Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Particle cloud modeling.

Статті в журналах з теми "Particle cloud modeling"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Particle cloud modeling".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Grabowski, Wojciech W., Hugh Morrison, Shin-Ichiro Shima, Gustavo C. Abade, Piotr Dziekan, and Hanna Pawlowska. "Modeling of Cloud Microphysics: Can We Do Better?" Bulletin of the American Meteorological Society 100, no. 4 (April 1, 2019): 655–72. http://dx.doi.org/10.1175/bams-d-18-0005.1.

Повний текст джерела
Анотація:
Abstract Representation of cloud microphysics is a key aspect of simulating clouds. From the early days of cloud modeling, numerical models have relied on an Eulerian approach for all cloud and thermodynamic and microphysics variables. Over time the sophistication of microphysics schemes has steadily increased, from simple representations of bulk masses of cloud and rain in each grid cell, to including different ice particle types and bulk hydrometeor concentrations, to complex schemes referred to as bin or spectral schemes that explicitly evolve the hydrometeor size distributions within each model grid cell. As computational resources grow, there is a clear trend toward wider use of bin schemes, including their use as benchmarks to develop and test simplified bulk schemes. We argue that continuing on this path brings fundamental challenges difficult to overcome. The Lagrangian particle-based probabilistic approach is a practical alternative in which the myriad of cloud and precipitation particles present in a natural cloud is represented by a judiciously selected ensemble of point particles called superdroplets or superparticles. The advantages of the Lagrangian particle-based approach when compared to the Eulerian bin methodology are explained, and the prospects of applying the method to more comprehensive cloud simulations—for instance, targeting deep convection or frontal cloud systems—are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Russell, Lynn M., Armin Sorooshian, John H. Seinfeld, Bruce A. Albrecht, Athanasios Nenes, Lars Ahlm, Yi-Chun Chen, et al. "Eastern Pacific Emitted Aerosol Cloud Experiment." Bulletin of the American Meteorological Society 94, no. 5 (May 1, 2013): 709–29. http://dx.doi.org/10.1175/bams-d-12-00015.1.

Повний текст джерела
Анотація:
Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Twohy, C. H., J. R. Anderson, D. W. Toohey, M. Andrejczuk, A. Adams, M. Lytle, R. C. George, et al. "Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the Southeast Pacific ocean." Atmospheric Chemistry and Physics Discussions 12, no. 8 (August 9, 2012): 19715–67. http://dx.doi.org/10.5194/acpd-12-19715-2012.

Повний текст джерела
Анотація:
Abstract. The Southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles such as power plants, urban pollution and smelters on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics from seven flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were more numerous and smaller near shore, and there was less drizzle. Higher droplet number concentration and physically thinner clouds both contributed to the smaller droplets near shore. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, which initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Annamalai, K., S. Ramalingam, T. Dahdah, and D. Chi. "Group Combustion of a Cylindrical Cloud of Char/Carbon Particles." Journal of Heat Transfer 110, no. 1 (February 1, 1988): 190–200. http://dx.doi.org/10.1115/1.3250451.

Повний текст джерела
Анотація:
Extensive experiments were carried out in the past in order to obtain kinetics data on the pyrolysis of coal particles and the char reactions. The literature survey distinctively reveals two kinds of studies: (i) Individual Particle Combustion (IPC) and (ii) Combustion of Particle Streams or Clouds. The experimental data obtained with particle streams are normally interpreted using IPC models with the a priori assumption that the cloud is dilute. But the term “dilute” is rarely quantified and justified considering the collective behavior of a cloud of particles. The group combustion model accounts for the reduction in burning rate due to the collective behavior of a large number of particles. While the spherical group combustion model may be employed for coal/char spray combustion modeling, the cylindrical group combustion model is more useful in interpreting the experimental data obtained with a monosized stream of particles. Hence a cylindrical group combustion model is presented here. As in the case of spherical group combustion models, there exist three modes of combustion: (i) Individual Particle Combustion (IPC), (ii) Group Combustion (GC), and (iii) Sheath Combustion (SC). Within the range of parameters studied, it appears that the cylindrical and spherical cloud combustion models yield similar results on nondimensional cloud burning rates and on the combustion modes of a cloud of particles. The results from group theory are then used to identify the mode of combustion (IPC, GC, or SC) and to interpret the experimental data.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Twohy, C. H., J. R. Anderson, D. W. Toohey, M. Andrejczuk, A. Adams, M. Lytle, R. C. George, et al. "Impacts of aerosol particles on the microphysical and radiative properties of stratocumulus clouds over the southeast Pacific Ocean." Atmospheric Chemistry and Physics 13, no. 5 (March 5, 2013): 2541–62. http://dx.doi.org/10.5194/acp-13-2541-2013.

Повний текст джерела
Анотація:
Abstract. The southeast Pacific Ocean is covered by the world's largest stratocumulus cloud layer, which has a strong impact on ocean temperatures and climate in the region. The effect of anthropogenic sources of aerosol particles on the stratocumulus deck was investigated during the VOCALS field experiment. Aerosol measurements below and above cloud were made with a ultra-high sensitivity aerosol spectrometer and analytical electron microscopy. In addition to more standard in-cloud measurements, droplets were collected and evaporated using a counterflow virtual impactor (CVI), and the non-volatile residual particles were analyzed. Many flights focused on the gradient in cloud properties on an E-W track along 20° S from near the Chilean coast to remote areas offshore. Mean statistics, including their significance, from eight flights and many individual legs were compiled. Consistent with a continental source of cloud condensation nuclei, below-cloud accumulation-mode aerosol and droplet number concentration generally decreased from near shore to offshore. Single particle analysis was used to reveal types and sources of the enhanced particle number that influence droplet concentration. While a variety of particle types were found throughout the region, the dominant particles near shore were partially neutralized sulfates. Modeling and chemical analysis indicated that the predominant source of these particles in the marine boundary layer along 20° S was anthropogenic pollution from central Chilean sources, with copper smelters a relatively small contribution. Cloud droplets were smaller in regions of enhanced particles near shore. However, physically thinner clouds, and not just higher droplet number concentrations from pollution, both contributed to the smaller droplets. Satellite measurements were used to show that cloud albedo was highest 500–1000 km offshore, and actually slightly lower closer to shore due to the generally thinner clouds and lower liquid water paths there. Thus, larger scale forcings that impact cloud macrophysical properties, as well as enhanced aerosol particles, are important in determining cloud droplet size and cloud albedo. Differences in the size distribution of droplet residual particles and ambient aerosol particles were observed. By progressively excluding small droplets from the CVI sample, we were able to show that the larger drops, some of which may initiate drizzle, contain the largest aerosol particles. Geometric mean diameters of droplet residual particles were larger than those of the below-cloud and above cloud distributions. However, a wide range of particle sizes can act as droplet nuclei in these stratocumulus clouds. A detailed LES microphysical model was used to show that this can occur without invoking differences in chemical composition of cloud-nucleating particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moharreri, A., L. Craig, P. Dubey, D. C. Rogers, and S. Dhaniyala. "Aircraft testing of the new Blunt-body Aerosol Sampler (BASE)." Atmospheric Measurement Techniques 7, no. 9 (September 23, 2014): 3085–93. http://dx.doi.org/10.5194/amt-7-3085-2014.

Повний текст джерела
Анотація:
Abstract. There is limited understanding of the role of aerosols in the formation and modification of clouds, partly due to inadequate data on such systems. Aircraft-based aerosol measurements in the presence of cloud particles have proven to be challenging because of the problem of cloud droplet/ice particle shatter and the generation of secondary artifact particles that contaminate aerosol samples. Recently, the design of a new aircraft inlet, called the Blunt-body Aerosol Sampler (BASE), which enables sampling of interstitial aerosol particles, was introduced. Numerical modeling results and laboratory test data suggested that the BASE inlet should sample interstitial particles with minimal shatter particle contamination. Here, the sampling performance of the inlet is established from aircraft-based measurements. Initial aircraft test results obtained during the PLOWS (Profiling of Winter Storms) campaign indicated two problems with the original BASE design: separated flows around the BASE at high altitudes and a significant shatter problem when sampling in drizzle. The test data were used to improve the accuracy of flow and particle trajectory modeling around the inlet, and the results from the improved flow model were used to guide design modifications of the BASE to overcome the problems identified in its initial deployment. The performance of the modified BASE was tested during the ICE–T (Ice in Clouds Experiment – Tropics) campaign, and the inlet was seen to provide near shatter-free measurements in a wide range of cloud conditions. The initial aircraft test results, design modifications, and the performance characteristics of the BASE relative to another interstitial inlet, the submicron aerosol inlet (SMAI), are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abdelmonem, A., M. Schnaiter, P. Amsler, E. Hesse, J. Meyer, and T. Leisner. "First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe." Atmospheric Measurement Techniques 4, no. 10 (October 12, 2011): 2125–42. http://dx.doi.org/10.5194/amt-4-2125-2011.

Повний текст джерела
Анотація:
Abstract. Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Huajun, Yitung Chen, Hsuan-Tsung Hsieh, and Nathan Siegel. "Computational Fluid Dynamics Modeling of Gas-Particle Flow Within a Solid-Particle Solar Receiver." Journal of Solar Energy Engineering 129, no. 2 (August 25, 2006): 160–70. http://dx.doi.org/10.1115/1.2716418.

Повний текст джерела
Анотація:
A detailed three-dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid-particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two-band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray-tracing algorithm. Two kinds of solid-particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the gas velocity, temperature, particle solid volume fraction, particle outlet temperature, and cavity efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Luo, Qing, Bingqi Yi, and Lei Bi. "Sensitivity of Mixed-Phase Cloud Optical Properties to Cloud Particle Model and Microphysical Factors at Wavelengths from 0.2 to 100 µm." Remote Sensing 13, no. 12 (June 14, 2021): 2330. http://dx.doi.org/10.3390/rs13122330.

Повний текст джерела
Анотація:
The representation of mixed-phase cloud optical properties in models is a critical problem in cloud modeling studies. Ice and liquid water co-existing in a cloud layer result in significantly different cloud optical properties from those of liquid water and ice clouds. However, it is not clear as to how mixed-phase cloud optical properties are affected by various microphysical factors, including the effective particle size, ice volume fraction, and ice particle shape. In this paper, the optical properties (extinction efficiency, scattering efficiency, single scattering albedo, and asymmetry factor) of mixed-phase cloud were calculated assuming externally and internally mixed cloud particle models in a broad spectral range of 0.2–100 μm at various effective particle diameters and ice volume fraction conditions. The influences of various microphysical factors on optical properties were comprehensively examined. For the externally mixed cloud particles, the shapes of ice crystals were found to become more important as the ice volume fraction increases. Compared with the mixed-phase cloud with larger effective diameter, the shape of ice crystals has a greater impact on the optical properties of the mixed-phase cloud with a smaller effective diameter (<20 μm). The optical properties calculated by internally and externally mixed models are similar in the longwave spectrum, while the optical properties of the externally mixed model are more sensitive to variations in ice volume fraction in the solar spectral region. The bulk scattering phase functions were also examined and compared. The results indicate that more in-depth analysis is needed to explore the radiative properties and impacts of mixed-phase clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abdelmonem, A., M. Schnaiter, P. Amsler, E. Hesse, J. Meyer, and T. Leisner. "First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe." Atmospheric Measurement Techniques Discussions 4, no. 3 (May 17, 2011): 2883–930. http://dx.doi.org/10.5194/amtd-4-2883-2011.

Повний текст джерела
Анотація:
Abstract. Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sun, Jiming, Parisa A. Ariya, Henry G. Leighton, and Man Kong Yau. "Modeling Study of Ice Formation in Warm-Based Precipitating Shallow Cumulus Clouds." Journal of the Atmospheric Sciences 69, no. 11 (November 1, 2012): 3315–35. http://dx.doi.org/10.1175/jas-d-11-0344.1.

Повний текст джерела
Анотація:
Abstract Observations of large concentrations of ice particles in the dissipating stage of warm-based precipitating shallow cumulus clouds point to the limitations of scientists’ understanding of the physics of such clouds and the possible role of cloud dynamics. The most commonly accepted mechanisms of ice splinter production in the riming process have limitations to properly explain the rapid production of ice bursts. A more detailed description of the temporal and spatial evolution of hydrometeors and their interaction with cloud condensation nuclei and ice nuclei is needed to understand this phenomenon. A cloud model with bin-resolved microphysics can describe the time-dependent evolution of liquid droplets and ice particles and provide insights into how the physics and dynamics and their interaction may result in ice initiation and ice multiplication. The authors developed a 1.5-dimensional nonhydrostatic convective cloud and aerosol interaction model with spectral (bin) microphysics. The number and mass concentrations of aerosols, including ice nuclei and cloud condensation nuclei, were explicitly followed. Since both in situ observations of bioaerosols and laboratory experiments pointed to efficient nucleation capabilities at relative warm temperatures, it was assumed that ice-nucleating bioaerosols are involved in primary ice particle formation in condensation and immersion modes. Results show that bioaerosols can be the source of primary ice pellets, which in turn lead to high ice concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Waquet, F., C. Cornet, J. L. Deuzé, O. Dubovik, F. Ducos, P. Goloub, M. Herman, et al. "Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements." Atmospheric Measurement Techniques 6, no. 4 (April 15, 2013): 991–1016. http://dx.doi.org/10.5194/amt-6-991-2013.

Повний текст джерела
Анотація:
Abstract. Most of the current aerosol retrievals from passive sensors are restricted to cloud-free scenes, which strongly reduces our ability to monitor the aerosol properties at a global scale and to estimate their radiative forcing. The presence of aerosol above clouds (AAC) affects the polarized light reflected by the cloud layer, as shown by the spaceborne measurements provided by the POlarization and Directionality of Earth Reflectances (POLDER) instrument on the PARASOL satellite. In a previous work, a first retrieval method was developed for AAC scenes and evaluated for biomass-burning aerosols transported over stratocumulus clouds. The method was restricted to the use of observations acquired at forward scattering angles (90–120°) where polarized measurements are highly sensitive to fine-mode particle scattering. Non-spherical particles in the coarse mode, such as mineral dust particles, do not much polarize light and cannot be handled with this method. In this paper, we present new developments that allow retrieving also the properties of mineral dust particles above clouds. These particles do not much polarize light but strongly reduce the polarized cloud bow generated by the liquid cloud layer beneath and observed for scattering angles around 140°. The spectral attenuation can be used to qualitatively identify the nature of the particles (i.e. accumulation mode versus coarse mode, i.e. mineral dust particles versus biomass-burning aerosols), whereas the magnitude of the attenuation is related to the optical thickness of the aerosol layer. We also use the polarized measurements acquired in the cloud bow to improve the retrieval of both the biomass-burning aerosol properties and the cloud microphysical properties. We provide accurate polarized radiance calculations for AAC scenes and evaluate the contribution of the POLDER polarization measurements for the simultaneous retrieval of the aerosol and cloud properties. We investigate various scenes with mineral dust particles and biomass-burning aerosols above clouds. For clouds, our results confirm that the droplet size distribution is narrow in high-latitude ocean regions and that the droplet effective radii retrieved from both polarization measurements and from total radiance measurements are generally close for AAC scenes (departures smaller than 2 μm). We found that the magnitude of the primary cloud bow cannot be accurately estimated with a plane parallel transfer radiative code. The errors for the modeling of the polarized cloud bow are between 4 and 8% for homogenous cloudy scenes, as shown by a 3-D radiative transfer code. These effects only weakly impact the retrieval of the Aerosol Optical Thickness (AOT) performed with a mineral dust particle model for which the microphysical properties are entirely known (relative error smaller than 6%). We show that the POLDER polarization measurements allow retrieving the AOT, the fine-mode particle size, the Ångström exponent and the fraction of spherical particles. However, the complex refractive index and the coarse-mode particle size cannot be accurately retrieved with the present polarization measurements. Our complete and accurate algorithm cannot be applied to process large amounts of data, so a simpler algorithm was developed to retrieve the AOT and the Ångström exponent above clouds in an operational way. Illustrations are provided for July–August 2008 near the African coast. Large mean AOTs above clouds at 0.865 μm (>0.3) are retrieved for oceanic regions near the coasts of South Africa that correspond to biomass-burning aerosols, whereas even larger mean AOTs above clouds for mineral dust particles (>0.6) are also retrieved near the coasts of Senegal. For these regions and time period, the direct AAC radiative forcing is likely to be significant. The final aim of this work is the global monitoring of the AAC properties and the estimation of the direct aerosol radiative forcing in cloudy scenes.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Moharreri, A., L. Craig, P. Dubey, D. C. Rogers, and S. Dhaniyala. "Aircraft testing of the new Blunt-body Aerosol Sampler (BASE)." Atmospheric Measurement Techniques Discussions 7, no. 3 (March 18, 2014): 2663–88. http://dx.doi.org/10.5194/amtd-7-2663-2014.

Повний текст джерела
Анотація:
Abstract. There is limited understanding of aerosol role in the formation and modification of clouds partly due to inadequate data on such systems. Aircraft-based aerosol measurements in the presence of cloud particles has proven to be challenging because of the problem of cloud-droplet/ice-particle shatter and the generation of secondary artifact particles that contaminate aerosol samples. Recently, design of a new aircraft inlet, called the blunt-body aerosol sampler (BASE), which enables sampling of interstitial aerosol particles, was introduced. Numerical modeling results and laboratory test data suggested that the BASE inlet should sample interstitial particles with minimal shatter particle contamination. Here, the sampling performance of the inlet is established from aircraft-based measurements. Initial aircraft test results obtained during the PLOWS campaign indicated two problems with the original BASE design: separated flows around the BASE at high altitudes; and a significant shatter problem when sampling in drizzle. The test data was used to improve the accuracy of flow and particle trajectory modeling around the inlet, and the results from the improved flow model informed several design modifications of BASE to overcome the problems identified from its initial deployment. The performance of the modified BASE was tested during the ICE-T campaign and the inlet was seen to provide near shatter-free measurements in a wide range of cloud conditions. The initial aircraft test results, design modifications, and the performance characteristics of BASE relative to another interstitial inlet, the sub-micron aerosol inlet (SMAI), are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Shima, Shin-ichiro, Yousuke Sato, Akihiro Hashimoto, and Ryohei Misumi. "Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2." Geoscientific Model Development 13, no. 9 (September 8, 2020): 4107–57. http://dx.doi.org/10.5194/gmd-13-4107-2020.

Повний текст джерела
Анотація:
Abstract. The super-droplet method (SDM) is a particle-based numerical scheme that enables accurate cloud microphysics simulation with lower computational demand than multi-dimensional bin schemes. Using SDM, a detailed numerical model of mixed-phase clouds is developed in which ice morphologies are explicitly predicted without assuming ice categories or mass–dimension relationships. Ice particles are approximated using porous spheroids. The elementary cloud microphysics processes considered are advection and sedimentation; immersion/condensation and homogeneous freezing; melting; condensation and evaporation including cloud condensation nuclei activation and deactivation; deposition and sublimation; and coalescence, riming, and aggregation. To evaluate the model's performance, a 2-D large-eddy simulation of a cumulonimbus was conducted, and the life cycle of a cumulonimbus typically observed in nature was successfully reproduced. The mass–dimension and velocity–dimension relationships the model predicted show a reasonable agreement with existing formulas. Numerical convergence is achieved at a super-particle number concentration as low as 128 per cell, which consumes 30 times more computational time than a two-moment bulk model. Although the model still has room for improvement, these results strongly support the efficacy of the particle-based modeling methodology to simulate mixed-phase clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kiliani, J., G. Baumgarten, F. J. Lübken, and U. Berger. "Impact of particle shape on the morphology of noctilucent clouds." Atmospheric Chemistry and Physics Discussions 15, no. 11 (June 15, 2015): 16019–48. http://dx.doi.org/10.5194/acpd-15-16019-2015.

Повний текст джерела
Анотація:
Abstract. Noctilucent clouds (NLC) occur during summer in the polar region at altitudes around 83 km. They consist of ice particles with a typical size around 50 nm. The shape of NLC particles is less well known, but important both for interpreting optical measurements and modeling ice cloud characteristics. In this paper, NLC modeling is adapted to use cylindrical instead of spherical particle shape. The optical properties of the resulting ice clouds are compared directly to NLC 3-color measurements by the ALOMAR RMR-Lidar between 1998 and 2014. Shape distributions including both needle- and disc-shaped particles are consistent with lidar measurements. The best agreement occurs if disc shapes are 60 % more common than needles, with a mean axis ratio of 2.8. Cylindrical particles cause stronger ice clouds on average than spherical shapes by &amp;approx; 30 %, this difference is less pronounced for bright than for weak ice clouds. Cylindrical shapes also cause NLC to have larger but a smaller number of ice particles than for spherical shapes.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fierce, Laura, Nicole Riemer, and Tami C. Bond. "Toward Reduced Representation of Mixing State for Simulating Aerosol Effects on Climate." Bulletin of the American Meteorological Society 98, no. 5 (May 1, 2017): 971–80. http://dx.doi.org/10.1175/bams-d-16-0028.1.

Повний текст джерела
Анотація:
Abstract Atmospheric aerosols affect Earth’s energy budget, and hence its climate, by scattering and absorbing solar radiation and by altering the radiative properties and the lifetime of clouds. These two major aerosol effects depend on the optical properties and the cloud-nucleating ability of individual particles, which, in turn, depend on the distribution of components among individual particles, termed the “aerosol mixing state.” Global models have moved toward including aerosol schemes to represent the evolution of particle characteristics, but individual particle properties cannot be resolved in global-scale simulations. Instead, models approximate the aerosol mixing state. The errors in climate-relevant aerosol properties introduced by such approximations may be large but have not yet been well quantified. This paper quantitatively addresses the question of to what extent the aerosol mixing state must be resolved to adequately represent the optical properties and cloud-nucleating properties of particle populations. Using a detailed benchmarking model to simulate gas condensation and particle coagulation, we show that, after the particles evolve in the atmosphere, simple mixing-state representations are sufficient for modeling cloud condensation nuclei concentrations, and we quantify the mixing time scale that characterizes this transformation. In contrast, a detailed representation of the mixing state is required to model aerosol light absorption, even for populations that are fully mixed with respect to their hygroscopic properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mehdizadeh, Ghazal, Ehsan Erfani, Frank McDonough, and Farnaz Hosseinpour. "Quantifying the Influence of Cloud Seeding on Ice Particle Growth and Snowfall Through Idealized Microphysical Modeling." Atmosphere 15, no. 12 (December 6, 2024): 1460. https://doi.org/10.3390/atmos15121460.

Повний текст джерела
Анотація:
Cloud seeding is a weather modification technique for enhancing precipitation in arid and semi-arid regions, including the Western U.S. However, designing an optimal cloud seeding operation based on comprehensive evaluation metrics, such as seeding agent dispersion and atmospheric conditions, has yet to be thoroughly explored for this region. This study investigated the impacts of cloud seeding, particularly utilizing silver iodide, on ice particle growth within clouds through numerical modeling. By leveraging the Snow Growth Model for Rimed Snowfall (SGMR), the microphysical processes involved in cloud seeding across five distinct events were simulated. The events were in the Lake Tahoe region, nestled within the Sierra Nevada Mountain ranges in the Western U.S. This model was executed based on six primary variables, including cloud top height, cloud base height, cloud top temperature, cloud base temperature, liquid water content, and ice water content. This study incorporated datasets from the Modern-Era Retrospective Analysis for Research and Applications Version 2 and the Clouds and the Earth Radiant Energy System. The findings revealed the importance of ice nucleation, aggregation, diffusion, and riming processes and highlighted the effectiveness of cloud seeding in enhancing ice particle number concentration, ice water content, and snowfall rates. However, event-specific analyses indicated diverse precipitation responses to cloud seeding based on initial atmospheric conditions. The SGMR modeling hints at the importance of improving ice microphysical processes and provides insights for future cloud seeding research using regional and global climate models.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lacher, Larissa, Hans-Christian Clemen, Xiaoli Shen, Stephan Mertes, Martin Gysel-Beer, Alireza Moallemi, Martin Steinbacher, et al. "Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017." Atmospheric Chemistry and Physics 21, no. 22 (November 23, 2021): 16925–53. http://dx.doi.org/10.5194/acp-21-16925-2021.

Повний текст джерела
Анотація:
Abstract. Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, composition, and source in cloud-relevant environments is still limited. During the 2017 joint INUIT/CLACE (Ice Nuclei research UnIT/CLoud–Aerosol Characterization Experiment) field campaign, observations of INPs as well as of aerosol physical and chemical properties were performed, complemented by source region modeling. This aimed at investigating the nature and sources of INPs. The campaign took place at the High-Altitude Research Station Jungfraujoch (JFJ), a location where mixed-phase clouds frequently occur. Due to its altitude of 3580 m a.s.l., the station is usually located in the lower free troposphere, but it can also receive air masses from terrestrial and marine sources via long-range transport. INP concentrations were quasi-continuously detected with the Horizontal Ice Nucleation Chamber (HINC) under conditions representing the formation of mixed-phase clouds at −31 ∘C. The INP measurements were performed in parallel to aerosol measurements from two single-particle mass spectrometers, the Aircraft-based Laser ABlation Aerosol MAss Spectrometer (ALABAMA) and the laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The chemical identity of INPs is inferred by correlating the time series of ion signals measured by the mass spectrometers with the time series of INP measurements. Moreover, our results are complemented by the direct analysis of ice particle residuals (IPRs) by using an ice-selective inlet (Ice-CVI) coupled with the ALABAMA. Mineral dust particles and aged sea spray particles showed the highest correlations with the INP time series. Their role as INPs is further supported by source emission sensitivity analysis using atmospheric transport modeling, which confirmed that air masses were advected from the Sahara and marine environments during times of elevated INP concentrations and ice-active surface site densities. Indeed, the IPR analysis showed that, by number, mineral dust particles dominated the IPR composition (∼58 %), and biological and metallic particles are also found to a smaller extent (∼10 % each). Sea spray particles are also found as IPRs (17 %), and their fraction in the IPRs strongly varied according to the increased presence of small IPRs, which is likely due to an impact from secondary ice crystal formation. This study shows the capability of combining INP concentration measurements with chemical characterization of aerosol particles using single-particle mass spectrometry, source region modeling, and analysis of ice residuals in an environment directly relevant for mixed-phase cloud formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kalesse, H., W. Szyrmer, S. Kneifel, P. Kollias, and E. Luke. "Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling." Atmospheric Chemistry and Physics Discussions 15, no. 20 (October 22, 2015): 28619–58. http://dx.doi.org/10.5194/acpd-15-28619-2015.

Повний текст джерела
Анотація:
Abstract. Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediments through a supercooled liquid water (SLW) layer. The observations were collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland during the BAECC (Biogenic Aerosols – Effects on Clouds and Climate Snowfall Experiment) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are taken into account by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in-situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Hong, Gang, Ping Yang, Bryan A. Baum, Andrew J. Heymsfield, and Kuan-Man Xu. "Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models." Journal of Climate 22, no. 23 (December 1, 2009): 6287–312. http://dx.doi.org/10.1175/2009jcli2844.1.

Повний текст джерела
Анотація:
Abstract Climate modeling and prediction require that the parameterization of the radiative effects of ice clouds be as accurate as possible. The radiative properties of ice clouds are highly sensitive to the single-scattering properties of ice particles and ice cloud microphysical properties such as particle habits and size distributions. In this study, parameterizations for shortwave (SW) and longwave (LW) radiative properties of ice clouds are developed for three existing schemes using ice cloud microphysical properties obtained from five field campaigns and broadband-averaged single-scattering properties of nonspherical ice particles as functions of the effective particle size De (defined as 1.5 times the ratio of total volume to total projected area), which include hexagonal solid columns and hollow columns, hexagonal plates, six-branch bullet rosettes, aggregates, and droxtals. A combination of the discrete ordinates radiative transfer model and a line-by-line model is used to simulate ice cloud radiative forcing (CRF) at both the surface and the top of the atmosphere (TOA) for the three redeveloped parameterization schemes. The differences in CRF for different parameterization schemes are in the range of −5 to 5 W m−2. In general, the large differences in SW and total CRF occur for thick ice clouds, whereas the large differences in LW CRF occur for ice clouds with small ice particles (De less than 20 μm). The redeveloped parameterization schemes are then applied to the radiative transfer models used for climate models. The ice cloud optical and microphysical properties from the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product over a granule and the collocated atmospheric profiles from the Atmospheric Infrared Sounder (AIRS) product are input into these radiative transfer models to compare the differences in CRF between the redeveloped and existing parameterization schemes. Although differences between these schemes are small in the LW CRF, the differences in the SW CRF are quite large.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kou, Leilei, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding. "Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar." Atmospheric Measurement Techniques 16, no. 6 (March 31, 2023): 1723–44. http://dx.doi.org/10.5194/amt-16-1723-2023.

Повний текст джерела
Анотація:
Abstract. This study presents a simulation framework for cloud and precipitation measurements via spaceborne millimeter-wave radar composed of eight submodules. To demonstrate the influence of the assumed physical parameters and to improve the microphysical modeling of the hydrometeors, we first conducted a sensitivity analysis. The results indicated that the radar reflectivity was highly sensitive to the particle size distribution (PSD) parameter of the median volume diameter and particle density parameter, which can cause reflectivity variations of several to more than 10 dB. The variation in the prefactor of the mass–power relations that related to the riming degree may result in an uncertainty of approximately 30 %–45 %. The particle shape and orientation also had a significant impact on the radar reflectivity. The spherical assumption may result in an average overestimation of the reflectivity by approximately 4 %–14 %, dependent on the particle type, shape, and orientation. Typical weather cases were simulated using improved physical modeling, accounting for the particle shapes, typical PSD parameters corresponding to the cloud precipitation types, mass–power relations for snow and graupel, and melting modeling. We present and validate the simulation results for a cold-front stratiform cloud and a deep convective process with observations from a W-band cloud profiling radar (CPR) on the CloudSat satellite. The simulated bright band features, echo structure, and intensity showed a good agreement with the CloudSat observations; the average relative error of radar reflectivity in the vertical profile was within 20 %. Our results quantify the uncertainty in the millimeter-wave radar echo simulation that may be caused by the physical model parameters and provide a scientific basis for optimal forward modeling. They also provide suggestions for prior physical parameter constraints for the retrieval of the microphysical properties of clouds and precipitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kalesse, Heike, Wanda Szyrmer, Stefan Kneifel, Pavlos Kollias, and Edward Luke. "Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling." Atmospheric Chemistry and Physics 16, no. 5 (March 9, 2016): 2997–3012. http://dx.doi.org/10.5194/acp-16-2997-2016.

Повний текст джерела
Анотація:
Abstract. Radar Doppler spectra measurements are exploited to study a riming event when precipitating ice from a seeder cloud sediment through a supercooled liquid water (SLW) layer. The focus is on the "golden sample" case study for this type of analysis based on observations collected during the deployment of the Atmospheric Radiation Measurement Program's (ARM) mobile facility AMF2 at Hyytiälä, Finland, during the Biogenic Aerosols – Effects on Clouds and Climate (BAECC) field campaign. The presented analysis of the height evolution of the radar Doppler spectra is a state-of-the-art retrieval with profiling cloud radars in SLW layers beyond the traditional use of spectral moments. Dynamical effects are considered by following the particle population evolution along slanted tracks that are caused by horizontal advection of the cloud under wind shear conditions. In the SLW layer, the identified liquid peak is used as an air motion tracer to correct the Doppler spectra for vertical air motion and the ice peak is used to study the radar profiles of rimed particles. A 1-D steady-state bin microphysical model is constrained using the SLW and air motion profiles and cloud top radar observations. The observed radar moment profiles of the rimed snow can be simulated reasonably well by the model, but not without making several assumptions about the ice particle concentration and the relative role of deposition and aggregation. This suggests that in situ observations of key ice properties are needed to complement the profiling radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Baumgarten, G., J. Fiedler, and M. Rapp. "On microphysical processes of noctilucent clouds (NLC): observations and modeling of mean and width of the particle size-distribution." Atmospheric Chemistry and Physics 10, no. 14 (July 21, 2010): 6661–68. http://dx.doi.org/10.5194/acp-10-6661-2010.

Повний текст джерела
Анотація:
Abstract. Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lasher-Trapp, Sonia, David C. Leon, Paul J. DeMott, Cecille M. Villanueva-Birriel, Alexandria V. Johnson, Daniel H. Moser, Colin S. Tully, and Wei Wu. "A Multisensor Investigation of Rime Splintering in Tropical Maritime Cumuli." Journal of the Atmospheric Sciences 73, no. 6 (June 1, 2016): 2547–64. http://dx.doi.org/10.1175/jas-d-15-0285.1.

Повний текст джерела
Анотація:
Abstract Three flights from the Ice in Clouds Experiment–Tropical (ICE-T) field campaign examined the onset of ice near the ascending cloud tops of tropical maritime cumuli as they cooled from 0° to −14°C. Careful quantitative analysis of ice number concentrations included manual scrutiny of particle images and corrections for possible particle-shattering artifacts. The novel use of the Wyoming Cloud Radar documented the stage of cloud development and tops relative to the aircraft sampling, complemented the manual estimates of graupel concentrations, and provided new clear evidence of graupel movement through the rime-splintering zone. Measurements of ice-nucleating particles (INPs) provided an estimate of primary initiated ice. The data portray a dynamically complex picture of hydrometeor transport contributing to, and likely resulting from, the rime-splintering process. Hundreds per liter of supercooled raindrops ascended within the updrafts as the cloud tops reached 0°C and contributed in part to the 0.1 L−1 graupel detected soon after the cloud tops cooled to −5°C. Rime splintering could thus be initiated upon first ascent of the cloud top through that zone and arguably contributed to the 1 L−1 or more graupel observed above it. Graupel ascending/descending into, or balanced within, the rime-splintering zone were found. In wider, less isolated clouds with dying updrafts and tops near −14°C, ice particle concentrations sometimes reached 100 L−1. Future 3D numerical modeling will be required to evaluate if rime splintering alone can explain the difference of three to four orders of magnitude in the observed INPs and the graupel observed at −5°C and colder.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Vahidinia, Sanaz, Sarah E. Moran, Mark S. Marley, and Jeffrey N. Cuzzi. "Aggregate Cloud Particle Effects in Exoplanet Atmospheres." Publications of the Astronomical Society of the Pacific 136, no. 8 (August 1, 2024): 084404. http://dx.doi.org/10.1088/1538-3873/ad6cf2.

Повний текст джерела
Анотація:
Abstract Aerosol opacity has emerged as a critical factor controlling transmission and emission spectra. We provide a simple guideline for the effects of aerosol morphology on opacity and residence time in the atmosphere, as it pertains to transit observations, particularly those with flat spectra due to high altitude aerosols. This framework can be used for understanding complex cloud and haze particle properties before getting into detailed microphysical modeling. We consider high altitude aerosols to be composed of large fluffy particles that can have large residence times in the atmosphere and influence the deposition of stellar flux and/or the emergence of thermal emission in a different way than compact droplet particles, as generally modeled to date for extrasolar planetary atmospheres. We demonstrate the important influence of aggregate particle porosity and composition on the extent of the wavelength independent regime. We also consider how such fluffy particles reach such high altitudes and conclude that the most likely scenario is their local production at high altitudes via UV bombardment and subsequent blanketing of the atmosphere, rather than some mechanism of lofting or transport from the lower atmosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Liu, Yangang, Man-Kong Yau, Shin-ichiro Shima, Chunsong Lu, and Sisi Chen. "Parameterization and Explicit Modeling of Cloud Microphysics: Approaches, Challenges, and Future Directions." Advances in Atmospheric Sciences 40, no. 5 (April 4, 2023): 747–90. http://dx.doi.org/10.1007/s00376-022-2077-3.

Повний текст джерела
Анотація:
AbstractCloud microphysical processes occur at the smallest end of scales among cloud-related processes and thus must be parameterized not only in large-scale global circulation models (GCMs) but also in various higher-resolution limited-area models such as cloud-resolving models (CRMs) and large-eddy simulation (LES) models. Instead of giving a comprehensive review of existing microphysical parameterizations that have been developed over the years, this study concentrates purposely on several topics that we believe are understudied but hold great potential for further advancing bulk microphysics parameterizations: multi-moment bulk microphysics parameterizations and the role of the spectral shape of hydrometeor size distributions; discrete vs “continuous” representation of hydrometeor types; turbulence-microphysics interactions including turbulent entrainment-mixing processes and stochastic condensation; theoretical foundations for the mathematical expressions used to describe hydrometeor size distributions and hydrometeor morphology; and approaches for developing bulk microphysics parameterizations. Also presented are the spectral bin scheme and particle-based scheme (especially, super-droplet method) for representing explicit microphysics. Their advantages and disadvantages are elucidated for constructing cloud models with detailed microphysics that are essential to developing processes understanding and bulk microphysics parameterizations. Particle-resolved direct numerical simulation (DNS) models are described as an emerging technique to investigate turbulence-microphysics interactions at the most fundamental level by tracking individual particles and resolving the smallest turbulent eddies in turbulent clouds. Outstanding challenges and future research directions are explored as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kiliani, J., G. Baumgarten, F. J. Lübken, and U. Berger. "Impact of particle shape on the morphology of noctilucent clouds." Atmospheric Chemistry and Physics 15, no. 22 (November 19, 2015): 12897–907. http://dx.doi.org/10.5194/acp-15-12897-2015.

Повний текст джерела
Анотація:
Abstract. Noctilucent clouds (NLCs) occur during summer in the polar region at altitudes around 83 km. They consist of ice particles with a typical size around 50 nm. The shape of NLC particles is less well known but is important both for interpreting optical measurements and modeling ice cloud characteristics. In this paper, NLC modeling of microphysics and optics is adapted to use cylindrical instead of spherical particle shape. The optical properties of the resulting ice clouds are compared directly to NLC three-color measurements by the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) Rayleigh/Mie/Raman (RMR) lidar between 1998 and 2014. Shape distributions including both needle- and disc-shaped particles are consistent with lidar measurements. The best agreement occurs if disc shapes are 60 % more common than needles, with a mean axis ratio of 2.8. Cylindrical particles cause stronger ice clouds on average than spherical shapes with an increase of backscatter at 532 nm by &amp;approx; 30 % and about 20 % in ice mass density. This difference is less pronounced for bright than for weak ice clouds. Cylindrical shapes also cause NLCs to have larger but a smaller number of ice particles than for spherical shapes.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Braga, Ramon Campos, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, et al. "Cloud droplet formation at the base of tropical convective clouds: closure between modeling and measurement results of ACRIDICON–CHUVA." Atmospheric Chemistry and Physics 21, no. 23 (December 2, 2021): 17513–28. http://dx.doi.org/10.5194/acp-21-17513-2021.

Повний текст джерела
Анотація:
Abstract. Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for flights in differently polluted air masses. Model input parameters included aerosol size distributions measured with an ultra-high sensitive aerosol spectrometer (UHSAS), in combination with a condensation particle counter (CPC). Updraft velocities (w) were measured with a boom-mounted Rosemount probe. Over the continent, the aerosol size distributions were dominated by accumulation mode particles, and good agreement between measured and modeled Nd values was obtained (deviations ≲ 10 %) assuming an average hygroscopicity of κ∼0.1, which is consistent with Amazonian biomass burning and secondary organic aerosol. Above the ocean, fair agreement was obtained assuming an average hygroscopicity of κ∼0.2 (deviations ≲ 16 %) and further improvement was achieved assuming different hygroscopicities for Aitken and accumulation mode particles (κAit=0.8, κacc=0.2; deviations ≲ 10 %), which may reflect secondary marine sulfate particles. Our results indicate that Aitken mode particles and their hygroscopicity can be important for droplet formation at low pollution levels and high updraft velocities in tropical convective clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Solomos, S., G. Kallos, J. Kushta, M. Astitha, C. Tremback, A. Nenes, and Z. Levin. "An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation." Atmospheric Chemistry and Physics Discussions 10, no. 10 (October 14, 2010): 23959–4014. http://dx.doi.org/10.5194/acpd-10-23959-2010.

Повний текст джерела
Анотація:
Abstract. The amount of airborne particles that will nucleate and form cloud droplets under specific atmospheric conditions, depends on their number concentration, size distribution and chemical composition. Aerosol is affected by primary particle emissions, gas-phase precursors, their transformation and interaction with atmospheric constituents, clouds and dynamics. A comprehensive assessment of these interactions requires an integrated approach; most studies however decouple aerosol processes from cloud and atmospheric dynamics and cannot account for all the feedbacks involved in aerosol-cloud-climate interactions. This study addresses aerosol-cloud-climate interactions with the Integrated Community Limited Area Modeling System (ICLAMS) that includes online parameterization of the physical and chemical processes between air quality and meteorology. ICLAMS is an extended version of the Regional Atmospheric Modeling System (RAMS) and it has been designed for coupled air quality – meteorology studies. Model sensitivity tests for a single-cloud study as well as for a case study over the Eastern Mediterranean illustrate the importance of aerosol properties in cloud formation and precipitation. Mineral dust particles are often coated with soluble material such as sea-salt, thus exhibiting increased CCN efficiency. Increasing the percentage of salt-coated dust particles by 15% in the model resulted in more vigorous convection and more intense updrafts. The clouds that were formed extended about 3 km higher and the initiation of precipitation was delayed by one hour. Including on-line parameterization of the aerosol effects improved the model bias for the twenty-four hour accumulated precipitation by 7%. However, the spatial distribution and the amounts of precipitation varied greatly between the different aerosol scenarios. These results indicate the large portion of uncertainty that remains unresolved and the need for more accurate description of aerosol feedbacks in atmospheric models and climate change predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Arreaga-García, Guillermo, and Julio Saucedo-Morales. "Hydrodynamic Modeling of the Interaction of Winds within a Collapsing Turbulent Gas Cloud." Advances in Astronomy 2015 (2015): 1–19. http://dx.doi.org/10.1155/2015/196304.

Повний текст джерела
Анотація:
By using the particle-based code Gadget2, we follow the evolution of a gas giant molecular cloud, in which a set of gas particles representing the wind are created by a Monte Carlo scheme and suddenly move outwards from the cloud’s center. The particles representing the gas cloud initially have a velocity according to a turbulent spectrum built in a Fourier space of 643grid elements. The level of turbulence and the temperature of the cloud are both adjusted so that a gravitational collapse of the cloud is initially induced. All the winds are activated in a very early stage of evolution of the cloud. We consider only two kinds of winds, namely, one with spherical symmetry and the second one of a bipolar collimated jet. In order to assess the dynamical change in the cloud due to interactions with the winds, we show isovelocity and isodensity plots for all our simulations. We also report on the accretion centers detected at the last simulation time available for each model.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rose, Clémence, Nadine Chaumerliac, Laurent Deguillaume, Hélène Perroux, Camille Mouchel-Vallon, Maud Leriche, Luc Patryl, and Patrick Armand. "Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)." Atmospheric Chemistry and Physics 18, no. 3 (February 15, 2018): 2225–42. http://dx.doi.org/10.5194/acp-18-2225-2018.

Повний текст джерела
Анотація:
Abstract. The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3–C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Matrosov, Sergey Y. "Evaluations of the Spheroidal Particle Model for Describing Cloud Radar Depolarization Ratios of Ice Hydrometeors." Journal of Atmospheric and Oceanic Technology 32, no. 5 (May 2015): 865–79. http://dx.doi.org/10.1175/jtech-d-14-00115.1.

Повний текст джерела
Анотація:
AbstractInformation on ice cloud particle nonsphericity is important for many practical applications ranging from modeling the cloud radiation impact to remote sensing of hydrometeor microphysical properties. Scanning cloud radars, which often measure depolarization ratio as a sole polarization variable, can provide a means for retrieving this information. The applicability of a spheroidal particle model (i.e., a regular ellipsoid that has two principal axes of the same length) is evaluated for describing depolarization properties of ice particles. It is shown that this simple model, which uses an aspect ratio as a single parameter characterizing particle nonsphericity, explains reasonably well the scatter of slant 45° linear depolarization ratio (SLDR) measurements versus direct estimates of the zenith direction backscatter enhancement observed during the Storm Peak Laboratory Cloud Property Validation Experiment (StormVEx) with the scanning W-band cloud radar (SWACR). Observed SLDR elevation angle patterns are also approximated reasonably well by this shape model. It is suggested that an SLDR difference between slant and zenith radar pointing can be used for prospective remote sensing methods of inferring particle aspect ratio from cloud radar depolarization measurements. Depending on mass–size relations, the value of this difference corresponding to median zenith reflectivity enhancement observed during StormVEx relates to aspect ratios of about 0.5 ± 0.2, which generally agrees with typical aspect ratios of ice particles. Expected aspect ratio retrieval uncertainties within the spheroidal shape model and the use of different types of radar depolarization ratio measurements are discussed. A correction for estimated zenith direction reflectivity enhancements due to particle nonsphericity is suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ding, Han, and Liping Liu. "Establishment and Preliminary Application of the Forward Modeling Method for Doppler Spectral Density of Ice Particles." Remote Sensing 12, no. 20 (October 15, 2020): 3378. http://dx.doi.org/10.3390/rs12203378.

Повний текст джерела
Анотація:
Owing to the various shapes of ice particles, the relationships between fall velocity, backscattering cross-section, mass, and particle size are complicated. This affects the application of cloud radar Doppler spectral density data in the retrieval of the microphysical properties of ice crystals. In this study, under the assumption of six particle shape types, the relationships between particle mass, fall velocity, backscattering cross-section, and particle size were established based on existing research. Variations of Doppler spectral density with the same particle size distribution (PSD) of different ice particle types are discussed. The radar-retrieved liquid and ice PSDs, water content, and mean volume-weighted particle diameter were compared with airborne in situ observations in the Xingtai, Hebei Province, China, in 2018. The results showed the following. (1) For the particles with the same equivalent diameter (De), the fall velocity of the aggregates was the largest, followed by hexagonal columns, hexagonal plates, sector plates, and stellar crystals, with the ice spheres falling two to three times faster than ice crystals with the same De. Hexagonal columns had the largest backscattering cross-section, followed by stellar crystals and sector plates, and the backscattering cross-sections of hexagonal plates and the two types of aggregates were very close to those of ice spheres. (2) The width of the simulated radar Doppler spectral density generated by various ice crystal types with the same PSD was mainly affected by the particle’s falling velocity, which increased with the particle size. Turbulence had different degrees of influence on the Doppler spectrum of different ice crystals, and it also brought large errors to the PSD retrieval. (3) PSD comparisons showed that each ice crystal type retrieved from the cloud radar corresponded well to aircraft observations within a certain scale range, when assuming that only a certain type of ice crystals existed in the cloud, which could fully prove the feasibility of retrieving ice PSDs from the reflectivity spectral density.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Cirisan, A., B. P. Luo, I. Engel, F. G. Wienhold, M. Sprenger, U. K. Krieger, U. Weers, et al. "Balloon-borne match measurements of midlatitude cirrus clouds." Atmospheric Chemistry and Physics 14, no. 14 (July 18, 2014): 7341–65. http://dx.doi.org/10.5194/acp-14-7341-2014.

Повний текст джерела
Анотація:
Abstract. Observations of high supersaturations with respect to ice inside cirrus clouds with high ice water content (> 0.01 g kg−1) and high crystal number densities (> 1 cm−3) are challenging our understanding of cloud microphysics and of climate feedback processes in the upper troposphere. However, single measurements of a cloudy air mass provide only a snapshot from which the persistence of ice supersaturation cannot be judged. We introduce here the "cirrus match technique" to obtain information about the evolution of clouds and their saturation ratio. The aim of these coordinated balloon soundings is to analyze the same air mass twice. To this end the standard radiosonde equipment is complemented by a frost point hygrometer, "SnowWhite", and a particle backscatter detector, "COBALD" (Compact Optical Backscatter AerosoL Detector). Extensive trajectory calculations based on regional weather model COSMO (Consortium for Small-Scale Modeling) forecasts are performed for flight planning, and COSMO analyses are used as a basis for comprehensive microphysical box modeling (with grid scale of 2 and 7 km, respectively). Here we present the results of matching a cirrus cloud to within 2–15 km, realized on 8 June 2010 over Payerne, Switzerland, and a location 120 km downstream close to Zurich. A thick cirrus cloud was detected over both measurement sites. We show that in order to quantitatively reproduce the measured particle backscatter ratios, the small-scale temperature fluctuations not resolved by COSMO must be superimposed on the trajectories. The stochastic nature of the fluctuations is captured by ensemble calculations. Possibilities for further improvements in the agreement with the measured backscatter data are investigated by assuming a very slow mass accommodation of water on ice, the presence of heterogeneous ice nuclei, or a wide span of (spheroidal) particle shapes. However, the resulting improvements from these microphysical refinements are moderate and comparable in magnitude with changes caused by assuming different regimes of temperature fluctuations for clear-sky or cloudy-sky conditions, highlighting the importance of proper treatment of subscale fluctuations. The model yields good agreement with the measured backscatter over both sites and reproduces the measured saturation ratios with respect to ice over Payerne. Conversely, the 30% in-cloud supersaturation measured in a massive 4 km thick cloud layer over Zurich cannot be reproduced, irrespective of the choice of meteorological or microphysical model parameters. The measured supersaturation can only be explained by either resorting to an unknown physical process, which prevents the ice particles from consuming the excess humidity, or – much more likely – by a measurement error, such as a contamination of the sensor housing of the SnowWhite hygrometer by a precipitation drop from a mixed-phase cloud just below the cirrus layer or from some very slight rain in the boundary layer. This uncertainty calls for in-flight checks or calibrations of hygrometers under the special humidity conditions in the upper troposphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Andreae, Meinrat O., Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, et al. "Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin." Atmospheric Chemistry and Physics 18, no. 2 (January 25, 2018): 921–61. http://dx.doi.org/10.5194/acp-18-921-2018.

Повний текст джерела
Анотація:
Abstract. Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhang, Zhi Chun, Song Wei Li, Song Yan Lu, Wen Xu, and Yun He. "3D Cloud Simulation Technology in Flight Visual System." Advanced Materials Research 909 (March 2014): 418–22. http://dx.doi.org/10.4028/www.scientific.net/amr.909.418.

Повний текст джерела
Анотація:
The simulation technology of 3D cloud can be the ideal method to meet both making human visual scenes realistic and generating weather radar images in flight simulations. This paper describes a 3D cloud simulation method and technology that focuses in three aspects of cloud modeling, lighting and rendering. Firstly, the 3D cloud was modeled in a particle system to specify the atmosphere characteristics of cloud in natural world, then the textures were mapped to the particles to improve the cloud authentic and the lighting model was established to make the cloud environments realistic. Finally, the impostor technology was used to accelerate the rendering speed. The implementation on PC platform shows that the method and technology can generate realistic 3D cloud and the real time ability is satisfied.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Pfreundschuh, Simon, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald. "Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems." Atmospheric Measurement Techniques 15, no. 3 (February 9, 2022): 677–99. http://dx.doi.org/10.5194/amt-15-677-2022.

Повний текст джерела
Анотація:
Abstract. Accurate measurements of ice hydrometeors are required to improve the representation of clouds and precipitation in weather and climate models. In this study, a newly developed, synergistic retrieval algorithm that combines radar with passive millimeter and sub-millimeter observations is applied to observations of three frontally generated, mid-latitude cloud systems in order to validate the retrieval and assess its capabilities to constrain the properties of ice hydrometeors. To account for uncertainty in the assumed shapes of ice particles, the retrieval is run multiple times while the shape is varied. Good agreement with in situ measurements of ice water content and particle concentrations for particle maximum diameters larger than 200 µm is found for one of the flights for the large plate aggregate and the six-bullet rosette shapes. The variational retrieval fits the observations well, although small systematic deviations are observed for some of the sub-millimeter channels pointing towards issues with the sensor calibration or the modeling of gas absorption. For one of the flights the quality of the fit to the observations exhibits a weak dependency on the assumed ice particle shape, indicating that the employed combination of observations may provide limited information on the shape of ice particles in the observed clouds. Compared to a radar-only retrieval, the results show an improved sensitivity of the synergistic retrieval to the microphysical properties of ice hydrometeors at the base of the cloud. Our findings indicate that the synergy between active and passive microwave observations may improve remote-sensing measurements of ice hydrometeors and thus help to reduce uncertainties that affect currently available data products. Due to the increased sensitivity to their microphysical properties, the retrieval may also be a valuable tool to study ice hydrometeors in field campaigns. The good fits obtained to the observations increase confidence in the modeling of clouds in the Atmospheric Radiative Transfer Simulator and the corresponding single scattering database, which were used to implement the retrieval forward model. Our results demonstrate the suitability of these tools to produce realistic simulations for upcoming sub-millimeter sensors such as the Ice Cloud Image or the Arctic Weather Satellite.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dedekind, Zane, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer. "Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps." Atmospheric Chemistry and Physics 24, no. 9 (May 8, 2024): 5389–404. http://dx.doi.org/10.5194/acp-24-5389-2024.

Повний текст джерела
Анотація:
Abstract. The ice phase impacts many cloud properties as well as cloud lifetime. Ice particles that sediment into a lower cloud from an upper cloud (external seeder–feeder process) or into the mixed-phase region of a deep cloud from cirrus levels (internal seeder–feeder process) can influence the ice phase of the lower cloud, amplify cloud glaciation and enhance surface precipitation. Recently, numerical weather prediction modeling studies have aimed at representing the ice crystal number concentration in mixed-phase clouds more accurately by including secondary ice formation processes. The increase in the ice crystal number concentration can impact the number of ice particles that sediment into the lower cloud and alter its composition and precipitation formation. In the Swiss Alps, the orography permits the formation of orographic clouds, making it ideal for studying the occurrence of multi-layered clouds and the seeder–feeder process. We present results from a case study on 18 May 2016, showing the occurrence frequency of multi-layered clouds and the seeder–feeder process. About half of all observed clouds were categorized as multi-layered, and the external seeder–feeder process occurred in 10 % of these clouds. Between cloud layers, ≈60 % of the ice particle mass was lost due to sublimation or melting. The external seeder–feeder process was found to be more important than the internal seeder–feeder process with regard to the impact on precipitation. In the case where the external seeder–feeder process was inhibited, the average surface precipitation and riming rate over the domain were both reduced by 8.5 % and 3.9 %, respectively. When ice–graupel collisions were allowed, further large reductions were seen in the liquid water fraction and riming rate. Inhibiting the internal seeder–feeder process enhanced the liquid water fraction by 6 % compared to a reduction of 5.8 % in the cloud condensate, therefore pointing towards the de-amplification in cloud glaciation and a reduction in surface precipitation. Adding to the observational evidence of frequent seeder–feeder situations, at least over Switzerland, our study highlights the extensive influence of sedimenting ice particles on the properties of feeder clouds as well as on precipitation formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ozernoy, Leonid M. "Physical Modeling of the Zodiacal Dust Cloud." Symposium - International Astronomical Union 204 (2001): 17–34. http://dx.doi.org/10.1017/s0074180900225850.

Повний текст джерела
Анотація:
This review is based on extensive work done in collaboration with N. Gorkavyi, J. Mather, and T. Taidakova, which aimed at physical modeling of the interplanetary dust (IPD) cloud in the Solar System, i.e., establishing a link between the observable characteristics of the zodiacal cloud and the dynamical and physical properties of the parent minor bodies. Our computational approach permits one to integrate the trajectories of hundreds of particles and to effectively store up to 1010–11 positions with modest computer resources, providing a high fidelity 3D distribution of the dust. Our numerical codes account for the major dynamical effects that govern the motion of IPD particles: Poynting-Robertson (P-R) drag and solar wind drag; solar radiation pressure; particle evaporation; gravitational scattering by the planets; and the influence of mean-motion resonances. The incorporation of secular resonances and collisions of dust particles (both mutual and with interstellar dust) is underway. We have demonstrated the efficacy of our codes by performing the following analyses: (i) simulation of the distribution of Centaurs (comets scattered in their journey from the Kuiper belt inward in the Solar System) and revealing the effects of the outer planets in producing ‘cometary belts’; (ii) detailed inspection of a rich resonant structure found in these belts, which predicts the existence of gaps similar to the Kirkwood gaps in the main asteroid belt; (iii) a preliminary 3-D physical model of the IPD cloud, which includes three dust components – asteroidal, cometary, and kuiperoidal – and is consistent with the available data of Pioneer and Voyager dust detectors; (iv) modeling of the IPD cloud, which provides a zodiacal light distribution in accord, to the order of 1%, with a subset of the COBE/DIRBE observations; and (v) showing that the resonant structure in dusty circumstellar disks of Vega and Epsilon Eridani is a signature of embedded extrasolar planets. Further improvements of our modeling and their importance for astronomy and cosmology are outlined.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Skrotzki, J., P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner. "The accommodation coefficient of water molecules on ice-cirrus cloud studies at the AIDA simulation chamber." Atmospheric Chemistry and Physics Discussions 12, no. 9 (September 18, 2012): 24351–93. http://dx.doi.org/10.5194/acpd-12-24351-2012.

Повний текст джерела
Анотація:
Abstract. Cirrus clouds and their impact on the Earth's radiative budget are subjects of current research. The processes governing the growth of cirrus ice particles are central to the radiative properties of cirrus clouds. At temperatures relevant to cirrus clouds, the growth of ice crystals smaller than a few microns in size is strongly influenced by the accommodation coefficient of water molecules on ice, αice, making this parameter relevant for cirrus cloud modeling. However, the experimentally determined magnitude of αice for cirrus temperatures is afflicted with uncertainties of almost three orders of magnitude and values for αice derived from cirrus cloud data lack significance so far. This has motivated dedicated experiments at the cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) to determine αice in the cirrus-relevant temperature interval between 190 K and 235 K under realistic cirrus ice particle growth conditions. The experimental data sets have been evaluated independently with two model approaches: the first relying on the newly developed model SIGMA (Simple Ice Growth Model for determining Alpha), the second one on an established model, ACPIM (Aerosol-Cloud-Precipitation Interaction Model). Within both approaches, a careful uncertainty analysis of the obtained αice values has been carried out for each AIDA experiment. The results show no significant dependence of αice on temperature between 190 K and 235 K. In addition, we find no evidence for a dependence of αice on ice particle size or on water vapor supersaturation for ice particles smaller than 20 μm and supersaturations of up to 70%. The temperature averaged and combined result from both models is αice=0.6−0.4+0.4 which implies that αice may only exert a minor impact on cirrus clouds and their characteristics when compared to the assumption of αice=1. Impact on prior calculations of cirrus cloud properties, e.g. in climate models, with αice typically chosen in the range 0.2–1 is thus expected to be negligible. In any case, we provide a well constrained αice which future cirrus model studies can rely on.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Skrotzki, J., P. Connolly, M. Schnaiter, H. Saathoff, O. Möhler, R. Wagner, M. Niemand, V. Ebert, and T. Leisner. "The accommodation coefficient of water molecules on ice – cirrus cloud studies at the AIDA simulation chamber." Atmospheric Chemistry and Physics 13, no. 8 (April 29, 2013): 4451–66. http://dx.doi.org/10.5194/acp-13-4451-2013.

Повний текст джерела
Анотація:
Abstract. Cirrus clouds and their impact on the Earth's radiative budget are subjects of current research. The processes governing the growth of cirrus ice particles are central to the radiative properties of cirrus clouds. At temperatures relevant to cirrus clouds, the growth of ice crystals smaller than a few microns in size is strongly influenced by the accommodation coefficient of water molecules on ice, αice, making this parameter relevant for cirrus cloud modeling. However, the experimentally determined magnitude of αice for cirrus temperatures is afflicted with uncertainties of almost three orders of magnitude, and values for αice derived from cirrus cloud data lack significance so far. This has motivated dedicated experiments at the cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) to determine αice in the cirrus-relevant temperature interval between 190 K and 235 K under realistic cirrus ice particle growth conditions. The experimental data sets have been evaluated independently with two model approaches: the first relying on the newly developed model SIGMA (Simple Ice Growth Model for determining Alpha), the second one on an established model, ACPIM (Aerosol-Cloud-Precipitation Interaction Model). Within both approaches a careful uncertainty analysis of the obtained αice values has been carried out for each AIDA experiment. The results show no significant dependence of αice on temperature between 190 K and 235 K. In addition, we find no evidence for a dependence of αice on ice particle size or on water vapor supersaturation for ice particles smaller than 20 μm and supersaturations of up to 70%. The temperature-averaged and combined result from both models is αice = 0.7−0.5+0.3, which implies that αice may only exert a minor impact on cirrus clouds and their characteristics when compared to the assumption of αice =1. Impact on prior calculations of cirrus cloud properties, e.g., in climate models, with αice typically chosen in the range 0.2–1 is thus expected to be negligible. In any case, we provide a well-constrained αice which future cirrus model studies can rely on.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Engel, I., B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J. U. Grooß, M. C. Pitts, and T. Peter. "Arctic stratospheric dehydration – Part 2: Microphysical modeling." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 18, 2013): 27163–200. http://dx.doi.org/10.5194/acpd-13-27163-2013.

Повний текст джерела
Анотація:
Abstract. Large areas of synoptic-scale ice PSCs (Polar Stratospheric Clouds) distinguished the Arctic winter 2009/2010 from other years and revealed unprecedented evidence of water redistribution in the stratosphere. A unique snapshot of water vapor repartitioning into ice particles was observed under extremely cold Arctic conditions with temperatures around 183 K. Balloon-borne, aircraft and satellite-based measurements suggest that synoptic-scale ice PSCs and concurrent reductions and enhancements in water vapor are tightly linked with the observed de- and rehydration signatures, respectively. In a companion paper (Part 1), water vapor and aerosol backscatter measurements from the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) and LAPBIAT-II (Lapland Atmosphere-Biosphere Facility) field campaigns have been analyzed in detail. This paper uses a column version of the Zurich Optical and Microphysical box Model (ZOMM) including newly developed NAT (Nitric Acid Trihydrate) and ice nucleation parameterizations. Particle sedimentation is calculated in order to simulate the vertical redistribution of chemical species such as water and nitric acid. Accounting for small-scale temperature fluctuations along the trajectory is essential to reach agreement between simulated optical cloud properties and observations. Whereas modeling only homogeneous nucleation causes the formation of ice clouds with particle radii too small to explain the measured vertical redistribution of water, we show that the use of recently developed heterogeneous ice nucleation parameterizations allows the model to quantitatively reproduce the observed signatures of de- and rehydration.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Grythe, Henrik, Nina I. Kristiansen, Christine D. Groot Zwaaftink, Sabine Eckhardt, Johan Ström, Peter Tunved, Radovan Krejci, and Andreas Stohl. "A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10." Geoscientific Model Development 10, no. 4 (April 7, 2017): 1447–66. http://dx.doi.org/10.5194/gmd-10-1447-2017.

Повний текст джерела
Анотація:
Abstract. A new, more physically based wet removal scheme for aerosols has been implemented in the Lagrangian particle dispersion model FLEXPART. It uses three-dimensional cloud water fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) to determine cloud extent and distinguishes between in-cloud and below-cloud scavenging. The new in-cloud nucleation scavenging depends on cloud water phase (liquid, ice or mixed-phase), based on the aerosol's prescribed efficiency to serve as ice crystal nuclei and liquid water nuclei, respectively. The impaction scavenging scheme now parameterizes below-cloud removal as a function of aerosol particle size and precipitation type (snow or rain) and intensity.Sensitivity tests with the new scavenging scheme and comparisons with observational data were conducted for three distinct types of primary aerosols, which pose different challenges for modeling wet scavenging due to their differences in solubility, volatility and size distribution: (1) 137Cs released during the Fukushima nuclear accident attached mainly to highly soluble sulphate aerosol particles, (2) black carbon (BC) aerosol particles, and (3) mineral dust. Calculated e-folding lifetimes of accumulation mode aerosols for these three aerosol types were 11.7, 16.0, and 31.6 days respectively, when well mixed in the atmosphere. These are longer lifetimes than those obtained by the previous removal schem, and, for mineral dust in particular, primarily result from very slow in-cloud removal, which globally is the primary removal mechanism for these accumulation mode particles.Calculated e-folding lifetimes in FLEXPART also have a strong size dependence, with the longest lifetimes found for the accumulation-mode aerosols. For example, for dust particles emitted at the surface the lifetimes were 13.8 days for particles with 1 µm diameter and a few hours for 10 µm particles. A strong size dependence in below-cloud scavenging, combined with increased dry removal, is the primary reason for the shorter lifetimes of the larger particles. The most frequent removal is in-cloud scavenging (85 % of all scavenging events) but it occurs primarily in the free troposphere, while below-cloud removal is more frequent below 1000 m (52 % of all events) and can be important for the initial fate of species emitted at the surface, such as those examined here.For assumed realistic in-cloud removal efficiencies, both BC and sulphate have a slight overestimation of observed atmospheric concentrations (a factor of 1.6 and 1.2 respectively). However, this overestimation is largest close to the sources and thus appears more related to overestimated emissions rather than underestimated removal. The new aerosol wet removal scheme of FLEXPART incorporates more realistic information about clouds and aerosol properties and it compares better with both observed lifetimes and concentration than the old scheme.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Deeter, Merritt N., and K. Franklin Evans. "A Novel Ice-Cloud Retrieval Algorithm Based on the Millimeter-Wave Imaging Radiometer (MIR) 150- and 220-GHz Channels." Journal of Applied Meteorology 39, no. 5 (May 1, 2000): 623–33. http://dx.doi.org/10.1175/1520-0450-39.5.623.

Повний текст джерела
Анотація:
Abstract A novel microwave technique for simultaneously retrieving cirrus ice water path (IWP) and characteristic ice particle size is described. The retrieval algorithm exploits radiance measurements made at 150 and 220 GHz by the airborne Millimeter-Wave Imaging Radiometer (MIR). Other MIR channels additionally are used to test for the presence of liquid clouds and precipitation, which otherwise would have a contaminating effect on the retrievals. Forward radiative transfer modeling was used to generate a two-dimensional retrieval table in which brightness-temperature depressions (relative to clear-sky values) for both microwave channels were recorded as functions of IWP and characteristic particle size for gamma distributions of ice particles. Retrieval errors due to particle shape, size distribution, clear-sky water vapor variability, cirrus-cloud altitude variability, and instrument noise were estimated using Monte Carlo analysis. Particle shape uncertainty is believed to be the dominant source of retrieval error. The technique is demonstrated using MIR data recorded on the National Aeronautics and Space Administration ER-2 aircraft during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment experiment in the tropical western Pacific Ocean in 1993. The retrieval technique with MIR data is suited only to high-IWP clouds with large ice particles, such as thick frontal cirrus and convective anvils. The general methodology, however, is applicable to higher frequencies that have greatly increased sensitivity to thinner cirrus.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wehbe, Youssef, Sarah A. Tessendorf, Courtney Weeks, Roelof Bruintjes, Lulin Xue, Roy Rasmussen, Paul Lawson, Sarah Woods, and Marouane Temimi. "Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates." Atmospheric Chemistry and Physics 21, no. 16 (August 23, 2021): 12543–60. http://dx.doi.org/10.5194/acp-21-12543-2021.

Повний текст джерела
Анотація:
Abstract. Aerosol and cloud microphysical measurements were collected by a research aircraft during August 2019 over the United Arab Emirates (UAE). The majority of scientific flights targeted summertime convection along the eastern Al Hajar Mountains bordering Oman, while one flight sampled non-orographic clouds over the western UAE near the Saudi Arabian border. In this work, we study the evolution of growing cloud turrets from cloud base (9 ∘C) up to the capping inversion level (−12 ∘C) using coincident cloud particle imagery and particle size distributions from cloud cores under different forcing. Results demonstrate the active role of background dust and pollution as cloud condensation nuclei (CCN) with the onset of their deliquescence in the subcloud region. Subcloud aerosol sizes are shown to extend from submicron to 100 µm sizes, with higher concentrations of ultra-giant CCN (d>10 µm) from local sources closer to the Saudi border, compared with the eastern orographic region where smaller CCN are observed. Despite the presence of ultra-giant CCN from dust and pollution in both regions, an active collision–coalescence (C–C) process is not observed within the limited depths of warm cloud (<1000 m). The state-of-the-art observations presented in this paper can be used to initialize modeling case studies to examine the influence of aerosols on cloud and precipitation processes in the region and to better understand the impacts of hygroscopic cloud seeding on these clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kong, Weimeng, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan. "The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles." Atmospheric Measurement Techniques 14, no. 8 (August 9, 2021): 5429–45. http://dx.doi.org/10.5194/amt-14-5429-2021.

Повний текст джерела
Анотація:
Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

van Pinxteren, Manuela, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, et al. "Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign." Atmospheric Chemistry and Physics 20, no. 11 (June 12, 2020): 6921–51. http://dx.doi.org/10.5194/acp-20-6921-2020.

Повний текст джерела
Анотація:
Abstract. The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Nguyen, Cuong M., Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer. "Coincident in situ and triple-frequency radar airborne observations in the Arctic." Atmospheric Measurement Techniques 15, no. 3 (February 10, 2022): 775–95. http://dx.doi.org/10.5194/amt-15-775-2022.

Повний текст джерела
Анотація:
Abstract. The dataset collected during the Radar Snow Experiment (RadSnowExp) presents the first-ever airborne triple-frequency radar observations combined with almost perfectly co-located and coincident airborne microphysical measurements from a single platform, the National Research Council Canada (NRC) Convair-580 aircraft. The potential of this dataset is illustrated using data collected from one flight during an Arctic storm, which covers a wide range of snow habits from pristine ice crystals and low-density aggregates to heavily rimed particles with maximum size exceeding 10 mm. Three different flight segments with well-matched in situ and radar measurements were analyzed, giving a total of 49 min of triple-frequency observations. The in situ particle imagery data for this study include high-resolution imagery from the Cloud Particle Imager (CPI) probe, which allows accurate identification of particle types, including rimed crystals and large aggregates, within the dual-frequency ratio (DFR) plane. The airborne triple-frequency radar data are grouped based on the dominant particle compositions and microphysical processes (level of aggregation and riming). The results from this study are consistent with the main findings of previous modeling studies, with specific regions of the DFR plane associated with unique scattering properties of different ice habits, especially in clouds where the radar signal is dominated by large aggregates. Moreover, the analysis shows close relationships between the triple-frequency signatures and cloud microphysical properties (particle characteristic size, bulk density, and level of riming).
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Mena, Francisco, Tami C. Bond, and Nicole Riemer. "Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion." Atmospheric Chemistry and Physics 17, no. 15 (August 7, 2017): 9399–415. http://dx.doi.org/10.5194/acp-17-9399-2017.

Повний текст джерела
Анотація:
Abstract. Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCN activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 1016 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation (ssat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This homogenizing effect requires the components to be truly co-emitted, rather than sequentially emitted.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Li, Li Hua, Yi Tang, and Jie Liu. "Application of Hierarchical Structured Particle System in Driving Simulation System." Applied Mechanics and Materials 513-517 (February 2014): 1890–93. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1890.

Повний текст джерела
Анотація:
In order to simulate dynamic and randomness of irregular objects, like rain, snow, cloud, rut in the vehicle driving simulation system, here uses a method of hierarchical structured particle system dynamic modeling. First of all, the particles are divided into several units according to their similarity relation, then using the hierarchical tree structure to describe details. Through practice, this method can guarantee simulation precision and improve the real-time performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії