Добірка наукової літератури з теми "(p,q)-Laplacian"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "(p,q)-Laplacian".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "(p,q)-Laplacian"

1

Hsu, Tsing-San, and Huei-Li Lin. "Multiplicity of Positive Solutions for ap-q-Laplacian Type Equation with Critical Nonlinearities." Abstract and Applied Analysis 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/829069.

Повний текст джерела
Анотація:
We study the effect of the coefficientf(x)of the critical nonlinearity on the number of positive solutions for ap-q-Laplacian equation. Under suitable assumptions forf(x)andg(x), we should prove that for sufficiently smallλ>0, there exist at leastkpositive solutions of the followingp-q-Laplacian equation,-Δpu-Δqu=fxu|p*-2u+λgxu|r-2u in Ω,u=0 on ∂Ω,whereΩ⊂RNis a bounded smooth domain,N>p,1<q<N(p-1)/(N-1)<p≤max⁡{p,p^*-q/(p-1)}<r<p^*,p^*=Np/(N-p)is the critical Sobolev exponent, andΔsu=div(|∇u|s-2∇uis thes-Laplacian ofu.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Motreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection." Open Mathematics 18, no. 1 (January 1, 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.

Повний текст джерела
Анотація:
Abstract The paper deals with a quasilinear Dirichlet problem involving a competing (p,q)-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to establish the existence of solutions in a generalized sense. If in place of competing (p,q)-Laplacian we consider the usual (p,q)-Laplacian, our results ensure the existence of weak solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Motreanu, Dumitru. "Quasilinear Dirichlet problems with competing operators and convection." Open Mathematics 18, no. 1 (December 22, 2020): 1510–17. http://dx.doi.org/10.1515/math-2020-0112.

Повний текст джерела
Анотація:
Abstract The paper deals with a quasilinear Dirichlet problem involving a competing (p,q)-Laplacian and a convection term. Due to the lack of ellipticity, monotonicity and variational structure, the known methods to find a weak solution are not applicable. We develop an approximation procedure permitting to establish the existence of solutions in a generalized sense. If in place of competing (p,q)-Laplacian we consider the usual (p,q)-Laplacian, our results ensure the existence of weak solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abolarinwa, Abimbola, and Shahroud Azami. "Comparison estimates on the first eigenvalue of a quasilinear elliptic system." Journal of Applied Analysis 26, no. 2 (December 1, 2020): 273–85. http://dx.doi.org/10.1515/jaa-2020-2024.

Повний текст джерела
Анотація:
AbstractWe study a system of quasilinear eigenvalue problems with Dirichlet boundary conditions on complete compact Riemannian manifolds. In particular, Cheng comparison estimates and the inequality of Faber–Krahn for the first eigenvalue of a {(p,q)}-Laplacian are recovered. Lastly, we reprove a Cheeger-type estimate for the p-Laplacian, {1<p<\infty}, from where a lower bound estimate in terms of Cheeger’s constant for the first eigenvalue of a {(p,q)}-Laplacian is built. As a corollary, the first eigenvalue converges to Cheeger’s constant as {p,q\to 1,1}.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Resonant Anisotropic (p,q)-Equations." Mathematics 8, no. 8 (August 10, 2020): 1332. http://dx.doi.org/10.3390/math8081332.

Повний текст джерела
Анотація:
We consider an anisotropic Dirichlet problem which is driven by the (p(z),q(z))-Laplacian (that is, the sum of a p(z)-Laplacian and a q(z)-Laplacian), The reaction (source) term, is a Carathéodory function which asymptotically as x±∞ can be resonant with respect to the principal eigenvalue of (−Δp(z),W01,p(z)(Ω)). First using truncation techniques and the direct method of the calculus of variations, we produce two smooth solutions of constant sign. In fact we show that there exist a smallest positive solution and a biggest negative solution. Then by combining variational tools, with suitable truncation techniques and the theory of critical groups, we show the existence of a nodal (sign changing) solution, located between the two extremal ones.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

李, 燕茹. "On a Class of (p(u),q(u))-Laplacian Problem." Pure Mathematics 11, no. 04 (2021): 586–98. http://dx.doi.org/10.12677/pm.2021.114072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Papageorgiou, Nikolaos S., Dongdong Qin, and Vicenţiu D. Rădulescu. "Nonlinear eigenvalue problems for the (p,q)–Laplacian." Bulletin des Sciences Mathématiques 172 (November 2021): 103039. http://dx.doi.org/10.1016/j.bulsci.2021.103039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haghaiegh, Somayeh, and Ghasem Afrouzi. "Sub-super solutions for (p-q) Laplacian systems." Boundary Value Problems 2011, no. 1 (2011): 52. http://dx.doi.org/10.1186/1687-2770-2011-52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Manouni, Said El, Kanishka Perera, and Ratnasingham Shivaji. "On singular quasi-monotone (p, q)-Laplacian systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 142, no. 3 (June 2012): 585–94. http://dx.doi.org/10.1017/s0308210510001356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Humphries, Peter. "Spectral Multiplicity for Maaß Newforms of Non-Squarefree Level." International Mathematics Research Notices 2019, no. 18 (December 8, 2017): 5703–43. http://dx.doi.org/10.1093/imrn/rnx283.

Повний текст джерела
Анотація:
Abstract We show that if a positive integer $q$ has $s(q)$ odd prime divisors $p$ for which $p^2$ divides $q$, then a positive proportion of the Laplacian eigenvalues of Maaß newforms of weight $0$, level $q$, and principal character occur with multiplicity at least $2^{s(q)}$. Consequently, the new part of the cuspidal spectrum of the Laplacian on $\Gamma_0(q) \backslash \mathbb{H}$ cannot be simple for any odd non-squarefree integer $q$. This generalises work of Strömberg who proved this for $q = 9$ by different methods.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "(p,q)-Laplacian"

1

SILVA, José de Brito. "O método das sub e supersoluções para um sistema do tipo (p,q)-Laplaciano." Universidade Federal de Campina Grande, 2013. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1388.

Повний текст джерела
Анотація:
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-08T20:06:07Z No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5)
Made available in DSpace on 2018-08-08T20:06:07Z (GMT). No. of bitstreams: 1 JOSÉ DE BRITO SILVA - DISSERTAÇÃO PPGMAT 2013..pdf: 535262 bytes, checksum: eb7f0d4f7e69b8a4b86d3e1dc0f16739 (MD5) Previous issue date: 2013-10
Capes
Neste trabalho discutiremos a existência de soluções fracas positivas para um sistema do (p, q)-Laplaciano com mudança de sinal nas funções de peso, com domínio limitado e fronteira suave. Para garantir a existência de soluções fracas positivas primeiramente asseguraremos a solução positiva de um problema calásico que é o problema de autovalor do p-laplaciano, e do problema "linear"do p-laplaciano com condição zero de Dirichlet. Feito isto usaremos a existência destas soluções para assegurar que o problema em questão admite solução fraca positiva, via o método das sub-super-soluções
In this work we discuss the existence of weak positive solutions for a system (p, q)- Laplacian with change of sign in the weight functions with bounded domain and smooth boundary. To ensure the existence of weak positive solutions first will ensure a positive solution to a classic problem that is the problem eigenvalue p-Laplacian value, and the "linear"problem with zero condition p-Laplacian Dirichelt. Having done this we use the existence of these solutions to ensure that the problem in question admits a weak positive solution via the method of sub-super-solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Baldelli, Laura. "Existence and multiplicity results for nonlinear elliptic problems." Doctoral thesis, 2022. http://hdl.handle.net/2158/1261959.

Повний текст джерела
Анотація:
In this work of thesis, we investigate existence and multiplicity results for a class of nonlinear elliptic problems. First, we deal with problems involving the p-Laplacian operator on bounded smooth domains, where a diffusion term appears into the nonlinearity. For this reason, variational methods cannot be used. Secondly, we treat existence and multiplicity of weak solutions for (p; q)- Laplacian equations, as well as for singular p-Laplacian Schrodinger equations, in the entire R^N whose nonlinearity combines a power-type term at critical level with a subcritical term, involving also nontrivial weights and a positive parameter. This latter case, considered also in a symmetric setting, allows us to use variational methods, but in the delicate situation of lack of compactness, so that classical results cannot be directly used, they need to be adapted.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "(p,q)-Laplacian"

1

Motreanu, Dumitru, and Viorica Venera Motreanu. "(p, q)–Laplacian Equations with Convection Term and an Intrinsic Operator." In Differential and Integral Inequalities, 589–601. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27407-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Azroul, Elhoussine, and Athmane Boumazourh. "A Sub-supersolutions Method for a Class of Weighted (p(.), q(.))-Laplacian Systems." In Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications, 21–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26149-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jiang, Congying, and Chengmin Hou. "The Existence of Multiple Positive Solutions of a Riemann-Liouville Fractional q-Difference Equation Under Four-Point Boundary Value Condition with p-Laplacian Operator." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220008.

Повний текст джерела
Анотація:
This paper mainly studies the existence of multiple positive solutions of a class of Riemann-Liouville fractional q-difference equations under the four-point boundary value condition with p-Laplacian operator. The existence of two positive solutions of the q-difference equation is verified by the monotonic iterative method. Finally, an example is used to prove the validity of the main results obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "(p,q)-Laplacian"

1

Rasouli, S. H., and G. A. Afrouzi. "On the nonexistence and uniqueness of positive weak solutions for nonlinear multiparameter elliptic systems involving the (p, q)‐Laplacian." In ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії