of lines discretization, and can therefore be discretized with implicit or explicit time-stepping schemes, and analysed with standard techniques. The method can be formulated in a straightforward way for a large class of problems, including equations featuring variable coefficients, higher-order terms or nonlinearities. The effectiveness of the method is demonstrated with a range of examples, drawing from applications involving curvature-dependent diffusion and systems of reaction-diffusion equations, as well as equations arising in PDE-based image processing on surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Koudela, Pavel. "Stanovení hodnot vstupních parametrů pokročilých materiálových modelů s využitím optimalizačních metod." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372248.

Повний текст джерела
Анотація:
Choice of the constitutive model and determination of input parameters are necessary for a successful application of numerical methods in geotechnical engineering. Higher complexity of modern constitutive models results in an increase of the number of input parameters and time requirements for their calibration. Optimization methods are a possible solution for this problem. An application in which metaheuristic optimization method Particle swarm optimization (PSO) is involved is presented in this thesis. Critical review and testing of various PSO alternatives was performed in the first part of this thesis. The most efective PSO alternatives were chosen. In the second part connection between PSO algorithm and finite element solver was prepared. Automatization of determination of constitutive models input parameters was performed on three boundary value problems: laboratory test (oedometer), in-situ test (pressuremeter) and geotechical construction (retaining wall). Three types of constitutive models are used. Linear elastic-perfectly plastic Mohr-Coulomb model, elastoplastic non-linear Hardening soil model and Hardening soil - small strain model.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhou, Jian Ming. "A multi-grid method for computation of film cooling." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29414.

Повний текст джерела
Анотація:
This thesis presents a multi-grid scheme applied to the solution of transport equations in turbulent flow associated with heat transfer. The multi-grid scheme is then applied to flow which occurs in the film cooling of turbine blades. The governing equations are discretized on a staggered grid with the hybrid differencing scheme. The momentum and continuity equations are solved by a nonlinear full multi-grid scheme with the SIMPLE algorithm as a relaxation smoother. The turbulence k — Є equations and the thermal energy equation are solved on each grid without multi-grid correction. Observation shows that the multi-grid scheme has a faster convergence rate in solving the Navier-Stokes equations and that the rate is not sensitive to the number of mesh points or the Reynolds number. A significant acceleration of convergence is also produced for the k — Є and the thermal energy equations, even though the multi-grid correction is not applied to these equations. The multi-grid method provides a stable and efficient means for local mesh refinement with only little additional computational and.memory costs. Driven cavity flows at high Reynolds numbers are computed on a number of fine meshes for both the multi-grid scheme and the local mesh-refinement scheme. Two-dimensional film cooling flow is studied using multi-grid processing and significant improvements in the results are obtained. The non-uniformity of the flow at the slot exit and its influence on the film cooling are investigated with the fine grid resolution. A near-wall turbulence model is used. Film cooling results are presented for slot injection with different mass flow ratios.
Science, Faculty of
Mathematics, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Shao, Zhiyu S. "TWO-DIMENSIONAL HYDRODYNAMIC MODELING OF TWO-PHASE FLOW FOR UNDERSTANDING GEYSER PHENOMENA IN URBAN STORMWATER SYSTEM." UKnowledge, 2013. http://uknowledge.uky.edu/ce_etds/5.

Повний текст джерела
Анотація:
During intense rain events a stormwater system can fill rapidly and undergo a transition from open channel flow to pressurized flow. This transition can create large discrete pockets of trapped air in the system. These pockets are pressurized in the horizontal reaches of the system and then are released through vertical vents. In extreme cases, the transition and release of air pockets can create a geyser feature. The current models are inadequate for simulating mixed flows with complicated air-water interactions, such as geysers. Additionally, the simulation of air escaping in the vertical dropshaft is greatly simplified, or completely ignored, in the existing models. In this work a two-phase numerical model solving the Navier-Stokes equations is developed to investigate the key factors that form geysers. A projection method is used to solve the Navier-Stokes Equation. An advanced two-phase flow model, Volume of Fluid (VOF), is implemented in the Navier-Stokes solver to capture and advance the interface. This model has been validated with standard two-phase flow test problems that involve significant interface topology changes, air entrainment and violent free surface motion. The results demonstrate the capability of handling complicated two-phase interactions. The numerical results are compared with experimental data and theoretical solutions. The comparisons consistently show satisfactory performance of the model. The model is applied to a real stormwater system and accurately simulates the pressurization process in a horizontal channel. The two-phase model is applied to simulate air pockets rising and release motion in a vertical riser. The numerical model demonstrates the dominant factors that contribute to geyser formation, including air pocket size, pressurization of main pipe and surcharged state in the vertical riser. It captures the key dynamics of two-phase flow in the vertical riser, consistent with experimental results, suggesting that the code has an excellent potential of extending its use to practical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Stern, Louis G. "An explicitly conservative method for time-accurate solution of hyperbolic partial differential equations on embedded Chimera grids /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sundqvist, Per. "Numerical Computations with Fundamental Solutions." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Figueroa, Leonardo E. "Deterministic simulation of multi-beaded models of dilute polymer solutions." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:4c3414ba-415a-4109-8e98-6c4fa24f9cdc.

Повний текст джерела
Анотація:
We study the convergence of a nonlinear approximation method introduced in the engineering literature for the numerical solution of a high-dimensional Fokker--Planck equation featuring in Navier--Stokes--Fokker--Planck systems that arise in kinetic models of dilute polymers. To do so, we build on the analysis carried out recently by Le~Bris, Leli\`evre and Maday (Const. Approx. 30: 621--651, 2009) in the case of Poisson's equation on a rectangular domain in $\mathbb{R}^2$, subject to a homogeneous Dirichlet boundary condition, where they exploited the connection of the approximation method with the greedy algorithms from nonlinear approximation theory explored, for example, by DeVore and Temlyakov (Adv. Comput. Math. 5:173--187, 1996). We extend the convergence analysis of the pure greedy and orthogonal greedy algorithms considered by Le~Bris, Leli\`evre and Maday to the technically more complicated situation of the elliptic Fokker--Planck equation, where the role of the Laplace operator is played out by a high-dimensional Ornstein--Uhlenbeck operator with unbounded drift, of the kind that appears in Fokker--Planck equations that arise in bead-spring chain type kinetic polymer models with finitely extensible nonlinear elastic potentials, posed on a high-dimensional Cartesian product configuration space $\mathsf{D} = D_1 \times \dotsm \times D_N$ contained in $\mathbb{R}^{N d}$, where each set $D_i$, $i=1, \dotsc, N$, is a bounded open ball in $\mathbb{R}^d$, $d = 2, 3$. We exploit detailed information on the spectral properties and elliptic regularity of the Ornstein--Uhlenbeck operator to give conditions on the true solution of the Fokker--Planck equation which guarantee certain rates of convergence of the greedy algorithms. We extend the analysis to discretized versions of the greedy algorithms.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ashi, Hala. "Numerical methods for stiff systems." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10663/.

Повний текст джерела
Анотація:
Some real-world applications involve situations where different physical phenomena acting on very different time scales occur simultaneously. The partial differential equations (PDEs) governing such situations are categorized as "stiff" PDEs. Stiffness is a challenging property of differential equations (DEs) that prevents conventional explicit numerical integrators from handling a problem efficiently. For such cases, stability (rather than accuracy) requirements dictate the choice of time step size to be very small. Considerable effort in coping with stiffness has gone into developing time-discretization methods to overcome many of the constraints of the conventional methods. Recently, there has been a renewed interest in exponential integrators that have emerged as a viable alternative for dealing effectively with stiffness of DEs. Our attention has been focused on the explicit Exponential Time Differencing (ETD) integrators that are designed to solve stiff semi-linear problems. Semi-linear PDEs can be split into a linear part, which contains the stiffest part of the dynamics of the problem, and a nonlinear part, which varies more slowly than the linear part. The ETD methods solve the linear part exactly, and then explicitly approximate the remaining part by polynomial approximations. The first aspect of this project involves an analytical examination of the methods' stability properties in order to present the advantage of these methods in overcoming the stability constraints. Furthermore, we discuss the numerical difficulties in approximating the ETD coefficients, which are functions of the linear term of the PDE. We address ourselves to describing various algorithms for approximating the coefficients, analyze their performance and their computational cost, and weigh their advantages for an efficient implementation of the ETD methods. The second aspect is to perform a variety of numerical experiments to evaluate the usefulness of the ETD methods, compared to other competing stiff integrators, for integrating real application problems. The problems considered include the Kuramoto-Sivashinsky equation, the nonlinear Schrödinger equation and the nonlinear Thin Film equation, all in one space dimension. The main properties tested are accuracy, start-up overhead cost and overall computation cost, since these parameters play key roles in the overall efficiency of the methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Pattinson, John. "A cut-cell, agglomerated-multigrid accelerated, Cartesian mesh method for compressible and incompressible flow." Pretoria : [s.n.]m, 2006. http://upetd.up.ac.za/thesis/available/etd-07052007-103047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Calhoun, Donna. "A Cartesian grid method for solving the streamfunction vorticity equations in irregular geometries /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/6753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Honková, Michaela. "Numerical Methods of Image Analysis in Astrometry." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-375536.

Повний текст джерела
Анотація:
Velmi přesná následná astrometrie je nezbytným předpokladem sledování blízkozemních objektů, které mohou představovat riziko srážky se Zemí. Tato práce přináší ucelený přehled přesné astrometrie, obsahuje potřebnou matematickou teorii, postup předzpracování snímků v astronomii, a nastiňuje použití filtrů. Navrhuje nové metody pro vyrovnání pozadí snímků před provedením astrometrického měření pro případ, kdy nejsou dostupné kalibrační snímky. Tyto metody jsou založeny na vytvoření syntetického flatfieldu pomocí aplikování filtru na snímek a následné užití tohoto flatfieldu pro odstranění pozadí snímku. Metody byly otestovány na vzorových snímcích a vzápětí použity k získání astrometrických pozic prvního mezihvězdného objektu 1I/2017 U1 ('Oumuamua).
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Svanberg, Andreas. "Numerical Methods for Simulating the Metal Shearing Process : A Novel Numerical Model for the Punching of Metals." Thesis, Luleå tekniska universitet, Material- och solidmekanik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72742.

Повний текст джерела
Анотація:
When dealing with the separation of materials, the metal shearing process such as punching, is widely used in theindustry due to its time efficient manner. There is however, a need to better understand the process in order toimprove quality of the final product. Working with numerical simulations of themetal shearing process, there aretwo major difficulties. One being the extremely large deformation, the other being material failure. The combinationof these two makes numerical modeling challenging and is the reason for this study.The problem was divided in to two main parts, one where material modeling was studied, the other part focusedon numerical modeling and experiments of the punching process. A material model considering both plasticityandmaterial failure was created for a boron steel material. Plasticity behavior of thematerial was modeled with anelasto-plastic model and a calibratedModifiedMohr-Coulomb (MMC) failure criterion to model the material failure.The resultingMMC-model agreed well with the experiments.Punching experiments with varying clearances were performed on the boron steel. Punch forces and displacementswere continuously sampled throughout the process, and after the punching experiments were finished the punchededge profiles were studied. The multiphysics simulation software LS-DYNA was then utilized, and three dimensionalsimulations of the punching process using the Smoothed Particle Galerkin (SPG)method were performed.Results from the SPG-simulation corresponded very well with the results from punching experiments, and it can beconcluded that the model was able to capture the material behavior of the sheet in a highly detailed level. When thepunched edge profiles from the simulations were compared to the experiments, there was an almost exact match forall the cases studied. The force-displacement behavior of the punch from simulations was in great consistency withexperimental results as well.Itwas also concluded that the combination of a stress state dependent failure criterion together with the SPG-methodshows significant possibilities to cope with three dimensional problems where large deformations in combinationwith difficultmaterial failure occurs. This study focuses on the punching process, but the generality of this novelmodeling technique can be applied to many industrial cases and is a step towards a better and more reliablemodeling of failure in combination with extremely large deformation.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Olbrant, Edgar [Verfasser]. "Models and numerical methods for time- and energy-dependent particle transport / Edgar Olbrant." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1023980002/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії