Добірка наукової літератури з теми "Partially Hyperbolic System"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Partially Hyperbolic System".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Partially Hyperbolic System"
RIOS, I., and J. SIQUEIRA. "On equilibrium states for partially hyperbolic horseshoes." Ergodic Theory and Dynamical Systems 38, no. 1 (July 4, 2016): 301–35. http://dx.doi.org/10.1017/etds.2016.21.
Повний текст джерелаRODRIGUEZ HERTZ, F., M. A. RODRIGUEZ HERTZ, A. TAHZIBI, and R. URES. "Maximizing measures for partially hyperbolic systems with compact center leaves." Ergodic Theory and Dynamical Systems 32, no. 2 (December 5, 2011): 825–39. http://dx.doi.org/10.1017/s0143385711000757.
Повний текст джерелаANDERSSON, MARTIN, and CARLOS H. VÁSQUEZ. "On mostly expanding diffeomorphisms." Ergodic Theory and Dynamical Systems 38, no. 8 (May 2, 2017): 2838–59. http://dx.doi.org/10.1017/etds.2017.17.
Повний текст джерелаXu, Jiang, and Shuichi Kawashima. "Global Classical Solutions for Partially Dissipative Hyperbolic System of Balance Laws." Archive for Rational Mechanics and Analysis 211, no. 2 (October 8, 2013): 513–53. http://dx.doi.org/10.1007/s00205-013-0679-8.
Повний текст джерелаBUZZI, J., T. FISHER, M. SAMBARINO, and C. VÁSQUEZ. "Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems." Ergodic Theory and Dynamical Systems 32, no. 1 (June 10, 2011): 63–79. http://dx.doi.org/10.1017/s0143385710000854.
Повний текст джерелаOndich, Jeffrey. "The reducibility of partially invariant solutions of systems of partial differential equations." European Journal of Applied Mathematics 6, no. 4 (August 1995): 329–54. http://dx.doi.org/10.1017/s0956792500001881.
Повний текст джерелаVergara-Hermosilla, G., G. Leugering, and Y. Wang. "Boundary controllability of a system modelling a partially immersed obstacle." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 80. http://dx.doi.org/10.1051/cocv/2021076.
Повний текст джерелаKlar, A., and O. Tse. "An entropy functional and explicit decay rates for a nonlinear partially dissipative hyperbolic system." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 95, no. 5 (March 10, 2014): 469–75. http://dx.doi.org/10.1002/zamm.201300275.
Повний текст джерелаGUPTA, CHINMAYA. "Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems." Ergodic Theory and Dynamical Systems 30, no. 3 (July 17, 2009): 757–71. http://dx.doi.org/10.1017/s0143385709000406.
Повний текст джерелаRempel, M., and D. Przybylski. "Efficient Numerical Treatment of Ambipolar and Hall Drift as Hyperbolic System." Astrophysical Journal 923, no. 1 (December 1, 2021): 79. http://dx.doi.org/10.3847/1538-4357/ac2c6d.
Повний текст джерелаДисертації з теми "Partially Hyperbolic System"
CASTORRINI, ROBERTO. "Quantitative statistical properties for two dimensional partially hyperbolic systems." Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/10321.
Повний текст джерелаPonce, Gabriel. "Fine ergodic properties of partially hyperbolic dynamical systems." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/.
Повний текст джерелаSeja f : T3 → T3 um difeomorfismo C2 parcialmente hiperbólico, homotópico a um automorfismo de Anosov linear e preservando a medida de volume m. Provamos que se f é Kolmogorov então f é Bernoulli. Estudamos as características da desintegração atômica da medida de volume quando esta ocorre. Provamos que se a medida de volume m tem desintegração atômica nas folhas centrais então a desintegração tem um átomo por folha central. Apresentamos uma condição, a qual depende apenas do expoente de Lyapunov central do difeomorfismo, que garante desintegração atômica da medida de volume. Construímos uma família aberta de difeomorfismos satisfazendo esta condição, o que gerou os primeiros exemplos de folheações que são mensuráveis e ao mesmo tempo minimais. Nesta mesma construção damos os primeiros exemplos de difeomorfismos parcialmente hiperbólicos com expoente de Lyapunov central nulo e homotópico a um Anosov linear.
Micena, Fernando Pereira. "Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-25042011-144207/.
Повний текст джерелаIn this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of \'T POT. 3\'. About this theme, (on a \'C POT. 1\' open and \'C POT. 2\'dense set) of conservative partially hyperbolic \'C POT. 2\' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of \'S POT. 1\', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
Andrade, Gustavo Artur de. "Control of systems modeled by hyperbolic partial diferential equations." reponame:Repositório Institucional da UFSC, 2017. https://repositorio.ufsc.br/xmlui/handle/123456789/176753.
Повний текст джерелаMade available in DSpace on 2017-06-27T04:18:33Z (GMT). No. of bitstreams: 1 346334.pdf: 3570409 bytes, checksum: cf0611888dc2b3fb314d44683117c3fd (MD5) Previous issue date: 2017
Sistemas com parâmetros distribuídos representam uma vasta gama de processos da engenharia. Neste caso, as variáveis do sistema irão conter termos dependentes do tempo assim como gradientes espaciais e, portanto, é natural representa-los por equações diferenciais parciais. Exemplos podem ser encontrados em diversas áreas: desde processos químicos e térmicos, sistemas de produção e distribuição de energia, e problemas relacionados ao transporte de fluidos e ciência médica. Esta tese trata dois tipos de problemas: estabilização de equações diferenciais parciais lineares hiperbólicas com variável de controle na condição de contorno e controle regulatório de sistemas descritos por equações diferenciais parciais quasi-lineares hiperbólicas com variável de controle no domínio. Com relação ao primeiro, estudaram-se duas metodologias de controle: (i) uma lei de controle estática que garante convergência do sistema para o ponto de equilíbrio desejado. A metodologia de controle utiliza uma função de Lyapunov para encontrar os valores dos parâmetros do controlador que garantem estabilidade exponencial em malha fechada. Resultados de simulação para o problema de supressão de golfadas em sistemas de produção de petróleo são apresentados para ilustrar a eficiência do método; (ii) uma lei de controle baseada nas ferramentas clássicas do domínio da frequência. Neste caso, aplicamos a transformada de Laplace na equação diferencial parcial para obter uma função de transferência irracional e então, ferramentas clássicas do domínio da frequência são usadas para projetar o controlador, de maneira similar aos sistemas de dimensão finita com função de transferência racional. Estes resultados foram aplicados experimentalmente no problema de controle de oscilações termoacústicas do tubo de Rijke, mostrando a efetividade do método. Para o segundo problema, utiliza-se o método das características combinado com a técnica de controle por modos deslizantes. O método das características é usado para transformar o sistema de equações diferenciais parciais em um conjunto de equações diferenciais ordinárias que descrevem o sistema original. O projeto de controle é então realizado a partir deste conjunto de equações diferenciais ordinárias através de resultados bem conhecidos da teoria de equações diferenciais ordinárias. Os resultados obtidos foram testados experimentalmente em dois sistemas de escala industrial: uma planta solar e um fotobiorreator tubular.
Abstract : Distributed parameter systems represent a wide range of engineeringprocesses. In this case, the system variables will contain temporally dependentterms as well spatial gradients and, therefore, it is natural to representthem by partial dierential equations. Examples can be found in manyelds: chemical and thermal processes, production and distribution energysystems, and problems related to uid transport and medical science.This thesis deals with two dierent problems: stabilization of linear hyperbolicpartial dierential equations with boundary control and regulatorycontrol of systems described by quasilinear hyperbolic partial dierentialequations with in domain control. Concerning the boundary control problem,we studied two control methodologies: (i) a static control law thatguarantees convergence of the system to the desired equilibrium point. Thiscontrol methodology uses a Lyapunov function to nd the values of thecontrol parameters that guarantee closed-loop exponential stability. Simulationresults for the slugging control problem in oil production facilities arepresented to illustrate the eciency of the methodology; (ii) a control lawbased on the frequency domain tools. In this case, we applied the Laplacetransform on the partial dierential equation to obtain an irrational transferfunction and then classical frequency domain tools are used to designthe control law. These results were applied experimentally to the controlproblem of thermoacoustic oscillations in the Rijke tube, showing the effectivenessof the method. Regarding the regulatory control problem, weuse the method of characteristics together with the sliding mode controlmethodology. The method of characteristics is used to transform the partialdierential equations into a system of ordinary dierential equations thatdescribes the original system without any kind of approximation. Then,the control design is performed on the ordinary dierential equations withwell-known results of the theory of lumped parameter systems. The resultswere validated experimentally in two industrial scale systems: a solar powerplant and a tubular photobioreactor.
Strogies, Nikolai. "Optimization of nonsmooth first order hyperbolic systems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17633.
Повний текст джерелаWe consider problems of optimal control subject to partial differential equations and variational inequality problems with first order differential operators. We introduce a reformulation of an open pit mine planning problem that is based on continuous functions. The resulting formulation is a problem of optimal control subject to viscosity solutions of a partial differential equation of Eikonal Type. The existence of solutions to this problem and auxiliary problems of optimal control subject to regularized, semilinear PDE’s with artificial viscosity is proven. For the latter a first order optimality condition is established and a mild consistency result for the stationary points is proven. Further we study certain problems of optimal control subject to time-independent variational inequalities of the first kind with linear first order differential operators. We discuss solvability and stationarity concepts for such problems. In the latter case, we compare the results obtained by either utilizing penalization-regularization strategies directly on the first order level or considering the limit of systems for viscosity-regularized problems under suitable assumptions. To guarantee the consistency of the original and viscosity-regularized problems of optimal control, we extend known results for solutions to variational inequalities with degenerated differential operators. In both cases, the resulting stationarity concepts are weaker than W-stationarity. We validate the theoretical findings by numerical experiments for several examples. Finally, we extend the results from the time-independent to the case of problems of optimal control subject to VI’s with linear first order differential operators that are time-dependent. After establishing the existence of solutions to the problem of optimal control, a stationarity system is derived by a vanishing viscosity approach under certain boundedness assumptions and the theoretical findings are validated by numerical experiments.
Bohnet, Doris Verfasser], and Christian [Akademischer Betreuer] [Bonatti. "Partially hyperbolic systems with a compact center foliation with finite holonomy / Doris Bohnet. Betreuer: Christian Bonatti." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2011. http://d-nb.info/1020466790/34.
Повний текст джерелаHaque, Md Z. "An adaptive finite element method for systems of second-order hyperbolic partial differential equations in one space dimension." Ann Arbor, Mich. : ProQuest, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3316356.
Повний текст джерелаTitle from PDF title page (viewed Mar. 16, 2009). Source: Dissertation Abstracts International, Volume: 69-08, Section: B Adviser: Peter K. Moore. Includes bibliographical references.
Kocoglu, Damla [Verfasser], and Stephan [Akademischer Betreuer] Trenn. "Analysis of Systems of Hyperbolic Partial Differential Equations Coupled to Switched Differential Algebraic Equations / Damla Kocoglu ; Betreuer: Stephan Trenn." Kaiserslautern : Technische Universität Kaiserslautern, 2021. http://d-nb.info/1224883853/34.
Повний текст джерелаNguyen, Thi Hoai Thuong. "Numerical approximation of boundary conditions and stiff source terms in hyperbolic equations." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S027.
Повний текст джерелаThe dissertation focuses on the study of the theoretical and numerical analysis of hyperbolic systems of partial differential equations and transport equations, with relaxation terms and boundary conditions. In the first part, we consider the stiff stability for numerical approximations by finite differences of the initial boundary value problem for the linear damped wave equation in a quarter plane. Within the framework of the difference scheme in space, we propose two methods of discretization of Dirichlet boundary condition. The first is the technique of summation by part and the second is based on the concept of transparent boundary conditions. We also provide a numerical comparison of the two numerical methods, in particular in terms of stability domain. The second part is about high order numerical schemes for transport equations with nonzero incoming boundary data on bounded domains. We construct, implement and analyze the so-called inverse Lax-Wendroff procedure at incoming boundary. We obtain optimal convergence rates by combining sharp stability estimate for extrapolation boundary conditions with numerical boundary layer expansions. In the last part, we study the stability of stationary solutions for non-conservative systems with geometric and relaxation source term. We prove that stationary solutions are stable among entropy process solution, which is a generalisation of the concept of entropy weak solutions. We mainly assume that the system is endowed with a partially convex entropy and, according to the entropy dissipation provided by the relaxation term, stability or asymptotic stability of stationary solutions is obtained
Sroczinski, Matthias [Verfasser]. "Global existence and asymptotic decay for quasilinear second-order symmetric hyperbolic systems of partial differential equations occurring in the relativistic dynamics of dissipative fluids / Matthias Sroczinski." Konstanz : KOPS Universität Konstanz, 2019. http://d-nb.info/1184795460/34.
Повний текст джерелаКниги з теми "Partially Hyperbolic System"
Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkhäuser, 2008.
Знайти повний текст джерелаQin, Yuming. Global Well-posedness of Nonlinear Parabolic-Hyperbolic Coupled Systems. Basel: Springer Basel, 2012.
Знайти повний текст джерелаRoe, P. L. Discontinuous solutions to hyperbolic systems under operator splitting. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Знайти повний текст джерелаD, Serre, ed. Multidimensional hyperbolic partial differential equations: First-order systems and applications. Oxford: Clarendon Press, 2007.
Знайти повний текст джерелаA, Rand D., and Ferreira Flávio, eds. Fine structures of hyperbolic diffeomorphisms. Berlin: Springer, 2009.
Знайти повний текст джерелаHyperbolic partial differential equations and geometric optics. Providence, R.I: American Mathematical Society, 2012.
Знайти повний текст джерелаRhee, Hyun-Ku. Theory and application of hyperbolic systems of quasilinear equations. Englewood Cliffs, N.J: Prentice-Hall, 1989.
Знайти повний текст джерелаRhee, Hyun-Ku. Theory and application of hyperbolic systems of quasilinear equations. Mineola, N.Y: Dover Publications, 2001.
Знайти повний текст джерелаV, Pogorelov Nikolai, and Semenov A. Yu 1955-, eds. Mathematical aspects of numerical solution of hyperbolic systems. Boca Raton: Chapman & Hall/CRC, 2001.
Знайти повний текст джерела(Albert), Milani A., ed. Linear and quasi-linear evolution equations in Hilbert spaces. Providence, R.I: American Mathematical Society, 2012.
Знайти повний текст джерелаЧастини книг з теми "Partially Hyperbolic System"
Kevorkian, J. "Quasilinear Hyperbolic Systems." In Partial Differential Equations, 386–457. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-9022-0_7.
Повний текст джерелаEbert, Marcelo R., and Michael Reissig. "Linear Hyperbolic Systems." In Methods for Partial Differential Equations, 383–401. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66456-9_22.
Повний текст джерелаAlinhac, Serge. "Operators and Systems in the Plane." In Hyperbolic Partial Differential Equations, 13–25. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-87823-2_2.
Повний текст джерелаAlinhac, Serge. "Variable Coefficient Wave Equations and Systems." In Hyperbolic Partial Differential Equations, 111–36. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-87823-2_7.
Повний текст джерелаMeister, Andreas, and Jens Struckmeier. "Central Schemes and Systems of Balance Laws." In Hyperbolic Partial Differential Equations, 59–114. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80227-9_2.
Повний текст джерелаBove, Antonio, and Tatsuo Nishitani. "Necessary Conditions for Hyperbolic Systems." In Partial Differential Equations and Mathematical Physics, 31–49. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-0011-6_3.
Повний текст джерелаVârsan, C. "Bounded solutions for controlled hyperbolic systems." In Optimization, Optimal Control and Partial Differential Equations ISNM 107, 123–31. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8625-3_12.
Повний текст джерелаGali, I. M., H. A. El-Saify, and S. A. El-Zahabi. "Optimal control of a system governed by hyperbolic operator." In Ordinary and Partial Differential Equations, 157–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074724.
Повний текст джерелаBassanini, Piero, and Alan R. Elcrat. "Hyperbolic Systems of Conservation Laws in One Space Variable." In Theory and Applications of Partial Differential Equations, 291–394. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1875-8_7.
Повний текст джерелаMarcati, Pierangelo. "Nonhomogeneous quasilinear hyperbolic systems: Initial and boundary value problem." In Calculus of Variations and Partial Differential Equations, 193–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082896.
Повний текст джерелаТези доповідей конференцій з теми "Partially Hyperbolic System"
LIVERANI, CARLANGELO. "TRANSPORT IN PARTIALLY HYPERBOLIC FAST-SLOW SYSTEMS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0154.
Повний текст джерелаWang, Xia, and Xiaodong Sun. "Hyperbolicity of One-Dimensional Two-Fluid Model With Interfacial Area Transport Equations." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78388.
Повний текст джерелаVatankhah, Ramin, Mohammad Abediny, Hoda Sadeghian, and Aria Alasty. "Backstepping Boundary Control for Unstable Second-Order Hyperbolic PDEs and Trajectory Tracking." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87038.
Повний текст джерелаWadoo, Sabiha A. "Adaptive control of a hyperbolic Partial Differential Equation system with uncertain parameters." In 2012 15th International IEEE Conference on Intelligent Transportation Systems - (ITSC 2012). IEEE, 2012. http://dx.doi.org/10.1109/itsc.2012.6338718.
Повний текст джерелаSiranosian, Antranik A., Miroslav Krstic, Andrey Smyshlyaev, and Matt Bement. "Gain Scheduling-Inspired Control for Nonlinear Partial Differential Equations." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2532.
Повний текст джерелаKholodov, Alexander S., and Yaroslav A. Kholodov. "Computational Models on Graphs for the Nonlinear Hyperbolic System of Equations." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2580.
Повний текст джерелаSuzuki, Masayasu, Jun-ichi Imura, and Kazuyuki Aihara. "Controllability and observability of networked systems of linear hyperbolic partial differential equations." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6161198.
Повний текст джерелаLiu, Shuyang, Reza Langari, and Yuanchun Li. "Control Design for the System of Manipulator Handling a Flexible Payload With Input Constraints." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-8970.
Повний текст джерелаDanciu, Daniela. "Numerics for hyperbolic partial differential equations (PDE) via Cellular Neural Networks (CNN)." In 2013 2nd International Conference on Systems and Computer Science (ICSCS). IEEE, 2013. http://dx.doi.org/10.1109/icconscs.2013.6632044.
Повний текст джерелаTsarev, Sergey P. "Generalized laplace transformations and integration of hyperbolic systems of linear partial differential equations." In the 2005 international symposium. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1073884.1073929.
Повний текст джерелаЗвіти організацій з теми "Partially Hyperbolic System"
Shearer, Michael. Systems of Hyperbolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada290287.
Повний текст джерелаShearer, Michael. Systems of Nonlinear Hyperbolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada344449.
Повний текст джерела