Добірка наукової літератури з теми "Panthera pardu"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Panthera pardu".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Panthera pardu"

1

Gupta, P. P. "Inclusion Body Hepatitis in a Black Panther (Panthera pardus pardus)." Zentralblatt für Veterinärmedizin Reihe B 25, no. 10 (May 13, 2010): 858–60. http://dx.doi.org/10.1111/j.1439-0450.1978.tb01063.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

da Silva, Lucas G., Kae Kawanishi, Philipp Henschel, Andrew Kittle, Arezoo Sanei, Alexander Reebin, Dale Miquelle, et al. "Mapping black panthers: Macroecological modeling of melanism in leopards (Panthera pardus)." PLOS ONE 12, no. 4 (April 5, 2017): e0170378. http://dx.doi.org/10.1371/journal.pone.0170378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stein, Andrew B., and Virginia Hayssen. "Panthera pardus(Carnivora: Felidae)." Mammalian Species 900 (June 12, 2013): 30–48. http://dx.doi.org/10.1644/900.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Upadhye, S. V., and V. M. Dhoot. "Paragonimiosis in a Leopard Panthera pardus." Zoos' Print Journal 17, no. 5 (April 21, 2002): 789. http://dx.doi.org/10.11609/jott.zpj.17.5.789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baryshnikov, G. F. "Pleistocene felidae (Mammalia, Carnivora) from the Kudaro Paleolithic sites in the Caucasus." Proceedings of the Zoological Institute RAS 315, no. 3 (September 23, 2011): 197–226. http://dx.doi.org/10.31610/trudyzin/2011.315.3.197.

Повний текст джерела
Анотація:
The Kudaro Paleolithic site complex in Southern Ossetia includes five species of felids: Panthera onca gombaszoegensis, P. spelaea, P. pardus, Felis silvestris and possibly Lynx lynx. The fossil jaguar P. onca gombaszoegensis was identified from the lowest stratigraphic level of the Middle Pleistocene (Likhvian = Holsteinian Interglacial). Remains of P. pardus and Felis silvestris were recovered from all layers. Panthera spelaea and Lynx lynx represent northern migrants appeared there at the end of the Middle Pleistocene and Late Pleistocene respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Koju, Narayan Prasad, Saraswati Byanjankar, Deepa Thapa, Sandhya Shrestha, Ashim Thapa Magar, Lina Chalise, Arati Shrestha, and Ram Kumar Bhandari. "Remarkable observations of melanistic leopard (Panthera pardus pardus) in Nepal." Nepalese Journal of Zoology 6, no. 2 (December 30, 2022): 45–52. http://dx.doi.org/10.3126/njz.v6i2.51883.

Повний текст джерела
Анотація:
Melanism has been reported in many mammals, but records of melanistic leopards in Nepal are very few and not systematic, even though common leopards are found throughout the country and are considered one of the most problematic carnivores. In this study, we gathered data on records of five melanistic leopards that were seen or caught close to the Kathmandu Valley. Out of the five, two were captured on camera by locals, two were records of animals that were found alive but suffered injuries and passed away in captivity, and one was a record of a dead animal. All of them were recorded close to human populated areas. It is unknown what causes a high occurrence of melanosis in leopards and why it frequently occurs close to the Kathmandu Valley. It is recommended to conduct a comprehensive analysis of their population, geographic range, and habitat.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fischer, K. "Ein Leoparden-Fund, Panthera pardus (L., 1758), aus dem jungpleistozänen Rixdorfer Horizont von Berlin und die Verbreitung des Leoparden im Pleistozän Europas." Fossil Record 3, no. 1 (January 1, 2000): 221–27. http://dx.doi.org/10.5194/fr-3-221-2000.

Повний текст джерела
Анотація:
Erstmals wurde das Vorkommen des Leoparden (<i>Panthera pardus</i>) im Rixdorfer Horizont (Früh-Weichsel, Jungpleistozän) von Berlin-Brandenburg durch ein Humerus-Fragment von Niederlehme bei Königs Wusterhausen nachgewiesen. Es ist das bisher nördlichste Vorkommen des Leoparden in Mitteleuropa. <br><br> The finding of leopard, <i>Panthera pardus</i> (L., 1758), from the late Pleistocene horizon of Rixdorf in Berlin and the occurrence of leopards in the Pleistocene of Europe are described and discussed. <br><br> For the first time the occurrence of the leopard (<i>Panthera pardus</i>) in the horizon of Rixdorf (Early Weichsel, Late Pleistocene) of Berlin-Brandenburg is proven. The find is represented by a fragment of a humerus from Niederlehme near Königs Wusterhausen. This is the most northern occurrence of the leopard in Middle Europe until now. <br><br> doi:<a href="http://dx.doi.org/10.1002/mmng.20000030111" target="_blank">10.1002/mmng.20000030111</a>
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hettlich, Bianca F., H. Phil Hobson, Eileen P. Snakard, and James H. Johnson. "Gastroesophageal Intussusception in a Leopard (Panthera pardus)." Journal of Zoo and Wildlife Medicine 41, no. 3 (September 2010): 519–21. http://dx.doi.org/10.1638/2009-0026.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hayward, M. W., P. Henschel, J. O'Brien, M. Hofmeyr, G. Balme, and G. I. H. Kerley. "Prey preferences of the leopard (Panthera pardus)." Journal of Zoology 270, no. 2 (June 1, 2006): 298–313. http://dx.doi.org/10.1111/j.1469-7998.2006.00139.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vogel, J. Stephen, John R. Parker, Fred B. Jordan, Thomas L. Coury, and Arthur R. Vernino. "Persian Leopard (Panthera pardus) Attack in Oklahoma." American Journal of Forensic Medicine and Pathology 21, no. 3 (September 2000): 264–69. http://dx.doi.org/10.1097/00000433-200009000-00017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Panthera pardu"

1

du, Preez Byron Dennis. "The impact of intraguild competition with lion (Panthera leo) on leopard (Panthera pardus) behavioural ecology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6c17014e-2c58-40e5-866e-d1ce88fe0e89.

Повний текст джерела
Анотація:
Single-species research dominates the field of ecology; however there is a growing appreciation of the importance of a multi-species approach to holistic conservation. Carnivores exert a top-down control on other species, and are vital components of stable ecosystem functioning. Physiologically adapted for predation upon other animals, competition between carnivores can be particularly aggressive; frequently resulting in mortality, and even population suppression. Big cat research has historically focused on those species that are most easily observable; in particular the lion Panthera leo. The majority of the Felidae however are secretive and elusive, and receive relatively little scientific attention. In particular, there are few data available that measure the effect of direct intraguild interactions between carnivores. Using leopards Panthera pardus as a model species, this research aimed to investigate the impact of lions on the behavioural ecology of a socially subordinate carnivore. Leopards are the most abundant large carnivore in Africa, and have the largest global range of all felids; their ecological niche overlapping with that of both lions and tigers. The knowledge gained from examining their competitive interactions is therefore widely relevant, and may be applicable to other subordinate carnivore species that remain unstudied. Biotelemetry and camera-trap data were modelled using novel algorithms to show that lions impact on leopard population density, demographics and spatial ecology. Faecal analyses suggest that dietary niche segregation may facilitate sympatry. These results indicate the level of impact that large carnivores can exert over smaller species, and the potential for a focus on single-species conservation to undermine holistic conservation. The manifestation of intraguild competition has a significant influence on an animal’s ecology; leopards are generalist species that cope with persecution by adapting their behaviour and niche. Ecological specialists may not fare as well under competitive pressure, and proactive conservation initiatives may be required for endangered species.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

POKHERAL, Chiranjibi Prasad. "ECOLOGY AND CONSERVATION OF TIGER Panthera tigris AND LEOPARD Panthera pardus IN A SUBTROPICAL LOWLAND AREA, NEPAL." Doctoral thesis, Università degli studi di Ferrara, 2013. http://hdl.handle.net/11392/2388839.

Повний текст джерела
Анотація:
Ecology and conservation of tigers Panthera tigris and leopards Panthera pardus are studied in this thesis. The study was carried out between 2008 and 2011 in the Shuklaphanta Wildlife Reserve (SWR), a subtropical lowland area in Nepal. Both these large carnivores are sympatric in many parts of their distributional ranges in Asia. Due to poaching, habitat loss and prey depletion, the tiger is already considered an endangered species globally, whereas leopard is nearly threatened. The present study addresses the ecology and conservation of these sympatric carnivores in one densely settled area situated within the Terai Arc Landscape of Nepal, where the tiger population recently declined by about sixty percent within a decade long period. Because carnivore ecology is largely governed by their prey, understanding the feeding ecology and behavioural flexibility of felids in prey selection is essential to address their conservation requirements. The prey selection by the two carnivores were quantified by scat analysis and the distance sampling line transect method in an area of about 250 km2. Results obtained from camera trapping were used to quantify the activity patterns as well as the status and spatial behaviour of the tigers and leopards. In addition, non- invasive genetic analysis of their scats were made to identify the minimum number of tigers and leopards in SWR. For the genetics part, the Karnali floodplain area (ca. 100km2) of Bardia National Park (BNP) located 150 km further east was also included. On average, 131 and 175 individual prey animals per km2 were estimated during the dry seasons of 2010 and 2011, respectively. Of these, 62-63% was wild prey and 38% were domestic animals. Individually, swamp deer was the most abundant wild prey, followed by chital, rhesus, langur, hog deer, wild boar, nilgai and muntjac in 2010. However, in 2011 chital was the most abundant among wild prey, followed by swamp deer, rhesus, hog deer, langur, wild boar, muntjac and nilgai. The analysis of 194 tiger and 42 leopard scats showed the occurrence of 12 and 14 prey species, respectively. Tiger and leopard diets were composed of a large quantity of wild ungulates (77% for tigers and 51% for leopards). The relative occurrences of prey items (wild ungulates) in the diet differed significantly between tiger and leopard (G=11.12; df=1, p<0.001). Medium sized prey species, such as chital were most common in the tiger diet, whereas small species showed up most frequently in the leopard diet, followed by medium sized species. Tigers consumed more large prey than the leopards did. The niche overlap values indicated a great dietary overlap of tiger than leopard. Camera trapping data showed that both tigers and leopards were photo-captured more frequently at night than during the day thus indicating that both have a nocturnal activity, however, tigers were found to have more diurnal activity than leopards. Variances in time use, temporally or spatially, have been recognized as behavioural characteristics that may motivate coexistence. In general, between 11AM- 5PM leopards were less active than tigers, probably to avoid the hottest period of the day, and because of a preference for the small sized prey that are most active during dusk and dawn. Concentration within certain areas and limited diurnal activity of leopards indicated the existence of temporal niche segregation between these cats. Camera trapping identified 11 individual tigers (six males and five females) and 9 leopards (five males and four females) in SWR. The genetic analysis identified only 5 tigers and 4 leopards from SWR, and 6 tigers from the Karnali floodplain of BNP. Population density of tigers in SWR was estimated at between 1.8 and 2.9/100 km2, while that for leopards was estimated at between 1.8 and 2.6/100 km2 during the study period. From 9 tigers in SWR. I calculated an average home range (HR) of 36.6 km2, with male HR (43.3 km2) being 1.45 times larger on average than those of females (29.9 km2). Among leopards (n=7) an average HR of 17.9 km2, was recorded, with males HRs (26.6 km2) 2.86 times larger than those of females (9.3 km2). The HRs of all male tigers overlapped each other at least partially and almost completely in some cases. HRs of male tigers overlapped more than those of female tigers, and male HRs overlapped with more than one individual female. Leopard HRs tended to overlap less than those of tigers, with values ranging up to 7 km2 for females to 2-24 km2 for males (overall mean 8.83 km2). As displayed by the tiger, male leopard HRs tended to overlap with those of several females. The data suggested that even though there was 12 to 18 % median overlap between tiger and leopard HRs, there was a clear spatial separation between them. Leopards were more restricted to the periphery of the reserve, while tigers occupied the core or mostly undisturbed areas of the reserve. This research provides the first set of data on tigers, leopards and their prey in SWR, Nepal during the dry season. However, immediate needs for further research on wildlife disease, especially focused on large carnivores, and human-disturbance in the reserve including prey availability in the eastern selection of the reserve area, an issue which was not included in this study. Furthermore research is needed on predator-prey relation with the inclusion of trans-boundary wildlife corridor utilization and the link between the smaller protected areas in the trans-border level.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martins, Quinton Eugene. "The ecology of the leopard Panthera pardus in the Cederberg Mountains." Thesis, University of Bristol, 2010. http://hdl.handle.net/1983/113b1d28-eed4-443c-96e6-0e7ac57d9ada.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Farhadinia, Mohammad. "Ecology and conservation of Persian leopard Panthera pardus saxicolor in northeastern Iran." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:a6de37f8-ad76-4341-a2a7-da17769a92a2.

Повний текст джерела
Анотація:
The Persian leopard is the largest cat in west Asia, and is considered to be endangered - poaching and habitat degradation are thought to be responsible. The rugged mountains and high altitudes it favours present considerable challenges for scientists, and it is consequently one of the least known subspecies. I have addressed this through exploring the subspecies' fundamental ecology across three national parks in northeastern Iran. I used satellite telemetry, camera trapping, genetic analysis and questionnaire surveys. The perceived role of leopards in livestock depredation was negligible compared to that of wolves. This was associated with relative tolerance of leopards compared with wolves; but the economic loss associated with predator damage did appear to influence peoples' attitudes. I also estimated a mean home range of 103.4 ± SE 51.8 km2 for resident males which is larger than what has been observed in other studies on Asian leopard. Five out of six of leopards spent 17.9% of their time outside the national park, among human communities. The kill rate was quantified as 3.7 ± SE 0.5 medium-sized prey/month per leopard, which is higher than reported by previous studies. Surprisingly, considering the subspecies' reported low density based on previous studies, I found relatively high population densities, varying between 4.01 ± SE 1.98 and 8.02 ± SE 2.67 individuals/100 km2. The number of adult leopards detected in Tandoureh (30 individuals) was larger than identified during comparable surveys at any other site globally. Persian leopards exhibited moderately high genetic diversity at six microsatellites (AN = 7.45, HO = 0.69, HE =0.75) and low haplotype diversity (Hd = 0.198) across three closely related haplotypes in NADH-5 gene. There was a weak evidence of spatial population partitioning. My research findings highlight the key role of mountainous ecosystems as refugia in supporting a high density of apex predators. Although land sharing is an inevitable solution for coexistence across Asian crowded montane landscapes, sparing mountains with improved law enforcement is encouraged for large cat conservation in Asian mountains. Finally, my thesis raises new hope for leopard viability as well as highlights the potential capacity of the Kopet Dag Ecoregion as a significant conservation unit for leopards.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Castro, Prieto Aines del Carmen. "Immunogenetics of free-ranging felids on Namibian farmlands." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5550/.

Повний текст джерела
Анотація:
Genetic variation is crucial for the long-term survival of the species as it provides the potential for adaptive responses to environmental changes such as emerging diseases. The Major Histocompatibility Complex (MHC) is a gene family that plays a central role in the vertebrate’s immune system by triggering the adaptive immune response after exposure to pathogens. MHC genes have become highly suitable molecular markers of adaptive significance. They synthesize two primary cell surface molecules namely MHC class I and class II that recognize short fragments of proteins derived respectively from intracellular (e.g. viruses) and extracellular (e.g. bacteria, protozoa, arthropods) origins and present them to immune cells. High levels of MHC polymorphism frequently observed in natural populations are interpreted as an adaptation to detect and present a wide array of rapidly evolving pathogens. This variation appears to be largely maintained by positive selection driven mainly by pathogenic selective pressures. For my doctoral research I focused on MHC I and II variation in free-ranging cheetahs (Acinonyx jubatus) and leopards (Panthera pardus) on Namibian farmlands. Both felid species are sympatric thus subject to similar pathogenic pressures but differ in their evolutionary and demographic histories. The main aims were to investigate 1) the extent and patterns of MHC variation at the population level in both felids, 2) the association between levels of MHC variation and disease resistance in free-ranging cheetahs, and 3) the role of selection at different time scales in shaping MHC variation in both felids. Cheetahs and leopards represent the largest free-ranging carnivores in Namibia. They concentrate in unprotected areas on privately owned farmlands where domestic and other wild animals also occur and the risk of pathogen transmission is increased. Thus, knowledge on adaptive genetic variation involved in disease resistance may be pertinent to both felid species’ conservation. The cheetah has been used as a classic example in conservation genetics textbooks due to overall low levels of genetic variation. Reduced variation at MHC genes has been associated with high susceptibility to infectious diseases in cheetahs. However, increased disease susceptibility has only been observed in captive cheetahs whereas recent studies in free-ranging Namibian cheetahs revealed a good health status. This raised the question whether the diversity at MHC I and II genes in free-ranging cheetahs is higher than previously reported. In this study, a total of 10 MHC I alleles and four MHC II alleles were observed in 149 individuals throughout Namibia. All alleles but one likely belong to functional MHC genes as their expression was confirmed. The observed alleles belong to four MHC I and three MHC II genes in the species as revealed by phylogenetic analyses. Signatures of historical positive selection acting on specific sites that interact directly with pathogen-derived proteins were detected in both MHC classes. Furthermore, a high genetic differentiation at MHC I was observed between Namibian cheetahs from east-central and north-central regions known to differ substantially in exposure to feline-specific viral pathogens. This suggests that the patterns of MHC I variation in the current population mirrors different pathogenic selective pressure imposed by viruses. Cheetahs showed low levels of MHC diversity compared with other mammalian species including felids, but this does not seem to influence the current immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease susceptibility. However, it cannot be ruled out that the low MHC variation might limit a prosperous immunocompetence in the case of an emerging disease scenario because none of the remaining alleles might be able to recognize a novel pathogen. In contrast to cheetahs, leopards occur in most parts of Africa being perhaps the most abundant big cat in the continent. Leopards seem to have escaped from large-scale declines due to epizootics in the past in contrast to some free-ranging large carnivore populations in Africa that have been afflicted by epizootics. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, I characterized genetic variation at MHC I and MHC II genes in free-ranging leopards from Namibia. A total of six MHC I and six MHC II sequences were detected in 25 individuals from the east-central region. The maximum number of sequences observed per individual suggests that they likely correspond to at least three MHC I and three MHC II genes. Hallmarks of MHC evolution were confirmed such as historical positive selection, recombination and trans-species polymorphism. The low MHC variation detected in Namibian leopards is not conclusive and further research is required to assess the extent of MHC variation in different areas of its geographic range. Results from this thesis will contribute to better understanding the evolutionary significance of MHC and conservation implications in free-ranging felids. Translocation of wildlife is an increasingly used management tool for conservation purposes that should be conducted carefully as it may affect the ability of the translocated animals to cope with different pathogenic selective pressures.
Genetische Variabilität ist entscheidend für das langfristige Überleben von Arten, denn es ermöglicht dem Organismus sich Umweltveränderungen, wie z.B. neu aufkommende Krankheiten, schneller anzupassen. Der Haupthistocompatibilitätskomplex (MHC) ist eine Familie von Genen, der eine zentrale Rolle im Immunsystem von Wirbeltieren zukommt, da sie nach Pathogenkontakt das adaptive Immunsystem aktivieren. Zudem sind MHC Gene geeignete molekulare Marker um Anpassungsfähigkeiten aufzuzeigen. MHC Gene kodieren primär für Zelloberflächenmoleküle, die kurze Peptidfragmente erkennen und den Immunzellen präsentieren, die im Falle der Klasse I Gene intrazellulären (z.B. von Viren) oder im Falle der Klasse II Gene extrazellulären (z.B. von Bakterien, Protozoen, Arthropoden) Ursprungs sein können. In der Regel wird in natürlich vorkommenden Populationen ein hoher Grad an Polymorphismus im MHC beobachtet, was als Anpassung an das Erkennen und Präsentieren einer großen Anzahl sich schnell entwickelnder Pathogene interpretiert wird. Das Bestehen vieler MHC Varianten über große Zeiträume hinweg wird hauptsächlich durch positive Selektion bewirkt, der ein pathogengetriebener Selektionsdruck zugrunde liegt. In meiner Doktorarbeit habe ich mich mit der Variation von MHC I and MHC II in freilebenden Geparden (Acinonyx jubatus) und Leoparden (Panthera pardus) in Farmgebieten innerhalb Namibias beschäftigt. Beide Felidenarten leben sympatrisch und sind so demselben Pathogendruck ausgesetzt, sie unterscheiden sich allerdings in ihrem evolutionären und demographischen Hintergrund. Mein Hauptziel war es 1) das Ausmaß und Muster der MHC Variation auf Populationsebene beider Feliden zu untersuchen; 2) einen möglichen Zusammenhang zwischen dem Grad der MHC Variation und der Krankheitsresistenz in frei lebenden Geparden aufzudecken und 3) zu untersuchen, welche Rolle der Selektion auf die MHC Variabilität beider Arten in der Vergangenheit wie auch gegenwärtig zukommt. Geparden und Leoparden repräsentieren die größten frei lebenden Carnivoren Namibias. Beide Arten kommen hauptsächlich in Farmgebieten vor, die sich in Privatbesitz befinden, und können dort mit anderen Wild- aber auch Haustieren zusammentreffen und potentiell Krankheitserreger austauschen. Die Kenntnis über die adaptive genetische Variation, die für Krankheitsresistenzen mitverantwortlich ist, kann für den Schutz beider Felidenarten von Bedeutung sein. Geparden werden häufig in Lehrbüchern als klassische Beispiele für eine Tierart mit einer generell geringen genetischen Diversität verwendet. Neben neutralen Markern ist bei Geparden auch eine geringe Variabilität der MHC Gene beschrieben worden, die als Ursache einer hohen Anfälligkeit für infektiöse Krankheiten gesehen wird. Bisher wurde allerdings eine erhöhte Krankheitsanfälligkeit nur bei Geparden aus Gefangenschaft beschrieben, wohingegen neuste Studien an frei lebenden Geparden diesen einen guten Gesundheitsstatus attestierten. Dadurch stellt sich die Frage, ob die MHC I und II Diversität in frei lebenden Geparden nicht höher sein könnte als bisher angenommen. In dieser Arbeit konnten insgesamt 10 MHC I und vier MHC II Allele in 149 frei lebenden Geparden aus ganz Namibia nachgewiesen werden. Die Zugehörigkeit zu funktionellen MHC Genen wurde durch Expressionsanalysen bei allen Allelen, außer einem, bestätigt. Durch phylogenetische Analysen konnten die Allele vier MHC I und drei MHC II Genen zu geordnet werden. Das Wirken von positiver Selektion in der Vergangenheit konnte an spezifischen Aminosäuren des Proteins, die in direktem Kontakt zu den pathogenen Antigenen stehen, festgestellt werden. Dies traf für beide MHC Klassen zu. Des Weiteren konnte eine starke genetische Differenzierung des MHC I zwischen Geparden aus einer nord-zentralen und einer ost-zentralen Region festgestellt werden, von denen auch bekannt ist, dass sie unterschiedlichen, felidenspezifischen, viralen Pathogenen ausgesetzt sind. Das lässt vermuten, dass die unterschiedlichen Muster der MHC I Variation in der gegenwärtigen Population den unterschiedlichen pathogengetriebenen Selektionsdruck durch Viren in den beiden Regionen widerspiegelt. Verglichen mit anderen Säugetierarten, insbesondere andere Feliden, zeigen Geparden einen geringen Grad an MHC Diversität, doch das scheint die derzeitige Immunkompetenz frei lebender Geparden in Namibia nicht einzuschränken und widerspricht der bisherigen Meinung dass Geparden ein typisches Beispiel für eine krankheitsanfällige Tierart sind. Es kann allerdings nicht ausgeschlossen werden, dass bei neu auftauchenden Krankheiten die geringe MHC Variation eine erfolgreiche Immunkompetenz verhindert, da möglicherweise keines der gegenwärtigen Allele die Fähigkeit besitzt neue Pathogene zu erkennen. Im Gegensatz zu Geparden kommen Leoparden in allen Teilen Afrikas vor und sind wahrscheinlich die am weitverbreiteste Großkatze des afrikanischen Kontinents. Es scheint, dass Leoparden, im Gegensatz zu anderen afrikanischen Großkatzen, einer ausgedehnten Dezimierung durch Tierseuchen in der Vergangenheit, der einige Populationen afrikanischer Großkatzen ausgesetzt waren, entkommen sind. Bisher fehlten Information über die MHC Variabilität in afrikanischen Leoparden. In dieser Studie konnte ich die genetische Variation der MHC I und MHC II Gene frei lebender namibischer Leoparden charakterisieren. In 25 Tieren aus einer Population der ost-zentralen Region konnten sechs MHC I sowie sechs MHC II Sequenzen nachgewiesen werden. Aus der maximalen Anzahl Allele pro Tier kann auf drei MHC I und auf drei MHC II Gene geschlossen werden. Außerdem konnten die typischen Kennzeichen einer variationserhaltenden MHC Evolution betätigt werden, wie positive Selektion in der Vergangenheit, Rekombination und über Artgrenzen hinaus bestehender Polymorphismus. Der geringe Grad an MHC Variation in namibischen Leoparden ist jedoch noch nicht endgültig und weitere Untersuchungen in unterschiedlichen Regionen aus der gesamten geographischen Verbreitung des Leoparden sind notwendig um die MHC Variation der Leoparden in Gänze einschätzen zu können. Die Ergebnisse dieser Arbeit werden zu einem besseren Verständnis des evolutionären Stellenwerts des MHC und in Folge zu einem besseren Schutz von frei lebenden Feliden beitragen. Die Umsiedelung von Wildtieren ist ein zunehmend angewendetes Hilfsmittel im Natur- und Artenschutz, welches jedoch mit Sorgfalt eingesetzt werden sollte, da die umgesiedelten Tiere möglicherweise einem anderen pathogenen Selektionsdruck ausgesetzt sind, dem sie nichts entgegenzusetzen haben.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Braczkowski, Aleksander Ryszard. "The susceptibility of leopards Panthera pardus to trophy hunting : the trophy hunting of leopards." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:801c0746-1b25-4c84-9ce8-bfeaf6c014d3.

Повний текст джерела
Анотація:
The trophy hunting of African leopards Panthera pardus pardus may generate revenue to help foster their conservation. However, leopards are sensitive to hunting and populations decline if overharvested. The practice therefore requires careful management grounded in robust estimates of population density/status. Camera-trap surveys are commonly used to establish leopard numbers, and may guide harvest quotas. However, such surveys are limited over wide spatial scales and many African governments lack resources to implement them. In this thesis I explore the potential use of a harvest composition scheme applied to puma Puma concolor in North America, to monitor leopards. The method hinges on the susceptibility of different leopard cohorts to hunting and if this varies, then predictions can be made about harvest composition. Susceptibility is likely to be governed by space use, encounter rates with bait lures (a common method used to attract leopards to hunting hides) and hunter selectivity. Thus in this thesis I explore leopard susceptibility to these factors using a protected leopard population in northern Zululand, South Africa. In my first chapter I examine using scent lures in camera-trapping. Against a backdrop of a passive survey I show adult males, females and sub-adults are captured at similar rates compared to a passive survey using lures. The use of lures does not appear to violate closure assumptions or affect spatio-temporal patterning, but their use appears limited as density estimate precision is not improved. My second chapter examines ecological (likelihood of encountering a hunter) and anthropogenic (attractiveness to hunters) susceptibility of leopards to trophy hunting. I show that adult males are the most susceptible cohort to hunting (sub-adults least susceptible). I then take the incident rates from ecological and anthropogenic models and create a theoretical harvest composition using population parameters of protected leopards. My third data chapter departs from hunting susceptibility and examines determinants of leopard trophy package price across Africa. I show that factors such as trophy quality, outfitter leopard hunting reputation and hunt success have little impact on price determination. Instead, overall outfitter reputation and the number of charismatic species in a package are positively correlated with price. These results have important consequences on several sustainable leopard hunting schemes proposed in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mann, Gareth. "Aspects of the ecology of leopards (Panthera Pardus) in the Little Karoo, South Africa." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1012241.

Повний текст джерела
Анотація:
Leopards (Panthera pardus) are the most common large predators, free roaming outside of protected areas across most of South Africa. Leopard persistence is attributed to their tolerance of rugged terrain that is subject to less development pressure, as well as their cryptic behaviour. Nevertheless, existing leopard populations are threatened indirectly by ongoing transformation of natural habitat and directly through hunting and conflict with livestock farmers. Together these threats may further isolate leopards to fragmented areas of core natural habitat. I studied leopard habitat preferences, population density, diet and the attitudes of landowners towards leopards in the Little Karoo, Western Cape, South Africa, an area of mixed land-use that contains elements of three overlapping global biodiversity hotspots. Data were gathered between 2010 and 2012 using camera traps set up at 141 sites over an area of ~3100km², GPS tracking collars fitted to three male leopards, scat samples (n=76), interviews with landowners (n=53) analysed in combination with geographical information system (GIS) layers. My results reveal that leopards preferred rugged, mountainous terrain of intermediate elevation, avoiding low-lying, open areas where human disturbance was generally greater. Despite relatively un-fragmented habitat within my study area, the leopard population density (0.75 leopards/100km²) was one of the lowest yet recorded in South Africa. This may reflect low prey densities in mountain refuges in addition to historical human persecution in the area. Currently local landowners are more tolerant of leopards than other wildlife species with incidents of conflict involving leopards being rare relative to black-backed jackals (Canis mesomelas), baboons (Papio hamadryas), caracals (Caracal caracal) and porcupine (Hystrix africaeaustralis). Although current levels of conflict between leopards and stock farmers are low, leopards do depredate livestock, which constitute 10-15% of their diet. Improved livestock husbandry measures and co-operation between conservation authorities and farmers are necessary to mitigate such conflict and balance economic security with biodiversity conservation in the region. Leopards are the only remaining top predators throughout much of the Little Karoo and the Western Cape and as such are predicted to play a critical role in ecosystem structure and the survival of other species. Current high levels of connectivity between areas of suitable leopard habitat bode well for the conservation status of leopards within this region and future conservation efforts need to ensure that narrow corridors linking such habitat are preserved. The potential for leopards to serve as both an umbrella and a flagship species for biodiversity conservation suggests that long term monitoring of this population would be a conservation priority for the Little Karoo.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rautenbach, Therèsè. "Assessing the diet of the Cape leopard (panthera pardus) in the Cederberg and Gamka mountains, South Africa." Thesis, Nelson Mandela Metropolitan University, 2010. http://hdl.handle.net/10948/1078.

Повний текст джерела
Анотація:
As limited prey availability and persecution by humans in response to livestock predation are key conservation concerns for the Cape leopard (Martins & Martins 2006), the present study aimed to provide more information regarding their feeding habits. The first objective was to determine whether the Cape leopard was subject to a change in their prey base and how they responded to the change. This was established by comparison of their current diet in the Cederberg and Gamka Mountains, determined by using scat analysis techniques, with a previous dietary assessment (Norton et al. 1986). The second aim was to provide a preliminary assessment of the prey preference of the Cape leopard and examine the utility of camera trap surveys to determine leopard prey preference. Leopard diet in the Cederberg and Gamka Mountains consisted largely of small- (1-10 kg) and medium-sized (10-40 kg) mammals; rock hyraxes (Procavia capensis) and klipspringers (Oreotragus oreotragus) were key prey items. In terms of regional variation in leopard diet, there was a significant difference in the average weight of prey utilized in the Cederberg and Gamka Mountains. Despite the importance of prey availability of suitable size, their flexibility in terms of prey size utilization reflected their ability to switch to smaller prey to fulfil their dietary requirements, when prey is limited. The study suggested a dietary shift, with significant variation in prey species utilization in both regions. The shift did not appear to be in response to prey scarcity, but rather a reduction in key prey species, particularly the rock hyrax. The shift involved an increase in the number of species utilized, and only a very small increase in livestock predation in both areas. There was however no significant variation in prey size category utilization. This demonstrated their dietary flexibility, as well as the importance of suitable prey sizes rather than the presence of specific prey species to fulfil their dietary requirements. The camera trap survey revealed a strong correlation between the number of camera trap days and the number of photographs taken of identifiable species. Variation of this correlation between different habitats supported the notion that individual images are a better unit to determine sampling efficiency than trap days. The camera trap survey also showed that small rodent availability was underestimated by camera trap surveillance, which resulted in poor prey preference estimation. It was therefore suggested that camera trap surveys be restricted to the surveillance of larger prey species (> 1 kg). By excluding small rodents from the analysis, prey preference could be estimated for other species and prey size categories. Small- and medium-sized mammals were significantly preferred, whereas large mammals were significantly avoided by the Cape leopard.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kruger, John Ernst. "Interrelationships between the larger carnivores of the Klaserie private nature reserve with special reference to the leopard Pantera pardus (Linnaeus, 1758) and the cheetah Acinonyx jubatus (Schreber, 1775)." Diss., University of Pretoria, 1988. http://hdl.handle.net/2263/28374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

ALFONSO-REYES, Andrés Felipe. "Abundância relativa, padrões de atividade e uso de habitat de onça-pintada e onça-parda no norte da Amazônia Brasileira." Universidade Federal de Pernambuco, 2013. https://repositorio.ufpe.br/handle/123456789/10488.

Повний текст джерела
Анотація:
Submitted by Etelvina Domingos (etelvina.domingos@ufpe.br) on 2015-03-04T18:33:50Z No. of bitstreams: 2 Dissertação Andrés Reyes.pdf: 1267152 bytes, checksum: e1237d8996425a606aaf6a31ede2001c (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Made available in DSpace on 2015-03-04T18:33:50Z (GMT). No. of bitstreams: 2 Dissertação Andrés Reyes.pdf: 1267152 bytes, checksum: e1237d8996425a606aaf6a31ede2001c (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013
CAPES
O estudo da abundância, a atividade e o uso de habitat da onça-pintada e da onça-parda na região da Amazônia não tem sido amplo como acontece em outros biomas devido a fatores como a acessibilidade, as condições climáticas e ambientais, o que dificulta o desenvolvimento de pesquisas e assim ter uma visão mais abrangente de como as atividades humanas impactam estes aspectos biológicos destes predadores topo. Realizou-se uma pesquisa no assentamento Entre Rios (área antrópica) e na Reserva Biológica Uatumã (unidade de conservação) ao norte do rio Amazonas utilizando armadilhamento fotográfico visando levantar informação sobre a abundância da onça-pintada (Panthera onca), da onça-parda (Puma concolor), seus padrões de atividade e o uso que fazem do habitat. Durante 69 dias em Entre Rios e 76 dias na REBIO Uatumã registrou-se a presença da onça-pintada nas duas áreas e a presença da onça-parda só para a REBIO Uatumã. A abundância das onças foi mais alta na REBIO Uatumã no que em Entre rios. A onça-pintada em Entre rios esteve ativa no período diurno e na REBIO Uatumã esteve ativa nos períodos noturno e crepuscular-diurno, enquanto que a onça-parda esteve ativa ao longo do dia. A onça-pintada em Entre rios quanto na REBIO Uatumã ocorreu com maior frequência na baixada e a onça-parda na REBIO Uatumã no platô e na vertente, zonas montanhosas não alagáveis de pouca elevação. Os resultados aqui obtidos mostraram que a abundancia da onça-pintada e da onça-parda neste estudo foi uma das maiores já registradas na Amazônia, que seus ritmos de atividade esse sobrepuseram temporalmente e que houve segregação espacial como uma forma de evitar competição.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Panthera pardu"

1

Martin, R. B. Survey of the status of the leopard (Panthera pardus) in Sub-Saharan Africa. Lausanne, Switzerland: Secretariat of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wildlife Institute of India (Dehra Dūn, India), ed. A preliminary study on the ecology of the leopard, panthera pardus fusca, in the Sanjay Gandhi National Park, Maharashtra. Dehradun: Wildlife Institute of India, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Craquelin, Mélanie. Panthera Pardus. Independently Published, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Panthera pardu"

1

Mondal, Krishnendu, Shilpi Gupta, K. Sankar, and Qamar Qureshi. "Status, Distribution and Conservation of Leopard Panthera pardus fusca in Rajasthan." In Faunal Heritage of Rajasthan, India, 469–79. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0800-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bazghandi, Maliheh, Yadollah Bostan, Jalil Sarhangzadeh, and Ali Teimouri. "A Contingent Valuation Practice with Respect to Wildlife Trafficking Law Enforcement in Iran (Case Study: Panthera pardus saxicolor)." In Research and Management Practices for Conservation of the Persian Leopard in Iran, 189–211. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28003-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khorozyan, Igor G., Alexander G. Malkhasyan, Shushanik G. Asmaryan, and Alexei V. Abramov. "Using Geographical Mapping and Occupancy Modeling to Study the Distribution of the Critically Endangered Leopard (Panthera pardus) Population in Armenia." In Spatial Complexity, Informatics, and Wildlife Conservation, 331–47. Tokyo: Springer Japan, 2010. http://dx.doi.org/10.1007/978-4-431-87771-4_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Panther (Panthera pardus, leopard)." In Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 1436. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6754-9_12237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"panther, pard." In Shakespeare and Animals. The Arden Shakespeare, 2022. http://dx.doi.org/10.5040/9781350002548.article-185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Panthera pardus, the leopard." In Animals in Stone, 393–98. BRILL, 2008. http://dx.doi.org/10.1163/9789047443568_036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Home-range and Movements of Leopards (Panthera pardus) on a Livestock Ranch in Kenya." In Principles of Geographical Offender Profiling, 57–96. Routledge, 2017. http://dx.doi.org/10.4324/9781315246086-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dutta Gupta, Varun, G. Areendran, Krishna Raj, Swagata Ghosh, Shyamal Dutta, and Mehebub Sahana. "Assessing habitat suitability of leopards (Panthera pardus) in unprotected scrublands of Bera, Rajasthan, India." In Forest Resources Resilience and Conflicts, 329–42. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-822931-6.00026-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nigam, Anukriti, and Hrishikesh Wagh. "Diet Selection of Leopards (Panthera pardus) in the Niphad, Nasik Landscape of Maharashtra, India." In Newest Updates in Agriculture and Veterinary Science Vol. 2, 70–82. B P International (a part of SCIENCEDOMAIN International), 2022. http://dx.doi.org/10.9734/bpi/nuavs/v2/8945f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Panthera pardu"

1

Денисова, Елена Валерьевна, and Наталья Александровна Веселова. "IMPACT OF ZOO VISITORS ON THE BEHAVIOR OF PERSIAN LIONS PANTHERA LEO PERSICA AND AMUR LEOPARD PANTHERA PARDUS ORIENTALIS." In Фундаментальные и прикладные исследования. Актуальные проблемы и достижения: сборник избранных статей Всероссийской (национальной) научной конференции (Санкт-Петербург, Декабрь 2020). Crossref, 2020. http://dx.doi.org/10.37539/fipi312.2020.95.37.002.

Повний текст джерела
Анотація:
В исследовании проанализированы поведенческие реакции азиатских львов Panthera leo persica и дальневосточного леопарда Panthera pardus orientalis на присутствие разного количества посетителей, их воздействие на животных, а также характер использования пространства вольера в Московском зоопарке. The study analyzed data on the behavioral responses of Persian lions Panthera leo persica and Amur leopard Panthera pardus orientalis to the number of visitors, the impact of visitors on the animals themselves, and the use of aviary space in the Moscow Zoo.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LARISHA, CLAUDYA. "Manajemen pemeliharaan macan tutul Sri Lanka (Panthera pardus kotiya) di Taman Margasatwa Ragunan, Jakarta." In Seminar Nasional Masyarakat Biodiversitas Indonesia. Masyarakat Biodiversitas Indonesia, 2015. http://dx.doi.org/10.13057/psnmbi/m010345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

RUSTIADI, AYI. "Macan tutul Jawa (Panthera pardus melas Cuvier, 1809) dan mangsa potensialnya di Bodogol, Taman Nasional Gunung Gede Pangrango." In Seminar Nasional Masyarakat Biodiversitas Indonesia. Masyarakat Biodiversitas Indonesia, 2015. http://dx.doi.org/10.13057/psnmbi/m010211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії