Статті в журналах з теми "P84 polyimide"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: P84 polyimide.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "P84 polyimide".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Widiastuti, Nurul, Triyanda Gunawan, Hamzah Fansuri, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail, and Norazlianie Sazali. "P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance." Membranes 10, no. 10 (September 28, 2020): 267. http://dx.doi.org/10.3390/membranes10100267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research introduces zeolite carbon composite (ZCC) as a new filler on polymeric membranes based on the BTDA-TDI/MDI (P84) co-polyimide for the air separation process. The separation performance was further improved by a polydimethylsiloxane (PDMS) coating to cover up the surface defect. The incorporation of 1 wt% ZCC into P84 co-polyimide matrix enhanced the O2 permeability from 7.12 to 18.90 Barrer (2.65 times) and the O2/N2 selectivity from 4.11 to 4.92 Barrer (19.71% improvement). The PDMS coating on the membrane further improved the O2/N2 selectivity by up to 60%. The results showed that the incorporation of ZCC and PDMS coating onto the P84 co-polyimide membrane was able to increase the overall air separation performance.
2

Gunawan, Triyanda, Taufik Qodar Romadiansyah, Rika Wijiyanti, Wan Norharyati Wan Salleh, and Nurul Widiastuti. "Zeolite templated carbon: Preparation, characterization and performance as filler material in co-polyimide membranes for CO2/CH4 separation." Malaysian Journal of Fundamental and Applied Sciences 15, no. 3 (June 25, 2019): 407–13. http://dx.doi.org/10.11113/mjfas.v15n3.1461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Zeolite templated carbon (ZTC), a structurally unique carbon material was used as new fillers for the preparation of composite polymeric membrane derived from BTDA-TDI/MDI (P84) co-polyimide. The thermal stability of membrane, the structure evolution, morphology and topology, as well as gas separation performance of modified membranes were investigated. Zeolite-Y, a hard template for ZTC, was synthesized via hydrothermal method. The ZTC was synthesized via impregnation of sucrose as carbon precursor into zeolite pore and followed by carbonization at 800°C. The zeolite template was removed through acid treatment to obtain ZTC, which was used as fillers for membrane preparation. The membrane was prepared using P84 co-polyimide as membrane precursor via phase inversion process. Synthesized materials were characterized using SEM, XRD, N2 adsorption-desorption isotherm and TEM. The thermal stability of membrane was improved by the addition of ZTC. As the result of ZTC loading into P84 co-polyimide membrane, the gas permeability of CO2 increased thirty-four times, as well as the CO2/CH4 selectivity boosted from 0.76 to 5.23. The ordered pore structure in ZTC plays important role in increasing the permeability and selectivity performances of the P84 co-polyimide membrane.
3

Gunawan, Triyanda, Retno Puji Rahayu, Rika Wijiyanti, Wan Norharyati Wan Salleh, and Nurul Widiastuti. "P84/Zeolite-Carbon Composite Mixed Matrix Membrane for CO2/CH4 Separation." Indonesian Journal of Chemistry 19, no. 3 (May 29, 2019): 650. http://dx.doi.org/10.22146/ijc.35727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mixed Matrix Membranes (MMMs) which consist of 0.3 wt.% Zeolite-Carbon Composite (ZCC) dispersed in BTDA-TDI/MDI (P84 co-polyimide) have been prepared through phase inversion method by using N-methyl-2-pyrrolidone (NMP) as a solvent. Membranes were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Thermogravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR). Membrane performance was measured by a single gas permeation of CO2 and CH4. The maximum permeability of CO2 and CH4, which up to 12.67 and 6.03 Barrer, respectively. P84/ZCC mixed matrix membrane also showed a great enhancement in ideal selectivity of CO2/CH4 2.10 compared to the pure P84 co-polyimide membrane.
4

Sánchez-Laínez, Javier, Inés Gracia-Guillén, Beatriz Zornoza, Carlos Téllez, and Joaquín Coronas. "Thin supported MOF based mixed matrix membranes of Pebax® 1657 for biogas upgrade." New Journal of Chemistry 43, no. 1 (2019): 312–19. http://dx.doi.org/10.1039/c8nj04769c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Han, Runlin, Kui Wu, and Lingfeng Xu. "Facile Preparation of Loose P84 Copolyimide/GO Composite Membrane with Excellent Selectivity and Solvent Resistance." Polymers 14, no. 7 (March 27, 2022): 1353. http://dx.doi.org/10.3390/polym14071353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, multilayer graphene oxide (GO) was used to prepare the functional layer of polyimide/GO composite membrane with polyimide (P84) used as the supporting layer. Chitosan added in the functional layer was utilized to adjust the selectivity of the composite membrane. The effects of GO and chitosan contents on membrane morphology and separation performance were investigated in detail. The composite membrane showed high rejection to Congo red and Methyl orange with high flux but low rejection to Na2SO4 and MgCl2 at 0.2 MPa and ambient temperature. The membrane exhibited excellent solvent resistance in N,N-dimethylacetamide (DMAc) after being crosslinked with 0.5 wt.% triethylene tetramine. The result means that a highly selective and solvent-resistant P84/GO composite membrane was prepared with the facile filtration preparation method.
6

Yusoff, Izzati Izni, Rosiah Rohani, Nadiah Khairul Zaman, Mohd Usman Mohd Junaidi, Abdul Wahab Mohammad, and Zamardina Zainal. "Durable pressure filtration membranes based on polyaniline-polyimide P84 blends." Polymer Engineering & Science 59, S1 (April 27, 2018): E82—E92. http://dx.doi.org/10.1002/pen.24862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Qiao, Xiangyi, and Tai-Shung Chung. "Diamine modification of P84 polyimide membranes for pervaporation dehydration of isopropanol." AIChE Journal 52, no. 10 (2006): 3462–72. http://dx.doi.org/10.1002/aic.10964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sazali, Norazlianie, Wan Norharyati Wan Salleh, Nor Hafiza Ismail, Ahmad Fauzi Ismail, Murakami Hideyuki, and Yuji Iwamoto. "The influence of coating-carbonization cycles toward P84 co-polyimide/nanocrystalline cellulose." Comptes Rendus Chimie 22, no. 11-12 (November 2019): 779–85. http://dx.doi.org/10.1016/j.crci.2019.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Etxeberria-Benavides, Miren, Oguz Karvan, Freek Kapteijn, Jorge Gascon, and Oana David. "Fabrication of Defect-Free P84® Polyimide Hollow Fiber for Gas Separation: Pathway to Formation of Optimized Structure." Membranes 10, no. 1 (December 25, 2019): 4. http://dx.doi.org/10.3390/membranes10010004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The elimination of the additional defect healing post-treatment step in asymmetric hollow fiber manufacturing would result in a significant reduction in membrane production cost. However, obtaining integrally skinned polymeric asymmetric hollow fiber membranes with an ultrathin and defect-free selective layer is quite challenging. In this study, P84® asymmetric hollow fiber membranes with a highly thin (~56 nm) defect-free skin were successfully fabricated by fine tuning the dope composition and spinning parameters using volatile additive (tetrahydrofuran, THF) as key parameters. An extensive experimental and theoretical study of the influence of volatile THF addition on the solubility parameter of the N-methylpyrrolidone/THF solvent mixture was performed. Although THF itself is not a solvent for P84®, in a mixture with a good solvent for the polymer, like N-Methyl-2-pyrrolidone (NMP), it can be dissolved at high THF concentrations (NMP/THF ratio > 0.52). The as-spun fibers had a reproducible ideal CO2/N2 selectivity of 40, and a CO2 permeance of 23 GPU at 35 °C. The fiber production can be scaled-up with retention of the selectivity.
10

Han, Runlin, Xiaobing Liu, Min Chen, Xufeng Ma, Yuhang Zhang, and Yan Sui. "Facile preparation of P84® polyimide affinity membrane with high adsorption of bilirubin." DESALINATION AND WATER TREATMENT 204 (2020): 82–92. http://dx.doi.org/10.5004/dwt.2020.26253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Li, Xue, and Tai-Shung Chung. "Thin-film composite P84 co-polyimide hollow fiber membranes for osmotic power generation." Applied Energy 114 (February 2014): 600–610. http://dx.doi.org/10.1016/j.apenergy.2013.10.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Qiao, Xiangyi, Tai-Shung Chung, and Raj Rajagopalan. "Zeolite filled P84 co-polyimide membranes for dehydration of isopropanol through pervaporation process." Chemical Engineering Science 61, no. 20 (October 2006): 6816–25. http://dx.doi.org/10.1016/j.ces.2006.07.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tin, Pei Shi, Tai-Shung Chung, Ye Liu, and Rong Wang. "Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide." Carbon 42, no. 15 (2004): 3123–31. http://dx.doi.org/10.1016/j.carbon.2004.07.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wang, Pin, Cuiming Wu, Mengjie Sun, Xu Zhang, and Yonghui Wu. "Porous P84 co-polyimide anion exchange membranes for diffusion dialysis application to recover acids." DESALINATION AND WATER TREATMENT 108 (2018): 40–48. http://dx.doi.org/10.5004/dwt.2018.21949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. Kadirgama, and F. E. C. Othman. "P84 Co-Polyimide Based-Tubular Carbon Membrane: Effect of Heating Rates on Helium Separations." Solid State Phenomena 280 (August 2018): 308–11. http://dx.doi.org/10.4028/www.scientific.net/ssp.280.308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Helium is one of the most valuable gases with unique features and properties as well as widely used in various applications. Generally, most of the helium sources was extracted from natural gas and it is very crucial to develop efficient technology for helium recovery from natural gas sources, in order to overcome the deficit of the helium supply. Up to now, there are various available traditional separation methods for helium recovery, however these methods possessed several disadvantages such as expensive in cost and energy intensive. Recently, gas separation by using membranes have been utilized and showed potential in recovering and purifying helium from natural gas. This method directly separating the helium from the methane through natural gas liquefaction process where in this process the helium is recovered from the nitrogen rejection unit (NRU) exit gas. Due to the potential benefits that can be obtained from this membrane-based separation method, this current study is aiming to provide more comprehensive scientific reports on the effects of preparation parameters on the performance of tubular carbon membranes (TCMs) for helium separation. In this study, the carbonization heating rate was varied from 1 to 7°C/min by controlling the final temperature at 800°C under Argon environment for all polymeric tubular membranes. The permeation performance of the resultant TCMs have been determined by using a single permeation apparatus. It is necessary to fine-tuning the carbonization conditions in order to obtain the desired permeation properties. From the results, it can be concluded that the most optimum heating rate was found to be at 3°C/min with 463.86±3.12 selectivity of He/N2separation.
16

Sari, Pusfita, Triyanda Gunawan, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail, and Nurul Widiastuti. "Simple Method to Enhance O2/N2 Separation on P84 co-polyimide Hollow Fiber Membrane." IOP Conference Series: Materials Science and Engineering 546 (June 26, 2019): 042042. http://dx.doi.org/10.1088/1757-899x/546/4/042042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mangindaan, Dave W., Nelson Minyang Woon, Gui Min Shi, and Tai Shung Chung. "P84 polyimide membranes modified by a tripodal amine for enhanced pervaporation dehydration of acetone." Chemical Engineering Science 122 (January 2015): 14–23. http://dx.doi.org/10.1016/j.ces.2014.09.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zsigmond, Andras, and Jiri Libich. "The Effect of Electrode Binders to Electrochemical Properties of Negative Electrode Materials." ECS Transactions 105, no. 1 (November 30, 2021): 35–42. http://dx.doi.org/10.1149/10501.0035ecst.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper deals with various types of electrode binders used in lithium-ion batteries. The electrode binders play important role in battery, the binders directly affect almost all aspect of electrode characteristics. As the one of the most import parameter is the electrode charge-discharge long term stability. The three binders have been tested in context of negative electrode in lithium-ion battery. The natural graphite has been chosen as an active electrode material. The natural graphite takes majority as negative electrode material on commercial market with lithium-ion batteries. The three kind of binders was established for testing: polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR) and polyimide P84. The influence of these binders on charge-discharge stability are evaluated and described in this paper.
19

Abdi, Zelalem Gudeta, Jyh-Chien Chen, and Tai-Shung Chung. "Infiltration of 3D-macrocycles to integrally skinned asymmetric P84 co-polyimide membranes for boron removal." Desalination 540 (October 2022): 115988. http://dx.doi.org/10.1016/j.desal.2022.115988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Chuanyang, Shuai Xue, Guosheng Wang, Cuiming Wu, and Yonghui Wu. "Production of lactobionic acid by BMED process using porous P84 co-polyimide anion exchange membranes." Separation and Purification Technology 173 (February 2017): 174–82. http://dx.doi.org/10.1016/j.seppur.2016.08.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, Ruixue, Xiangyi Qiao, and Tai-Shung Chung. "The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol." Chemical Engineering Science 60, no. 23 (December 2005): 6674–86. http://dx.doi.org/10.1016/j.ces.2005.05.066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Abdi, Zelalem Gudeta, Juin-Yih Lai та Tai-Shung Chung. "Green modification of P84 co-polyimide with β-cyclodextrin for separation of dye/salt mixtures". Desalination 549 (березень 2023): 116365. http://dx.doi.org/10.1016/j.desal.2022.116365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Mangindaan, Dave W., Gui Min Shi, and Tai-Shung Chung. "Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking." Journal of Membrane Science 458 (May 2014): 76–85. http://dx.doi.org/10.1016/j.memsci.2014.01.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sazali, N., W. N. W. Salleh, and A. F. Ismail. "Carbon tubular membranes from nanocrystalline cellulose blended with P84 co-polyimide for H2 and He separation." International Journal of Hydrogen Energy 42, no. 15 (April 2017): 9952–57. http://dx.doi.org/10.1016/j.ijhydene.2017.01.128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sun, Mengjie, Meng Li, Xu Zhang, Cuiming Wu, and Yonghui Wu. "Graphene oxide modified porous P84 co-polyimide membranes for boron recovery by bipolar membrane electrodialysis process." Separation and Purification Technology 232 (February 2020): 115963. http://dx.doi.org/10.1016/j.seppur.2019.115963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. C. Wong, and Y. Iwamoto. "Exploiting pyrolysis protocols on BTDA-TDI/MDI (P84) polyimide/nanocrystalline cellulose carbon membrane for gas separations." Journal of Applied Polymer Science 136, no. 1 (August 27, 2018): 46901. http://dx.doi.org/10.1002/app.46901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sazali, Norazlianie, Mohd Syafiq Sharip, Haziqatulhanis Ibrahim, Wan Norharyati Wan Salleh, Nur Izwanne Mahyon, Kumaran Kadirgama, Zawati Harun, and Norsuhailizah Sazali. "The performance of CO2/N2 separation on P84/NCC-based tubular carbon membrane under different carbonization conditions." Malaysian Journal of Fundamental and Applied Sciences 15, no. 3 (June 25, 2019): 447–50. http://dx.doi.org/10.11113/mjfas.v15n3.1177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, the influence of carbonization environment on the performance of Tubular Carbon Membrane (TCMs) was explored. P84 co-polyimide/Nanocrystalline cellulose-based TCMs were synthesized by dip-coating technique. The permeation properties of TCMs were determined by employing pure gas of CO2 and N2. Heat treatment processes were carried out under different environment (Argon, Nitrogen, and Helium) with the flow rate of 200 ml/min to boost the membrane’s performance. The carbonization process was performed at a consistent carbonization temperature of 800oC under heating rate of 3oC/min. Carbonization under Argon environment was found to be the best condition for PI/NCC-based TCMs preparation with the permeance of 3.22±3.21and 213.56±2.17 GPU for N2, and CO2 gases, respectively. This membrane exhibited the uppermost CO2/N2 selectivity of 66.32±2.18. TCMs prepared under Ar environment experienced less weight loss while exhibiting highest CO2/N2 selectivity as compared to those prepared under He and N2 environment.
28

REN, J. "Membrane structure control of BTDA-TDI/MDI (P84) co-polyimide asymmetric membranes by wet-phase inversion process." Journal of Membrane Science 241, no. 2 (October 2004): 305–14. http://dx.doi.org/10.1016/j.memsci.2004.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Qiao, Xiangyi, Tai-Shung Chung, and K. P. Pramoda. "Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol." Journal of Membrane Science 264, no. 1-2 (November 2005): 176–89. http://dx.doi.org/10.1016/j.memsci.2005.04.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Qiao, Xiangyi, and Tai-Shung Chung. "Fundamental Characteristics of Sorption, Swelling, and Permeation of P84 Co-polyimide Membranes for Pervaporation Dehydration of Alcohols." Industrial & Engineering Chemistry Research 44, no. 23 (November 2005): 8938–43. http://dx.doi.org/10.1021/ie050836g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shen, Yi, and Aik Chong Lua. "Structural and transport properties of BTDA-TDI/MDI co-polyimide (P84)–silica nanocomposite membranes for gas separation." Chemical Engineering Journal 188 (April 2012): 199–209. http://dx.doi.org/10.1016/j.cej.2012.01.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Choi, Seung-Hak, Johannes C. Jansen, Franco Tasselli, Giuseppe Barbieri, and Enrico Drioli. "In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation." Separation and Purification Technology 76, no. 2 (December 13, 2010): 132–39. http://dx.doi.org/10.1016/j.seppur.2010.09.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Sun, Mengjie, Meng Li, Pin Wang, Xu Zhang, Cuiming Wu, and Yonghui Wu. "Production of N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid by BMED process using porous P84 co-polyimide membranes." Chemical Engineering Research and Design 137 (September 2018): 467–77. http://dx.doi.org/10.1016/j.cherd.2018.07.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sazali, N., W. N. W. Salleh, A. F. Ismail, K. Kadirgama, F. E. C. Othman, and N. H. Ismail. "Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment." International Journal of Hydrogen Energy 44, no. 37 (August 2019): 20924–32. http://dx.doi.org/10.1016/j.ijhydene.2018.06.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Widyanto, A. R., I. S. Caralin, Nurul Widiastuti, Triyanda Gunawan, Rika Wijiyanti, A. F. Ismail, W. N. W. Salleh, Mikihiro Nomura, and Kohei Suzuki. "Investigating Hydrocarbon Gases Permeability Through Hollow Fiber Hybrid Carbon Membrane." Journal of Applied Membrane Science & Technology 28, no. 1 (March 28, 2024): 27–46. http://dx.doi.org/10.11113/amst.v28n1.284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hydrocarbon separation from natural gases is a critical procedure in the chemical and petrochemical industries. This study used hollow fiber carbon membranes (HFCMs) made from a commercially available co-polyimide, P84, with zeolite-carbon composite (ZCC) as a filler to separate light hydrocarbons like CH4/C3H8 and CH4/C2H6. The Arrhenius technique was used to evaluate the effects of temperature fluctuations (298, 323, and 373 K) on the membrane. X-ray diffraction exhibited a characteristic graphite peak at 2θ ~ 44°, indicating the creation of an effective carbon membrane. SEM investigation revealed the compactness of both pristine and hybrid carbon membrane structures. The operating temperature has a significant influence on the gas penetration through the membrane when evaluating gas permeation. The hybrid carbon membrane has the highest permeability for CH4, C2H6, and C3H8 at 373 K. (81.86, 61.82, and 58.28 Barrer, respectively). The carbon membrane also showed greatest selectivity for CH4/C3H8 and CH4/C2H6 at 323 K (2.24 and 2.04, respectively). Adsorption and surface diffusion were the membrane's transport mechanisms. By adding filler to the membrane, the gas permeability was temperature dependent.
36

Cheng, Jiu-Hua, You-Chang Xiao, Cuiming Wu, and Tai-Shung Chung. "Chemical modification of P84 polyimide as anion-exchange membranes in a free-flow isoelectric focusing system for protein separation." Chemical Engineering Journal 160, no. 1 (May 15, 2010): 340–50. http://dx.doi.org/10.1016/j.cej.2010.02.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

WANG, K., T. CHUNG, and R. RAJAGOPALAN. "Dehydration of tetrafluoropropanol (TFP) by pervaporation via novel PBI/BTDA-TDI/MDI co-polyimide (P84) dual-layer hollow fiber membranes." Journal of Membrane Science 287, no. 1 (January 5, 2007): 60–66. http://dx.doi.org/10.1016/j.memsci.2006.10.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Davood Abadi Farahani, Mohammad Hossein, Dan Hua, and Tai-Shung Chung. "Cross-linked mixed matrix membranes consisting of carboxyl-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN)." Separation and Purification Technology 186 (October 2017): 243–54. http://dx.doi.org/10.1016/j.seppur.2017.06.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yang, Qian, Tai-Shung Chung, Youchang Xiao, and Kaiyu Wang. "The development of chemically modified P84 Co-polyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability." Chemical Engineering Science 62, no. 6 (March 2007): 1721–29. http://dx.doi.org/10.1016/j.ces.2006.12.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Sazali, N., W. N. W. Salleh, A. F. Ismail, N. H. Ismail, F. Aziz, N. Yusof, and H. Hasbullah. "Effect of stabilization temperature during pyrolysis process of P84 co-polyimide-based tubular carbon membrane for H2/N2 and He/N2 separations." IOP Conference Series: Materials Science and Engineering 342 (April 2018): 012027. http://dx.doi.org/10.1088/1757-899x/342/1/012027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Davood Abadi Farahani, Mohammad Hossein, and Tai-Shung Chung. "Solvent resistant hollow fiber membranes comprising P84 polyimide and amine-functionalized carbon nanotubes with potential applications in pharmaceutical, food, and petrochemical industries." Chemical Engineering Journal 345 (August 2018): 174–85. http://dx.doi.org/10.1016/j.cej.2018.03.153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Xin, Yishuang, and Fengxiang Yin. "Influence of Water on the Recovery of Lube Oil Dewaxing Solvent Using P84 Polyimide Membrane: A Combination of Experiment and Molecular Simulation." ChemistrySelect 5, no. 6 (February 13, 2020): 2094–102. http://dx.doi.org/10.1002/slct.201904145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Baneshi, Mohammad Mehdi, Abdol Mohammad Ghaedi, Azam Vafaei, Daryoush Emadzadeh, Woei Jye Lau, Hossein Marioryad, and Arsalan Jamshidi. "A high-flux P84 polyimide mixed matrix membranes incorporated with cadmium-based metal organic frameworks for enhanced simultaneous dyes removal: Response surface methodology." Environmental Research 183 (April 2020): 109278. http://dx.doi.org/10.1016/j.envres.2020.109278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Editor-in-Chief. "RETRACTION: The influence of coating-carbonization cycles toward P84 co-polyimide/nanocrystalline cellulose [C. R. Chimie, 2019, 22, no. 11-12, 779-785]." Comptes Rendus. Chimie 23, no. 4-5 (November 10, 2020): 359. http://dx.doi.org/10.5802/crchim.43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ren, Jizhong, Zhansheng Li, and Rong Wang. "Effects of the thermodynamics and rheology of BTDA-TDI/MDI co-polyimide (P84) dope solutions on the performance and morphology of hollow fiber UF membranes." Journal of Membrane Science 309, no. 1-2 (February 2008): 196–208. http://dx.doi.org/10.1016/j.memsci.2007.10.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Davood Abadi Farahani, Mohammad Hossein, Dan Hua, and Tai-Shung Chung. "Cross-linked mixed matrix membranes (MMMs) consisting of amine-functionalized multi-walled carbon nanotubes and P84 polyimide for organic solvent nanofiltration (OSN) with enhanced flux." Journal of Membrane Science 548 (February 2018): 319–31. http://dx.doi.org/10.1016/j.memsci.2017.11.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ren, Jizhong, Zhansheng Li, Fook-Sin Wong, and Dongfei Li. "Development of asymmetric BTDA-TDI/MDI (P84) co-polyimide hollow fiber membranes for ultrafiltration: the influence of shear rate and approaching ratio on membrane morphology and performance." Journal of Membrane Science 248, no. 1-2 (February 2005): 177–88. http://dx.doi.org/10.1016/j.memsci.2004.09.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

LI, Y., T. CHUNG, Z. HUANG, and S. KULPRATHIPANJA. "Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation." Journal of Membrane Science 277, no. 1-2 (June 1, 2006): 28–37. http://dx.doi.org/10.1016/j.memsci.2005.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Heydari, Shokofeh, and Vahid Pirouzfar. "The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: empirical modeling and process optimization using surface methodology." RSC Advances 6, no. 17 (2016): 14149–63. http://dx.doi.org/10.1039/c5ra27772h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Cherif, Chokri, Toty Onggar, Iris Kruppke, Wolfgang Trümper, Tunay Tüfek, Julia Töbelmann, and Robert Erichsen. "Metallisierung von Polyimidmaterialien zur Anwendung in der Luft- und Raumfahrt." Technische Textilien 65, no. 5 (2022): 242–44. http://dx.doi.org/10.51202/0323-3243-2022-5-242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Am ITM wurde im Rahmen eines ZIM-Projekts ein innovatives Metallisierungsverfahren für die nasschemische Ausrüstung von Folien und Filamentgarnen aus aromatischen, hochtemperaturbeständigen, nichtschmelzenden, schwerentflammbaren und inerten Polyimid(PI)-Hochleistungspolymeren mit metallischem Silber entwickelt. Das Ziel der Entwicklung war ein neues, industrietaugliches nasschemisches Verfahren zur wirtschaftlichen Herstellung silberbeschichteter, hochtemperaturbeständiger Filamentgarne und Folien in reproduzierbarer Qualität. Dieses Ziel konnte in Zusammenarbeit mit dem Projektpartner Statex unter Nutzung konventioneller Apparate und Maschinen des Unternehmens ohne Einschränkungen erreicht werden. Zum Einsatz kamen aromatische Kapton-PI-Folien der DuPont de Nemours GmbH, Neu-Isenburg/Deutschland, und PI-Filamentgarne P84 der Evonik Fibers GmbH, Schörfling/Österreich.

До бібліографії