Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Parabolae.

Статті в журналах з теми "Parabolae"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Parabolae".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Andronov, I. L. "Some new methods of time series analysis: Applications to the AGB stars." Symposium - International Astronomical Union 180 (1997): 341. http://dx.doi.org/10.1017/s0074180900131183.

Повний текст джерела
Анотація:
Some supplementary methods of time series analysis are described which are used for study of periodic and aperiodic variability of the AGB stars. These are “multiharmonic fits” used to fit the periodic (asinusoidal) curve; running approximations – “parabolae”, “sines”; “asymptotic parabolae”; “linear fits”.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Belserene, Emilia Pisani. "Moving Through The Instability Strip." International Astronomical Union Colloquium 139 (1993): 419. http://dx.doi.org/10.1017/s025292110011810x.

Повний текст джерела
Анотація:
The purpose: To look at period changes in pulsating variables from the point of view of stellar evolution. Is there evidence of systematic, slow changes that might be caused by the changes in mean density during passage across the Instability Strip?The data: O – C diagrams for 67 RR Lyrae stars and Cepheids by student assistants at the Maria Mitchell Observatory, and for 88 northern Cepheids by L. SzabadosThe method: Least-squares lines and parabolae (unless the O – C diagram shows that the period has changed in both directions). The rate of change of period comes from the coefficient of the square term in the parabola. The principal feature of these analyses is that the rate is taken to be non-zero only if the parabola is significantly better than the linear fit, at the 2-sigma level.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cova, Ramón J. "A Bose description of the 1-D para-Bose and para-Fermi oscillators." Canadian Journal of Physics 87, no. 6 (June 2009): 619–24. http://dx.doi.org/10.1139/p09-034.

Повний текст джерела
Анотація:
In the Fock space of two Bose operators all the irreducible representations of both the 1-D para-Bose and para-Fermi oscillators are constructed. Bose states of the form |p + k–1, kn > (|p – k, kn), n = 1,2, are shown to stand for states of k-parabosons (k-parafermions) of order p. For n = 1 or n = 2 the various subspaces may be visualized in the plane as either straight-lines or parabolae, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Acharya, Aviseka, Sonja Brungs, Yannick Lichterfeld, Jürgen Hescheler, Ruth Hemmersbach, Helene Boeuf, and Agapios Sachinidis. "Parabolic, Flight-Induced, Acute Hypergravity and Microgravity Effects on the Beating Rate of Human Cardiomyocytes." Cells 8, no. 4 (April 14, 2019): 352. http://dx.doi.org/10.3390/cells8040352.

Повний текст джерела
Анотація:
Functional studies of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hCMs) under different gravity conditions contribute to aerospace medical research. To study the effects of altered gravity on hCMs, we exposed them to acute hypergravity and microgravity phases in the presence and absence of the β-adrenoceptor isoprenalin (ISO), L-type Ca2+ channel (LTCC) agonist Bay-K8644, or LTCC blocker nifedipine, and monitored their beating rate (BR). These logistically demanding experiments were executed during the 66th Parabolic Flight Campaign of the European Space Agency. The hCM cultures were exposed to 31 alternating hypergravity, microgravity, and hypergravity phases, each lasting 20–22 s. During the parabolic flight experiment, BR and cell viability were monitored using the xCELLigence real-time cell analyzer Cardio Instrument®. Corresponding experiments were performed on the ground (1 g), using an identical set-up. Our results showed that BR continuously increased during the parabolic flight, reaching a 40% maximal increase after 15 parabolas, compared with the pre-parabolic (1 g) phase. However, in the presence of the LTCC blocker nifedipine, no change in BR was observed, even after 31 parabolas. We surmise that the parabola-mediated increase in BR was induced by the LTCC blocker. Moreover, the increase in BR induced by ISO and Bay-K8644 during the pre-parabola phase was further elevated by 20% after 25 parabolas. This additional effect reflects the positive impact of the parabolas in the absence of both agonists. Our study suggests that acute alterations of gravity significantly increase the BR of hCMs via the LTCC.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Foster, Douglas J., and Charles C. Mosher. "Suppression of multiple reflections using the Radon transform." GEOPHYSICS 57, no. 3 (March 1992): 386–95. http://dx.doi.org/10.1190/1.1443253.

Повний текст джерела
Анотація:
Multiple suppression using a variant of the Radon transform is discussed. This transform differs from the classical Radon transform in that the integration surfaces are hyperbolic rather than planar. This specific hyperbolic surface is equivalent to parabolae in terms of computational expense but more accurately distinguishes multiples from primary reflections. The forward transform separates seismic arrivals by their differences in traveltime moveout. Multiples can be suppressed by an inverse transform of only part of the data. Examples show that multiples are effectively attenuated in prestack and stacked seismograms.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Swadener, J. G., and G. M. Pharr. "Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution." Philosophical Magazine A 81, no. 2 (February 2001): 447–66. http://dx.doi.org/10.1080/01418610108214314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

G. Swadener, G. M. Pharr, J. "Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution." Philosophical Magazine A 81, no. 2 (February 1, 2001): 447–66. http://dx.doi.org/10.1080/014186101300012309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Andronov, I. L. "Method of running parabolae: Spectral and statistical properties of the smoothing function." Astronomy and Astrophysics Supplement Series 125, no. 1 (October 1997): 207–17. http://dx.doi.org/10.1051/aas:1997217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ghedina, A., and R. Ragazzoni. "Optimum configurations for two off-axis parabolae used to make an optical relay." Journal of Modern Optics 44, no. 7 (July 1997): 1259–67. http://dx.doi.org/10.1080/09500349708230735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Antón, Beatriz. "La asociación simbólica entre la salamandra, Cleón y los pescadores de anguilas en los Emblemata (1596) de Denis Lebey." Veleia, no. 38 (January 27, 2021): 251–68. http://dx.doi.org/10.1387/veleia.21655.

Повний текст джерела
Анотація:
Este trabajo analiza el emblema XXIII, In Cleones nostri saeculi, qui nisi turbatis rebus laterent, del jurista y poeta francés Denis Lebey (Emblemata, 1596), un sugestivo tríptico icónico elaborado con motivos de la zoología (la salamandra), la historia antigua (el demagogo Cleón) y las actividades humanas (los pescadores de anguilas). Se identifican las principales fuentes del argumento (las Parabolae, sive Similia de Erasmo y los Collectanea de Jacobus Manlius) y también se señala la procedencia de todos los loci communes que conforman la paraphrasis que acompaña el emblema. Por último, este estudio incluye un epílogo sobre el ‘Cleón’ más famoso e influyente de nuestro tiempo, el presidente Donald Trump, un paralelismo percibido por numerosos estudiosos.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Botvynovska, Svitlana, Zhanetta Levina, and Hanna Sulimenko. "IMAGING OF A HYPERBOLIC PARABOLOID WITH TOUCHING LINE WITH THE PARABOLAL WRAPPING CONE." Management of Development of Complex Systems, no. 48 (December 20, 2021): 53–60. http://dx.doi.org/10.32347/2412-9933.2021.48.53-60.

Повний текст джерела
Анотація:
The paper is dedicated to architectural structures modeling by means of computer-graphics. Images on the monitor represent perspective. That’s why the images could be assessed from the most convenient points as viewer’s position is considered to be the perspective center. Non-rectilinear profile makes the structure the most impressive. The hyperbolic paraboloid surface is researched. Parabolas and hyperbolas are the only forms of its sections except for tangent planes cases. Parabolas as contact lines are reviewed. Hyperbolic paraboloid is an infinite surface that’s why only a portion of it could be modeled. Four link space zigzag ({4l} indicator) is its best representation. In such case the non-rectilinear profile should be represented as a curve of second order semicircular arc. Modeling of a limited section does not affect the final modeling because the {4l} representation makes the depiction of all surface in that frame of axis that have the identified hyperbolic paraboloid looks like a cone. The paper’s objective is development of imaging technique using parabolic contact lines to design hyperbolic paraboloid surface and applicable to several surfaces of the same construction. To do so, parameter analysis of the task is conducted, the applicable theory is identified, and the hyperbolic paraboloid imaging technique using the set profile line in the form of any curve of second order is conducted, namely the imaging technique for contact parabola and the set of hyperbolic paraboloids which it set forth. The set of plans that may contain the parabolic contact line set is two-parameter. However, in general, the position of those planes is remains unknown. Thus, the task is as follows: find the third point of the plane that intersects the given wrapping cone along the parabola when the two points are given. These two points must belong to the same forming line on the cone. The imaging requires 7 parameters whereas the hyperbolic paraboloid has 8 parameters. That’s why with one parabolic contact line and given wrapping cone of the second order one-parameter set of hyperbolic paraboloids could be imaged. The paper shows how to image the contact line if the profile line is given as a parabola, ellipse, or hyperbola. The portion of one hyperbolic paraboloid may imaged when the parameters are aligned and any other bisecant of same perspective line of shape. Two portions of parabola conjugated due to the joint wrapping cone hyperbolic paraboloid imaging is demonstrated.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Huddy, Stanley R., and Michael A. Jones. "All parabolas through three non-collinear points." Mathematical Gazette 102, no. 554 (June 18, 2018): 203–9. http://dx.doi.org/10.1017/mag.2018.51.

Повний текст джерела
Анотація:
If no two of three non-collinear points share the same x-coordinate, then the parabola y = a2x2 + a1x + a0 through the points is easily found by solving a system of linear equations. That is but one of an infinite number of parabolas through the three points. How does one find the other parabolas? In this note, we find all parabolas through any three non-collinear points by reducing the problem to finding the equation of a parabola by using rotations.The parabola y = a2x2 + a1x + a0 has an axis of symmetry parallel to the y-axis. Other parabolas have an axis of symmetry that is parallel to some line y = mx. We focus on the angle θ that the axis of symmetry makes with the y-axis, as in Figure 1, so that tanθ = 1/m. To find the parabola associated with θ that goes through three non-collinear points, we rotate the three points counterclockwise by θ, find the equation of the parabola, and then rotate the parabola (and the three points) counterclockwise back by −θ so that the parabola goes through the original points.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wang, Hai Yang, Xian Qing Lei, and Jing Wei Cui. "Parabola Error Evaluation Using Geometry Ergodic Searching Algorithm." Applied Mechanics and Materials 333-335 (July 2013): 1465–68. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.1465.

Повний текст джерела
Анотація:
A method of parabola error evaluation using Geometry Ergodic Searching Algorithm (GESA) was proposed according to geometric features and fitting characteristics of parabola error. First , the feature points of least-squared parabola are set as reference feature points to layout a group of auxiliary feature grid points. After that, a series of auxiliary parabolas as assumed ideal parabolas are reversed with the auxiliary feature points.The range distance from given points to these assumptions ideal parabolas are calculated successively.The minimum one is parabola profile error.The process of GESA was detailed discribed including the algorithm formula and contrastive results in this paper.Simulation experiment results show that the geometry ergodic searching algorithm is more accurate than the least-square method. The parabola profile error can be evaluated steadily and precisely with this algorithm based on the minimum zone.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hayah, Ni, Bakri Mallo, and I. Nyoman Murdiana. "PROFIL PEMAHAMAN KONSEP MATEMATIKA DITINJAU DARI GAYA KOGNITIF FIELD INDEPENDENT (FI) DAN FIELD DEPENDENT (FD)." Aksioma 8, no. 2 (September 24, 2019): 137–50. http://dx.doi.org/10.22487/aksioma.v8i2.210.

Повний текст джерела
Анотація:
abstrak: Penelitian ini bertujuan untuk mendeskripsikan pemahaman konsep matematika siswa kelas XI SMA Negeri 2 Dampelas dalam menyelesaikan soal pada subpokok bahasan parabola ditinjau dari gaya kognitif Field Independent (FI) dan Field Dependent (FD). Jenis penelitian ini adalah penelitian kualitatif. Subjek dalam penelitian ini terdiri dari satu siswa yang bergaya kognitif FI dan satu siswa yang bergaya kognitif FD. Hasil dari penelitian ini yaitu saat menyajikan masalah, subjek FI dan FD menuliskan hal-hal yang diketahui dan ditanyakan. Selanjutnya dalam mengklasifikasi unsur-unsur parabola, subjek FI mengelompokkan unsur-unsur parabola menurut bentuk parabolanya yaitu parabola horizontal terbuka ke kanan. Kemudian dalam memberi contoh dan non-contoh pada setiap unsur-unsur parabola, subjek FI memberikan contoh dan non-contoh dari setiap unsur-unsur parabola yang diberikan. Kemudian menyajikan masalah persamaan parabola dalam representasi matematis, subjek FI dan subjek FD menyajikan persamaan parabola kedalam bentuk persamaan umum parabola. Kemudian menggunakan, memanfaatkan dan memilih prosedur tertentu dalam menentukan persamaan parabola, subjek FI menggunakan dan memilih persamaan umum parabola horizontal dan subjek FD menggunakan persamaan umum parabola walaupun subjek tidak mengetahui jenis persamaan umum parabola yang digunakan. Kemudian subjek FI menjelaskan kembali prosedur yang digunakan serta memberikan alasannya dengan menggunakan bahasanya sendiri dan subjek FD menjelaskan kembali prosedur yang digunakan walaupun dalam proses penyelesaiannya siswa belum memahami dengan baik langkah-langkah yang harus digunakan. Kata Kunci: Profil; Pemahaman konsep matematika; Parabola; abstract: This study aims to describe the understanding of mathematical concepts of class XI students of SMA 2 Dampelas in solving problems on the subject of the parabolic discussion reviewed from cognitive style of the Independent Field (FI) and Field Dependent (FD). This type of research is qualitative research. The subjects in this study consisted of one student who was in the cognitive style of FI and one student in the cognitive style of FD. The results of this study are when presenting a problem, FI and FD subject write things that are known and asked. Furthermore, in classifying parabolic elements, FI subjects classify parabolic elements according to their parabolic forms, namely horizontal parabola open to the right. Then in giving examples and non-examples of each parabolic element, the FI subject gives examples and non-examples of each parabolic element given. Then presenting the problem of parabolic equations in mathematical representations, the subject FI and subject FD present the parabolic equation in the form of a general parabolic equation. Then using, utilizing and selecting a particular procedure in determining the parabolic equation, FI subject uses and selects the general horizontal parabolic equation and the FD subject uses the general parabolic equation even though the subject does not know the type of general parabolic equation used. Then the FI subject explains the procedure used again and gives the reason using its own language and the FD subject explains the procedure used even though in the process of completion students do not understand the steps that must be used properly. Keywords: Profile; Understanding of mathematical concepts; Parabolic
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Stojanov, V. V., S. J. Jgalli, and V. O. Stojanov. "THE CONSTITUENT ELEMENTS STRUCTURES COVERING OF HYPERBOLIC PARABOLOID." ACADEMIC JOURNAL Series: Industrial Machine Building, Civil Engineering 1, no. 48 (March 27, 2017): 54–61. http://dx.doi.org/10.26906/znp.2017.48.769.

Повний текст джерела
Анотація:
Hypar is a hyperbolic paraboloid representing translational ruled developable anti classical surface, i.e., the surface of negative Gaussian curvature. Shaping of the parabolic elements corresponds to buckling of the shell and the main tensile forces are arranged in the ascending direction of parabolas, and the main compression force - in the direction of the descending parabola. Composite materials are formed from the combination of two or more layered materials, each having very different properties. ANSYS Composite PrepPost software provides all the necessary functionality for the analysis of layered composite structures. The paper discloses a possibility of using for shell covering negative curvature. Design solutions into constituent elements structures and computations such structures are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Вышнепольский, Владимир, Vladimir Vyshnepol'skiy, К. Киршанов, K. Kirshanov, К. Егиазарян, and K. Egiazaryan. "Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 3." Geometry & Graphics 6, no. 4 (January 29, 2019): 3–19. http://dx.doi.org/10.12737/article_5c21f207bfd6e4.78537377.

Повний текст джерела
Анотація:
The loci (L) equally spaced from a sphere and a straight line, and from a conic surface and a plane, are considered. The following options have been considered. The straight line passes through the center of the sphere (a = 0), at the same time completely at spheres’ positive radiuses a surface of rotation is obtained, forming which the parabola is, and a rotation axis – this straight line. The parabola’s top forms the biggest parallel on the site points of intersection of the parabola’s forming with the rotation axis. Let's call such paraboloid a perpendicular paraboloid of rotation. The straight line crosses the sphere, but does not pass through the center (0 < a < R/2) – a perpendicular paraboloid, at that the surface is also completely obtained at radiuses’ positive values. The straight line is tangent to the sphere (a = R/2) – a surface which projections are parabolas, lemniscates and circles, and a piece from a tangency point to the sphere center – at radiuses positive values; a beam from the sphere center, perpendicular to this straight line – at radiuses negative values, at that the beam and the piece belong to one straight line. The straight line lies out of the sphere (α > R/2) – two different surfaces, having the general properties with a hyperbolic paraboloid, are obtained, one of which is obtained at radius positive values, and another one – at radius negative values. It has been noticed that loci, equally spaced from a sphere and a straight line, and from a cylinder and a point, coincide at equal radiuses and distances from axes to points and straight lines if to take into account the surfaces obtained both at positive, and negative values of radiuses. Locus, equally spaced from the conic surface of rotation and the plane, are two elliptic conic surfaces which in case 7.4.1 degenerate in the conic surfaces of rotation. In cases 7.4.3 and 7.4.4 one elliptic conic surface degenerates in a plane and a parabolic cylinder respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tang, Hongxin. "Parabolic Detection Algorithm of Tennis Serve Based on Video Image Analysis Technology." Security and Communication Networks 2021 (November 29, 2021): 1–9. http://dx.doi.org/10.1155/2021/7901677.

Повний текст джерела
Анотація:
At present, the existing algorithm for detecting the parabola of tennis serves neglects the pre-estimation of the global motion information of tennis balls, which leads to great error and low recognition rate. Therefore, a new algorithm for detecting the parabola of tennis service based on video image analysis is proposed. The global motion information is estimated in advance, and the motion feature of the target is extracted. A tennis appearance model is established by sparse representation, and the data of high-resolution tennis flight appearance model are processed by data fusion technology to track the parabolic trajectory. Based on the analysis of the characteristics of the serve mechanics, according to the nonlinear transformation of the parabolic trajectory state vector, the parabolic trajectory starting point is determined, the parabolic trajectory is obtained, and the detection algorithm of the parabolic service is designed. Experimental results show that compared with the other two algorithms, the algorithm designed in this paper can recognize the trajectory of the parabola at different stages, and the detection accuracy of the parabola is higher in the three-dimensional space of the tennis service.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kilner, Steven J., and David L. Farnsworth. "Pairing theorems about parabolas through duality." Mathematical Gazette 105, no. 564 (October 13, 2021): 385–96. http://dx.doi.org/10.1017/mag.2021.105.

Повний текст джерела
Анотація:
We investigate the pairing of theorems about parabolas through a dual transformation. Theorems and constructions concerning a parabola in a two-dimensional space can be in one-to-one correspondence with theorems and constructions concerning a parabola in the two-dimensional dual space. These theorems are called dual theorems.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Guerrero-Turrubiates, Jose de Jesus, Ivan Cruz-Aceves, Sergio Ledesma, Juan Manuel Sierra-Hernandez, Jonas Velasco, Juan Gabriel Avina-Cervantes, Maria Susana Avila-Garcia, Horacio Rostro-Gonzalez, and Roberto Rojas-Laguna. "Fast Parabola Detection Using Estimation of Distribution Algorithms." Computational and Mathematical Methods in Medicine 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/6494390.

Повний текст джерела
Анотація:
This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about93.61%on synthetic images and89%on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Stavek, Jiri. "Newton’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Castillon’s Cardioid, and Ptolemy’s Circle (Hodograph) (09.02.2019)." Applied Physics Research 11, no. 2 (February 25, 2019): 30. http://dx.doi.org/10.5539/apr.v11n2p30.

Повний текст джерела
Анотація:
Johannes Kepler and Isaac Newton inspired generations of researchers to study properties of elliptic, hyperbolic, and parabolic paths of planets and other astronomical objects orbiting around the Sun. The books of these two Old Masters &ldquo;Astronomia Nova&rdquo; and &ldquo;Principia&hellip;&rdquo; were originally written in the geometrical language. However, the following generations of researchers translated the geometrical language of these Old Masters into the infinitesimal calculus independently discovered by Newton and Leibniz. In our attempt we will try to return back to the original geometrical language and to present several figures with possible hidden properties of parabolic orbits. For the description of events on parabolic orbits we will employ the interplay of the directrix of parabola discovered by Pappus of Alexandria, the pedal curve with the pedal point in the focus discovered by Apollonius of Perga (The Great Geometer), and the focus occupied by our Sun discovered in several stages by Aristarchus, Copernicus, Kepler and Isaac Newton (The Great Mathematician). We will study properties of this PAN Parabola with the aim to extract some hidden parameters behind that visible parabolic orbit in the Aristotelian World. In the Plato&rsquo;s Realm some curves carrying hidden information might be waiting for our research. One such curve - the evolute of parabola - discovered Newton behind his famous gravitational law. We have used the Castillon&rsquo;s cardioid as the curve describing the tangent velocity of objects on the parabolic orbit. In the PAN Parabola we have newly used six parameters introduced by Gottfried Wilhelm Leibniz - abscissa, ordinate, length of tangent, subtangent, length of normal, and subnormal. We have obtained formulae both for the tangent and normal velocities for objects on the parabolic orbit. We have also obtained the moment of tangent momentum and the moment of normal momentum. Both moments are constant on the whole parabolic orbit and that is why we should not observe the precession of parabolic orbit. We have discovered the Ptolemy&rsquo;s Circle with the diameter a (distance between the vertex of parabola and its focus) where we see both the tangent and normal velocities of orbiting objects. In this case the Ptolemy&rsquo;s Circle plays a role of the hodograph rotating on the parabolic orbit without sliding. In the Plato&rsquo;s Realm some other curves might be hidden and have been waiting for our future research. Have we found the Arriadne&rsquo;s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sharma, N. K., Ashok Kumar Mishra, and P. Rajgopal. "Design of Low-Cost Solar Parabolic Through Steam Sterilization." International Journal of Biomedical and Clinical Engineering 10, no. 1 (January 2021): 50–60. http://dx.doi.org/10.4018/ijbce.2021010104.

Повний текст джерела
Анотація:
The objective of this study is to develop a low cost solar parabolic trough that can be used for steam sterilization of medical instruments in small clinics where electricity is scarce and expensive. On the basis of theoretical concepts of parabola and focus-balanced parabola, the assembly of ribs and reflector sheet with evacuated tube and heat pipe has been done. The parabolic trough has been mounted on a trolley so that it can be moved easily according to direction of sun light. The designed solar parabolic trough was integrated with pressure cooker under various setups and experiments were conducted to test whether sterilization is taking place or not. To validate sterilization process, tests were also conducted by placing the infected medical instruments. The solar parabolic trough developed was able to generate and maintain steam at 121 degrees Celsius at pressure 15 psig (101.3 kN/m2) for 15 minutes. The solar parabolic trough developed was effective in sterilizing the medical instruments.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Vinogradov, L. V., and A. V. Kostyukov. "Computer-aided designing of turbine blades with parabolic contours." Izvestiya MGTU MAMI 7, no. 1-1 (January 10, 2013): 41–47. http://dx.doi.org/10.17816/2074-0530-68151.

Повний текст джерела
Анотація:
In the paper the authors study the problem of turbine blades design. For computer-aided design in Mathcad the application program was developed as an element of the CAD system. A blade is shaped by three parabolas: back side– by one parabola, and pressure side – by two parabolas prescribing the maximum thickness of the profile. The program was tested on more than 30 profiles of blades for gas turbine engines.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Amick, H. Louise. "Sharing Teaching Ideas: A Unique Slope For A Parabola." Mathematics Teacher 88, no. 1 (January 1995): 38. http://dx.doi.org/10.5951/mt.88.1.0038.

Повний текст джерела
Анотація:
While exploring the sketching of parabolas in the form y = a(x − h)2 + k in a precalculus class, the discussion turned to the effect of a on the appearance of the curve. We observed that for | a | > 1, the parabola stretched away from the x-axis, making its sides steeper, whereas for | a | < 1, the parabola was seen to contract toward the x-axis, making its sides less steep. A student then asked, “Is a similar to m in the equation y = mx + b, so that it could be called the slope of the parabola?”
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Naufal, Muhamad, Tannie Wiyuna, Annisa Deutschlant Bintarum, and Ahmad Fakhri Burhanudin. "Desain Simulasi Gerak Parabola Sebagai Pemanfaatan Pembelajaran Fisika SMA Kelas X Menggunakan Pygame." Mitra Pilar: Jurnal Pendidikan, Inovasi, dan Terapan Teknologi 1, no. 2 (December 31, 2022): 155–70. http://dx.doi.org/10.58797/pilar.0102.08.

Повний текст джерела
Анотація:
Abstract In presenting learning media, teachers use various interesting simulations for their students. This research aims to develop learning media through interactive simulations on parabolic motion material. Parabolic motion is a two-dimensional motion that requires accurate analysis to understand it. Pygame is a Python programming language specifically written to make games. The development procedure uses a four-D model, which consists of the defining, designing, developing, and deploying stages. The results showed that interactive simulation learning media could be used for student learning media in analyzing the factors that influence parabolic motion. This shows that the developed simulation media is feasible to use in learning. However, further development needs to be carried out to obtain more interesting and more complete simulation media. The simulation results can be used as teaching materials in high school physics parabolic motion material. Abstrak Dalam menyajikan media pembelajaran, guru banyak memanfaatkan berbagai macam simulasi yang menarik bagi siswanya. Penelitian ini adalah penelitian pengembangan yang bertujuan untuk mengembangkan media pembelajaran berupa simulasi yang interaktif pada materi gerak parabola. Gerak parabola merupakan gerak dua dimensi yang membutuhkan analisis yang akurat dalam memahaminya. Pygame merupakan salah satu bahasa pemrograman python yang ditulis khusus untuk membuat game. Prosedur pengembangannya menggunakan model four-D yang terdiri dari tahap pendefinisian, perancangan, pengembangan, dan penyebaran. Hasil penelitian menunjukkan bahwa media pembelajaran simulasi interaktif dapat dipakai untuk media pembelajaran siswa dalam menganalisis faktor-faktor yang mempengaruhi gerak parabola. Hal ini menunjukkan bahwa pengembangan media simulasi yang dikembangkan layak digunakan dalam pembelajaran. Namun pengembangan lanjutan perlu dilakukan agar diperoleh media simulasi yang lebih menarik dan lebih lengkap. Hasil simulasi dapat digunakan sebagai bahan ajar di fisika SMA materi Gerak Parabola
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gajdardziska-Josifovska, M., and J. M. Cowley. "Geometrical explanation of parabolas and resonance in electron diffraction." Proceedings, annual meeting, Electron Microscopy Society of America 47 (August 6, 1989): 498–99. http://dx.doi.org/10.1017/s0424820100154469.

Повний текст джерела
Анотація:
Reflection electron microscopy (REM) relies on the surface resonance (channeling) conditions for enhancement of the intensity of the specular reflection from a flat surface of a single crystal. The two most frequently cited geometries for attaining surface resonance conditions are: i) tilting the incident beam such that the specular beam in the RHEED pattern falls on an intersection of a K-line parallel to the surface with some oblique K-line; ii) positioning the specular beam on an intersection of a K-Iine parallel to the surface with some of the surface resonance regions bound by parabolas. Parabolas are also observed in the transmission diffraction patterns and have been explained as Kikuchi envelopes. Recent studies indicated a similarity between the CBED transmission and reflection patterns. We will describe a simple geometry which can be used to interpret the above observations.A parabola is by definition a curve of equal distance from a point (called focus) and a line (called directrix; see Fig.1 ).Simple previously unnoticed facs are that the zone axis is a focal point of all the parabolas belonging to a given zone, and that the directrix of each parabola corresponds to a K-line.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Chiuini, Michele. "The parabola of the parabolic arch." IABSE Symposium Report 104, no. 10 (May 13, 2015): 1–7. http://dx.doi.org/10.2749/222137815815775439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ebrahiem, Sameera Ahmed, and Taghreed A. Younis. "Finding Most Stable Isobar for Nuclides with Mass Number (165- 175) against Beta Decay." NeuroQuantology 19, no. 4 (May 18, 2021): 15–19. http://dx.doi.org/10.14704/nq.2021.19.4.nq21032.

Повний текст джерела
Анотація:
In the beta decay process, a neutron converts into a proton, or vice versa, so the atom in this process changes to a more stable isobar. Bethe-Weizsäcker used a quasi-experimental formula in the present study to find the most stable isobar for isobaric groups of mass nuclides (A=165-175). In a group of isobars, there are two methods of calculating the most stable isobar. The most stable isobar represents the lowest parabola value by calculating the binding energy value (B.E) for each nuclide in this family, and then drawing these binding energy values as a function of the atomic number (Z) in order to obtain the mass parabolas, the second method is by calculating the atomic number value of the most stable isobar (ZA). The results show that the mass parabolas of isobar elements with an even mass number (A=even) vary from the mass parabolas of isobar elements with an odd mass number (A=odd), In the case of single isobars, it has one parabola, meaning that it has one stable isobar, while we find that the pairs isobars appear to have two parabolas, meaning that it has more than one stable isobar. When we compared the two methods used in this study to determine the most stable isobars, we found that in two techniques for odd isobars, stable isobars are mostly the same nuclide, whereas in suitcases of even isobars with two stable isobars (only one of them are same stable isobars).
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Stavek, Jiri. "Galileo’s Parabola Observed from Pappus’ Directrix, Apollonius’ Pedal Curve (Line), Galileo’s Empty Focus, Newton’s Evolute, Leibniz’s Subtangent and Subnormal, Ptolemy’s Circle (Hodograph), and Dürer-Simon Parabola (16.03.2019)." Applied Physics Research 11, no. 2 (March 30, 2019): 56. http://dx.doi.org/10.5539/apr.v11n2p56.

Повний текст джерела
Анотація:
Galileo&rsquo;s Parabola describing the projectile motion passed through hands of all scholars of the classical mechanics. Therefore, it seems to be impossible to bring to this topic anything new. In our approach we will observe the Galileo&rsquo;s Parabola from Pappus&rsquo; Directrix, Apollonius&rsquo; Pedal Curve (Line), Galileo&rsquo;s Empty Focus, Newton&rsquo;s Evolute, Leibniz&rsquo;s Subtangent and Subnormal, Ptolemy&rsquo;s Circle (Hodograph), and D&uuml;rer-Simon Parabola. For the description of events on this Galileo&rsquo;s Parabola (this conic section parabola was discovered by Menaechmus) we will employ the interplay of the directrix of parabola discovered by Pappus of Alexandria, the pedal curve with the pedal point in the focus discovered by Apollonius of Perga (The Great Geometer), and the Galileo&rsquo;s empty focus that plays an important function, too. We will study properties of this MAG Parabola with the aim to extract some hidden parameters behind that visible parabolic orbit in the Aristotelian World. For the visible Galileo&rsquo;s Parabola in the Aristotelian World, there might be hidden curves in the Plato&rsquo;s Realm behind the mechanism of that Parabola. The analysis of these curves could reveal to us hidden properties describing properties of that projectile motion. The parabolic path of the projectile motion can be described by six expressions of projectile speeds. In the D&uuml;rer-Simon&rsquo;s Parabola we have determined tangential and normal accelerations with resulting acceleration g = 9.81 msec-2 directing towards to Galileo&rsquo;s empty focus for the projectile moving to the vertex of that Parabola. When the projectile moves away from the vertex the resulting acceleration g = 9.81 msec-2 directs to the center of the Earth (the second focus of Galileo&rsquo;s Parabola in the &ldquo;infinity&rdquo;). We have extracted some additional properties of Galileo&rsquo;s Parabola. E.g., the Newtonian school correctly used the expression for &ldquo;kinetic energy E = &frac12; mv2 for parabolic orbits and paths, while the Leibnizian school correctly used the expression for &ldquo;vis viva&rdquo; E = mv2 for hyperbolic orbits and paths. If we will insert the &ldquo;vis viva&rdquo; expression into the Soldner&rsquo;s formula (1801) (e.g., Fengyi Huang in 2017), then we will get the right experimental value for the deflection of light on hyperbolic orbits. In the Plato&rsquo;s Realm some other curves might be hidden and have been waiting for our future research. Have we found the Arriadne&rsquo;s Thread leading out of the Labyrinth or are we still lost in the Labyrinth?
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kim, Dong-Soo, Young Ho Kim, Hyeong-Kwan Ju, and Kyu-Chul Shim. "Area properties associated with a convex plane curve." Georgian Mathematical Journal 24, no. 3 (September 1, 2017): 429–37. http://dx.doi.org/10.1515/gmj-2016-0027.

Повний текст джерела
Анотація:
AbstractArchimedes knew that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area of the region bounded by the parabola X and chord AB is four thirds of the area of the triangle {\bigtriangleup ABP}. Recently, the first two authors have proved that this fact is the characteristic property of parabolas.In this paper, we study strictly locally convex curves in the plane {{\mathbb{R}}^{2}}. As a result, generalizing the above mentioned characterization theorem for parabolas, we present two conditions, which are necessary and sufficient, for a strictly locally convex curve in the plane to be an open arc of a parabola.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Huda, Muhammad Fatihul Huda. "Alat Penggerak Parabola Otomatis pada Satelit Ku-band Berbasis Mikrokontroler." Jurnal JEETech 1, no. 2 (October 21, 2020): 85–89. http://dx.doi.org/10.48056/jeetech.v1i2.10.

Повний текст джерела
Анотація:
ABSTRAK Penelitian ini bertujuan merancang sebuah alat pengendali parabola yang dapat mencari sinyal satelit ku-band secara otomatis yang dikendalikan oleh mikrokontroler Atmega328, menggunakan 2 motor servo sebagai penggerak untuk menggerakkan parabola kearah barat dan ketimur dan juga menggerakkan kearah utara keselatan, progam pada mikrokontroler memberikan perintah untuk menggerakkan 2 motor servo dan menghentikanya jika terdapat sinyal audio yang terdeteksi oleh komparator yang dikirimkan ke mikrokontroler. Hasil dari penelitian ini adalah perancangan dan pembuatan alat pengendali parabola bergerak mencari sinyal pada satelit ku-band. Reflektor yang digunakan berbahan plat baja berdiameter 45 cm dengan tinggi tiang fokus 39 cm. Desain dari pengendali parabola ini terdiri dari 5 komponen utama, dimana komponen pertama sebagai tiang penopang dari reflektor yang terbuat dari besi, komponen kedua Reflektor berdiameter 45 cm yang terbuat dari plat besi, komponen yang ketiga LNB sebagai penerima dari sinyal yang di pantulkan oleh reflektor, komponen keempat rangkaian komparator dengan IC LM324 dan komponen yang kelima mikrokontroler sebagai pengontrol dari pergerakan parabola. Kata Kunci : Mikrokontroler, Komparator, Parabola, Satelit Ku-band, Sinyal audio ABSTRACT The aim of this study is to design a parabolic controller that can seek for Ku-band satellite signals automatically which controlled by the Atmega328 microcontroller, by using two servo motor as activator to stirring the parabola toward west to east and also stirring toward north to south. The program on the microcontroller gives the command to move 2 motor serves and stop it if there is an audio signal detected by the comparator which sent to the microcontroller. The results of this study are design and generation of parabola control tool which move to looking for signals on ku-band. The reflector that used is made by steel plate on a diameter of 45 cm with a height of 39 cm focus pole. The design of this parabolic controller consists of 5 main components where the first component is a supporting post of a reflector made by iron, the second component is reflector with diameter of 45 centimeter that made by iron, the third component is LNB as receiver of the signal reflected by the reflector, the fourth component is network comparator with IC LM324 and the fifth is microcontroller as a controller movement of a parabola. Keywords : Microcontroller, Comparator, Parabolic, Ku-Band Satellite, Audio Signal
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pathan, Alex. "Euler’s and Barker’s equations: A geometric derivation of the time of flight along parabolic trajectories." Mathematical Gazette 92, no. 523 (March 2008): 39–49. http://dx.doi.org/10.1017/s0025557200182506.

Повний текст джерела
Анотація:
The parabolic orbit is rarely found in nature although the orbits of some comets have been observed to be very close to parabolic. The parabola is of interest mathematically because it represents the boundary between the open and closed orbit forms. An object moving along a parabolic path is on a oneway trip to infinity never being able to retrace the same orbit again. The velocity of such an object is the escape velocity and its total energy is zero.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Simpson, Dean. "The ‘Proverbia Grecorum’." Traditio 43 (1987): 1–22. http://dx.doi.org/10.1017/s0362152900012460.

Повний текст джерела
Анотація:
Statements in Latin concerning such topics as wisdom, truth, and virtue, attributed to the Proverbia Grecorum (less often the Parabolae Gregorum), are found in a number of early medieval manuscripts. They are of interest because of their stated connection with the Greeks, which pertains to the knowledge of Greek and Greek learning in the early medieval West, and because of the obscure vocabulary many of the proverbs contain, which relates to the study of the latinity of early medieval, especially insular, scholars. New findings concerning the origin and transmission of these statements have increased their importance because they have revealed connections between them and other important early medieval Latin texts, notably the Collectio canonum Hibernensis and certain florilegia found in the miscellaneous Collectaneum of Sedulius Scottus. The Proverbia Grecorum have been edited and studied in detail only once, by Sigmund Hellmann, in 1906. Since then new statements attributed to the Proverbia Grecorum have been found, and the characterization of early medieval Latin culture has been significantly revised. Hellmann's text, furthermore, has been found to be faulty in a number of places. Therefore, there is a need for a full re-edition and study of this proverb collection. This has been undertaken in the present work. Following this essay, which defines the current state of knowledge of the Proverbia Grecorum, there is a critical edition of all statements identified as Proverbia Grecorum. This is followed by a commentary in which parallel texts are cited, and points of linguistic interest are noted.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhu, Yuanchao, Dazhao Zhang, Yanlin Lai, and Huabiao Yan. "Shape adjustment of "FAST" active reflector." Highlights in Science, Engineering and Technology 1 (June 14, 2022): 391–400. http://dx.doi.org/10.54097/hset.v1i.493.

Повний текст джерела
Анотація:
Abstract. In this paper, the relevant working principle of "FAST" Chinese Eye is studied, and a mathematical model is established to solve the equation of the ideal paraboloid. The ideal paraboloid model is obtained by rotating the paraboloid around the axis in the two-dimensional plane. On this basis, the specific solutions of each question are discussed, and the parabolic equation, the receiving ratio of the feed cabin to the reflected signal, the numbering information and coordinates of the main cable node and other parameters are obtained. This paper for solving directly above the benchmark of spherical observation of celestial bodies when ideal parabolic equation, according to the geometrical optics to knowledge should be clear all the signals of the incoming signal after the ideal parabolic will converge to the focal point of basic rules, then through converting ideal parabolic model of ideal parabolic equation in a two-dimensional plane, An optimization model was established to minimize the absolute value of the difference between the arc length and the arc length of the parabola in the diameter of 300 meters. The known conditions were substituted into Matlab to solve the equation of the ideal parabola by rotating the parabola around the axis: . In order to determine the ideal paraboloid of the celestial body, a new spatial cartesian coordinate system is first established with the line direction between the celestial body and the spherical center as the axis, so that the observed object is located directly above the new coordinate system. The same model in question 1 is established to obtain the vertex coordinates of the ideal paraboloid at this time. Then the vertex coordinates are converted to the coordinates in the original space cartesian coordinate system by rotation transformation between space cartesian coordinate systems. The solution of its vertex coordinates (-49.5287, -37.0203, -294.1763).
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Schruth, David M. "Parabolic completions in gibbon duets may signal appreciation of projectile motion." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A71. http://dx.doi.org/10.1121/10.0015580.

Повний текст джерела
Анотація:
Most gibbon species produce salient duet calls at daybreak. Duets start with low frequency barks by males, followed by the female great call, and end with a short, and often complex, male-dominated coda. The female great call itself typically climaxes via a crescendoing increase in pitch, tempo, or both and characteristically features bilaterally symmetrical parabolic structures, which can manifest both in the distribution of vocal units over time as well as in frequency. Male codas appear to anticipate and even complete many of these female-initiated parabolas. Employing spectrograms of species-typical great calls from nearly all gibbon species ( n = 12), I plotted coordinates of the upper-most frequency of each vocal unit. Using these x = time and y = frequency coordinates (plus x-differences), I tabulated the parabolas with the best possible second order polynomial fits for each species’ great call. Measures of parabolic fit for each call were then compared to quantitative locomotor estimates for each species. All forms of parabolic assessment had positive correlations with leaping bout percentages across species. These results indicate that gibbon duets may function to signal a fundamental understanding of parabolic shapes—presumably useful in landing airborne locomotor (especially leaping) bouts spanning canopy elements—enabling concordant execution of arboreally projectile acrobatics.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

S. Nayyef, Murtadha, and Naz T. Jaralla. "Determine Most Stable Isobar for Nuclides with A= (15-30) & (101- 115)." Ibn AL- Haitham Journal For Pure and Applied Sciences 33, no. 4 (October 20, 2020): 18–26. http://dx.doi.org/10.30526/33.4.2520.

Повний текст джерела
Анотація:
In this study the most stable isobar for some isobaric families (light and intermediate ) nuclei with mass number (A) equals to (15-30) & (101- 115) have been determined. This determination of stable nuclide can help to determine the suitable nuclide, which can be used in different fields. Most stable isobar can be determined by two means. First: plot mass parabolas (plotting the binding energy (B.E) as a function of the atomic number (Z)) for these isobaric families, in this method most stable isobars represent the lowest point in mass parabola (the nuclide with the highest value of binding energy). Second: calculated the atomic number for most stable isobar (ZA) value. Our results show that there is only one stable nuclide for isobars with odd mass number (A) (one mass parabolas), while for nuclides with an even mass number (A) there is more than one stable nuclide (two mass parabola). Also, our results show that nuclides representing the most stable isobars in the two methods, which used in this study practically, are the same nuclide.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

SHERMAN, A., and M. SCHREIBER. "INCOMMENSURATE SPIN DYNAMICS IN UNDERDOPED CUPRATE PEROVSKITES." International Journal of Modern Physics B 19, no. 13 (May 20, 2005): 2145–59. http://dx.doi.org/10.1142/s0217979205029808.

Повний текст джерела
Анотація:
The incommensurate magnetic response observed in normal-state cuprate perovskites is interpreted based on the projection operator formalism and the t–J model of Cu-O planes. In agreement with experiment the calculated dispersion of maxima in the susceptibility has the shape of two parabolas with upward and downward branches which converge at the antiferromagnetic wave vector. The maxima are located at the momenta (½, ½ ± δ), (½ ± δ, ½) and at (½ ± δ, ½ ± δ), (½ ± δ, ½ ∓ δ) in the lower and upper parabolas, respectively. The upper parabola reflects the dispersion of magnetic excitations of the localized Cu spins, while the lower parabola arises due to a dip in the spin-excitation damping at the antiferromagnetic wave vector. For moderate doping this dip stems from the weakness of the interaction between the spin excitations and holes near the hot spots. The frequency dependence of the susceptibility is shown to depend strongly on the hole bandwidth and damping and varies from the shape observed in YBa 2 Cu 3 O 7-y to that inherent in La 2-x Sr x CuO 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Schmidt, Ursula. "La parabole des paraboles (texte et images)." Horizons Maghrébins - Le droit à la mémoire 62, no. 1 (2010): 137–46. http://dx.doi.org/10.3406/horma.2010.2892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mijajlovic, Z., N. Pejovic, G. Damljanovic, and D. Ciric. "Envelopes of cometary orbits." Serbian Astronomical Journal, no. 177 (2008): 101–7. http://dx.doi.org/10.2298/saj0877101m.

Повний текст джерела
Анотація:
We discuss cometary orbits from the standpoint of Nonstandard (Leibnitz) analysis, a relatively new branch of mathematics. In particular, we consider parabolic cometary paths. It appears that, in a sense, every parabola is an ellipse.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Guo, Shaoming, Joris Roos, Andreas Seeger, and Po-Lam Yung. "Maximal functions associated with families of homogeneous curves: Lp bounds for P ≤ 2." Proceedings of the Edinburgh Mathematical Society 63, no. 2 (February 3, 2020): 398–412. http://dx.doi.org/10.1017/s0013091519000439.

Повний текст джерела
Анотація:
AbstractLet M(u), H(u) be the maximal operator and Hilbert transform along the parabola (t, ut2). For U ⊂ (0, ∞) we consider Lp estimates for the maximal functions sup u∈U|M(u)f| and sup u∈U|H(u)f|, when 1 < p ≤ 2. The parabolas can be replaced by more general non-flat homogeneous curves.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Żyto, Kamila. "„Chyba w ten sposób toczy się ta ludzka komedia przez całe pokolenia drogą na Zachód i przez pustynie”. Paraboliczność w kinie braci Coen." Załącznik Kulturoznawczy, no. 9 (2022): 685–718. http://dx.doi.org/10.21697/zk.2022.9.35.

Повний текст джерела
Анотація:
The Coen brothers stylized films, full of quotations and borrowings, are for many scholars the quintessence of a postmodern game with remnants, interpretive openness, and ambiguity. This fact does not incline to look in these films for the rules governing the world or human existence what is typical of parabolic thinking. The article is an attempt to demonstrate that the makers of the Oscar-winning Fargo (Fargo, 1996) often use in their work elements, tricks, or strategies typical of a traditional parabola, though their films may often be read as its contemporary invariants. Numerous Coens’ films bear the hallmarks of parabolic texts, even if in this case one cannot speak of a parabola as a genre. The messages they contain are never unambiguous and are not intended to educate. However, owing to their enigmatic nature, they encourage viewers to search for extra meanings.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

García-Moreno, F., S. T. Tobin, M. Mukherjee, C. Jiménez, E. Solórzano, G. S. Vinod Kumar, S. Hutzler, and J. Banhart. "Analysis of liquid metal foams through X-ray radioscopy and microgravity experiments." Soft Matter 10, no. 36 (2014): 6955–62. http://dx.doi.org/10.1039/c4sm00467a.

Повний текст джерела
Анотація:
The foaming process of a thixocast AlSi6Cu4 precursor material followed in situ by X-ray radioscopy shown for different experimental stages with and without drainage during the plane parabolic trajectory and the corresponding temperature T(t) (red line) and gravity g(t) profiles (blue line) during the parabolas.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

NUGROHO, YOSAN AGENG, and WALUYO WALUYO. "Investigasi Sagging Metoda Parabola pada Saluran Transmisi Terhadap Parameter Temperatur pada Saluran 150 Kv pada Gardu Induk Cigereleng." MIND Journal 6, no. 1 (August 1, 2021): 46–56. http://dx.doi.org/10.26760/mindjournal.v6i1.46-56.

Повний текст джерела
Анотація:
AbstrakAndongan adalah bentangan kawat konduktor dari dua ujung titik terendah ditarik garis lurus konduktor tersebut sehingga terbentuk lengkungan kebawah, kekuatan tarik pada andongan berfungsi untuk menahan dari kedua ujung kawat konduktor yang dibentangkan. Besar suatu nilai andongan dapat dilihat dari temperature pada sekeliling saluran transmisi, sehingga siang hari panjang kawat konduktor akan sedikit memanjang diakibatkan sinar matahari, dan sebaliknya malam hari. Untuk mempermudah perhitungan dan analisis andongan dengan menggunakan metoda parabola pada saluran transmisi 150 Kv, dengan hasil perhitungan secara manual. Andongan dengan metoda parabola pada parameter temperature, temperatur 20oC besar andongan 0,0898%, pada temperature 70oC tinggi andongan 0,01186% turun ketika temperature 175oC andongan 0,1544%.Kata kunci: Andongan, temperatur, metoda parabola, gardu induk, saluran transmisi 150 Kv AbstractSagging is main the stretch of conductor wire from the two ends of the lowest point drawn by a straight line of the conductor so that a downward curve is formed, the tensile strength of sagging serves to hold from both ends of the stretched conductor wire the magnitude of a sagging value can be seen from the temperature around the transmission line, so that during the day the length of the conductor wire will be slightly elongated due to sunlight, and vice versa at night. The facilitate for calculation and analysis of the sagging used the parabolic method on a 150 Kv transmission line, with the results of calculations manually. Sagging with parabolic method at temperature parameters, temperature 20 oC large sagging of 0.0898%, at a temperature of 70 oC, the sagging height of 0.01186% decreases when the temperature is 175 oC sagging 0.1544%.Keywords: sagging, temperature, parabolic method, substation, 150 Kv transmission line
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Salam, Badru, and Sri Latifah. "Pengembangan Projectile Launcher Sebagai Alat Praktikum Sederhana Fisika pada Materi Gerak Parabola." Indonesian Journal of Science and Mathematics Education 2, no. 2 (June 22, 2019): 177–83. http://dx.doi.org/10.24042/ijsme.v2i2.4323.

Повний текст джерела
Анотація:
Abstract:This research is a development research that aims to produce media product projectile launcher as a simple practical tool of physics on parabolic motion material and to know the feasibility of media projectile launcher as a simple practical tool of physics on parabolic motion material. Problems in this research, among others, is how to develop projectile launcher as a simple practical tool of physics on parabolic motion material and how is the response of learners to media projectile launcher as a simple physics practicum tool on parabolic motion material. . Subjects in this study are class IX SMA N 1 Way Tenong and SMA N 2 Way Tenong. This research is a development research using Research and Development (R & D) research method that adopt the development of Borg & Gall that has been modified by sugionoProducts are categorized very feasible based on the validation of material experts with 100% percentage and based on the validation of media experts with a percentage of 100% , as well as Projectile Launcher media are very interesting to be used as teaching materials based on teacher's assessment to get 100% score percentage and student's response in limited group trial to get 95% percentage score for SMA N 1 Way Tenong and 92% for SMA N 2 Way Tenong.Abstrak:Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk menghasilkan produk media projectile launcher sebagai alat praktikum sederhana fisika pada materi gerak parabola dan untuk mengetahui kelayakan dari media projectile launcher sebagai alat praktikum sederhana fisika pada materi gerak parabola. Masalah dalam penelitian ini antara lain bagaimanakah mengembangkan projectile launcher sebagai alat praktikum sederhana fisika pada materi gerak parabola dan bagaimanakah respon peserta didik terhadap media projectile launcher sebagai alat praktikum sederhana fisika pada materi gerak parabola. . Subjek dalam penelitian ini adalah kelas IX SMA N 1 Way Tenong dan SMA N 2 Way Tenong. Penelitian ini merupakan penelitian pengembangan menggunakan metode penelitian Research and Development (R&D) yang mengadopsi pengembangan dari Borg & Gall yang telah dimodifikasi oleh sugionoProduk yang dihasilkan berkategori sangat layak berdasarkan validasi dari ahli materi dengan presentase 100% dan berdasarkan validasi dari ahli media dengan presentase 100%, serta mediaProjectile Launchersangatmenarikuntukdijadikanbahanajarberdasarkanpenilaiangurumemperolehpresentaseskor100% dan respon peserta didik pada uji coba kelompok terbatas memperoleh skor presentase 95% untuk SMA N 1 Way Tenong dan 92% untuk SMA N 2 Way Tenong
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ahmadi, Mohammad Taghi, Zaharah Johari, N. Aziziah Amin, Amir Hossein Fallahpour, and Razali Ismail. "Graphene Nanoribbon Conductance Model in Parabolic Band Structure." Journal of Nanomaterials 2010 (2010): 1–4. http://dx.doi.org/10.1155/2010/753738.

Повний текст джерела
Анотація:
Many experimental measurements have been done on GNR conductance. In this paper, analytical model of GNR conductance is presented. Moreover, comparison with published data which illustrates good agreement between them is studied. Conductance of GNR as a one-dimensional device channel with parabolic band structures near the charge neutrality point is improved. Based on quantum confinement effect, the conductance of GNR in parabolic part of the band structure, also the temperature-dependent conductance which displays minimum conductance near the charge neutrality point are calculated. Graphene nanoribbon (GNR) with parabolic band structure near the minimum band energy terminates Fermi-Dirac integral base method on band structure study. While band structure is parabola, semiconducting GNRs conductance is a function of Fermi-Dirac integral which is based on Maxwell approximation in nondegenerate limit especially for a long channel.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wen, Hui, and Feng Ling Li. "A Simplified Formula to Calculate the Initial Value of Iteration for Contracted Depth in Quadratic Parabola Shaped Channels." Applied Mechanics and Materials 744-746 (March 2015): 1039–44. http://dx.doi.org/10.4028/www.scientific.net/amm.744-746.1039.

Повний текст джерела
Анотація:
At present, the complexity of calculation process and expression form of the initial value of iteration for contracted depth in quadratic parabola shaped channels,Seek a new iterative initial value formula for contracted depth in quadratic parabola shaped channels. Through an identical deformation on the basic equation for contracted depth in quadratic parabola shaped channels. Deduce the iterative formula for computing the quadratic parabola section contraction water depth. Introduction the dimensionless contraction water depth concept, plot the dimensionless contraction water depth and the dimensionless parameter relationship curves. Determine the iterative formula of initial value form for quadratic parabolic shaped channels, and based on the theory of optimum fitting, by the minimum residual standard differential and simple form of formula as the goal, the initial iteration value formula for calculation contracted depth in quadratic parabola shaped channels was obtained. It is greatly accelerating the convergence rate iterative calculations. The calculation of a practical case and error analysis of the depth calculations show that in the utility range of , its maximum relative error is less than 0.26% after performing one iteration. This formula has definite physics concept, easy calculation, high precision and wide range compared with the existing formulas. It will bring great convenience for designers.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zirakashvili, Natela. "Exact solution of some exterior boundary value problems of elasticity in parabolic coordinates." Mathematics and Mechanics of Solids 23, no. 6 (March 13, 2017): 929–43. http://dx.doi.org/10.1177/1081286517697371.

Повний текст джерела
Анотація:
The present work, by using the method of the separation of variables, states and analytically (exactly) solves the external boundary value problems of elastic equilibrium of the homogeneous isotropic body bounded by the parabola, when normal or tangential stresses are given on a parabolic border. Using MATLAB software, the numerical results and constructed graphs of the mentioned boundary value problems are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Pathan, Alex, and Tony Collyer. "A solution to a cubic – Barker's equation for parabolic trajectories." Mathematical Gazette 90, no. 519 (November 2006): 398–403. http://dx.doi.org/10.1017/s0025557200180192.

Повний текст джерела
Анотація:
Except for the circle, for which the true anomaly v is proportional to the time t, the position of a body in orbit about a central body at a given time is simplest to derive for a parabola. The classical determination of the time of flight on a parabolic trajectory is through the integration of the dynamic equations of motion. (See Appendix.)
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Skublewska-Paszkowska, Maria, and Jakub Smołka. "PORÓWNANIE WYBRANYCH METOD INTERPOLACJI RUCHU." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 3, no. 3 (July 24, 2013): 14–17. http://dx.doi.org/10.35784/iapgos.1456.

Повний текст джерела
Анотація:
Interpolacja jest jednym z kluczowych elementów wykorzystywanych w animacji komputerowej. Dobór odpowiedniej metody interpolacji wpływa na ruch animowanej postaci. Artykuł przedstawia wybrane metody interpolacji i porównuje je ze względu na czas wykonywania obliczeń oraz dokładność uzyskanych wyników. Algorytmy, które przeanalizowano to: metoda Catmula-Roma, zmodyfikowana metoda Catmulla-Roma oraz krzywe przejściowe między parabolami (blended parabolas). Eksperymenty numeryczne przeprowadzono za pomocą programu komputerowego napisanego w języku C++.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

De Sousa, Renata Teófilo, and Francisco Régis Vieira Alves. "Didactic Engineering and Learning Objects: A Proposal for Teaching Parabolas in Analytical Geometry." Indonesian Journal of Science and Mathematics Education 5, no. 1 (March 31, 2022): 1–16. http://dx.doi.org/10.24042/ijsme.v5i1.11108.

Повний текст джерела
Анотація:
This work aims to investigate the feasibility of using a Learning Object built in GeoGebra software and its potential for teaching parabolas in Analytical Geometry, having as support for its replication in a teaching session the Theory of Didactic Situations. The methodology adopted was Didactic Engineering, in its first two phases – preliminary analysis and a priori analysis. In the preliminary analysis, some epistemological and didactic aspects that permeate the teaching of parabolas, the concept of Learning Objects and the Theory of Didactic Situations were raised. In the a priori analysis, we present the Learning Object called Suspension Bridge and its manipulation in GeoGebra for the exploration of the parabola, as well as a student's attitudinal prediction. Thus, we seek to collaborate with the development of new approaches to teaching this topic, contributing to the advancement of the use of educational technologies integrated into the teaching of mathematics.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ortega, Jairo, János Tóth, and Tamás Péter. "Mapping the Catchment Area of Park and Ride Facilities within Urban Environments." ISPRS International Journal of Geo-Information 9, no. 9 (August 21, 2020): 501. http://dx.doi.org/10.3390/ijgi9090501.

Повний текст джерела
Анотація:
A Park and Ride (P & R) system is a set of facilities located throughout an urban area that can serve as transfer points for travelers that would like to utilize their private vehicles for one part of their journey and a more sustainable transport mode, such as public transport, for another part of the same journey. The catchment area of the facilities is identified as a fundamental element for planning a P & R system. It can be assumed to be accurately represented by several geometric shapes, such as a circle or a parabola. In that regard, a method denominated as the parabola method can be used to visualize those geometric shapes on digital maps of an urban environment. It can be implemented as a software program that integrates the variables that represent the elements of the P & R system as well as the set of equations that are used in a geographic information system (GIS) software. A significant aspect of how the parabola method is applied is its orientation as a shape, which is traditionally configured in respect to the area of major business activity or central business districts (CBDs). In fact, the research presented in this article aims to provide a new approach to the parabola’s orientation to study the P & R system’s catchment area by proposing the parabola’s orientation according to the primary access that potential users used to reach the facility. A case study that portrays the application of our method is given that is focused on the medium-sized city of Cuenca, Ecuador, where we determine which approach to the parabola’s orientation is the most suitable. In conclusion, the second approach proposed in this research reflects in a more realistic form the operation of the catchment area of the P & R system, considering a better distribution of the coverage area of the P & R system in the urban environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії