Добірка наукової літератури з теми "P-adic logarithmic forms"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "P-adic logarithmic forms".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "P-adic logarithmic forms"

1

Yu, Kunrui. "p-adic logarithmic forms and group varieties II." Acta Arithmetica 89, no. 4 (1999): 337–78. http://dx.doi.org/10.4064/aa-89-4-337-378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

YU, KUNRUI. "P-adic logarithmic forms and group varieties I." Journal für die reine und angewandte Mathematik (Crelles Journal) 1998, no. 502 (September 15, 1998): 29–92. http://dx.doi.org/10.1515/crll.1998.090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GROSSEKLONNE, E. "Sheaves of bounded p-adic logarithmic differential forms." Annales Scientifiques de l’École Normale Supérieure 40, no. 3 (May 2007): 351–86. http://dx.doi.org/10.1016/j.ansens.2007.04.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Iovita, Adrian, and Michael Spiess. "Logarithmic differential forms on p -adic symmetric spaces." Duke Mathematical Journal 110, no. 2 (November 2001): 253–78. http://dx.doi.org/10.1215/s0012-7094-01-11023-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yu, Kunrui. "p-adic logarithmic forms and a problem of Erdős." Acta Mathematica 211, no. 2 (2013): 315–82. http://dx.doi.org/10.1007/s11511-013-0106-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

LE, DANIEL, SHELLY MANBER, and SHRENIK SHAH. "ON p-ADIC PROPERTIES OF TWISTED TRACES OF SINGULAR MODULI." International Journal of Number Theory 06, no. 03 (May 2010): 625–53. http://dx.doi.org/10.1142/s1793042110003101.

Повний текст джерела
Анотація:
We prove that logarithmic derivatives of certain twisted Hilbert class polynomials are holomorphic modular forms modulo p of filtration p + 1. We derive p-adic information about twisted Hecke traces and Hilbert class polynomials. In this framework, we formulate a precise criterion for p-divisibility of class numbers of imaginary quadratic fields in terms of the existence of certain cusp forms modulo p. We explain the existence of infinite classes of congruent twisted Hecke traces with fixed discriminant in terms of the factorization of the associated Hilbert class polynomial modulo p. Finally, we provide a new proof of a theorem of Ogg classifying those p for which all supersingular j-invariants modulo p lie in Fp.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu, Kunrui. "Linear forms in p-adic logarithms." Acta Arithmetica 53, no. 2 (1989): 107–86. http://dx.doi.org/10.4064/aa-53-2-107-186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lauder, Alan G. B. "Computations with classical and p-adic modular forms." LMS Journal of Computation and Mathematics 14 (August 1, 2011): 214–31. http://dx.doi.org/10.1112/s1461157011000155.

Повний текст джерела
Анотація:
AbstractWe present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated to spaces of classical modular forms, using the theory of overconvergent modular forms. The algorithms have a running time which grows linearly with the logarithm of the weight and are well suited to investigating the dimension variation of certain p-adically defined spaces of classical modular forms.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

BUGEAUD, YANN. "Linear forms in p-adic logarithms and the Diophantine equation formula here." Mathematical Proceedings of the Cambridge Philosophical Society 127, no. 3 (November 1999): 373–81. http://dx.doi.org/10.1017/s0305004199003692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

HIRATA-KOHNO, Noriko, and Rina TAKADA. "LINEAR FORMS IN TWO ELLIPTIC LOGARITHMS IN THE p-ADIC CASE." Kyushu Journal of Mathematics 64, no. 2 (2010): 239–60. http://dx.doi.org/10.2206/kyushujm.64.239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "P-adic logarithmic forms"

1

Hong, Haojie. "Grands diviseurs premiers de suites récurrentes linéaires." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0107.

Повний текст джерела
Анотація:
Cette thèse porte sur les minorations des plus grands diviseurs premiers de suites récurrentes linéaires. Tout d’abord, nous obtenons une version uniforme et explicite du résultat séminal de Stewart sur les diviseurs premiers des suites de Lucas. Nous montrons que les constantes du théorème de Stewart ne dépendent que du corps quadratique correspondant à la suite de Lucas, mais pas d’autres paramètres. Nous étudions ensuite les diviseurs premiers des ordres de courbes elliptiques sur des corps finis. En fixant une courbe elliptique sur un corps fini Fq avec q puissance d’un nombre premier, la suite #E(Fqn) s’avère être une suite récurrente linéaire d’ordre 4. Soit P(x) le plus grand nombre premier divisant x. Une minoration de P(#E(Fqn)) est donnée en utilisant l’argument de Stewart et quelques discussions plus délicates. Ensuite, motivés par nos deux projets précédents, nous pouvons montrer que lorsque γ est un nombre algébrique de degré 2 et non une racine d’unité, il existe un idéal premier p de Q(γ) vérifiant νp(γn − 1) ≥ 1, tel que le nombre premier rationnel p sous-jacent à p croît plus rapidement que n. Enfin, nous considérons une application de la méthode de Stewart aux nombres de Fibonacci Fn. Nous obtenons des bornes relativement plus nettes pour P(Fn). Tous les sujets ci-dessus s’appuient essentiellement sur l’estimation de Yu pour des formes linéaires de logarithmique p-adiques
This thesis is about lower bounds for the biggest prime divisors of linear recurrent sequences. First, we obtain a uniform and explicit version of Stewart’s seminal result about prime divisors of Lucas sequences. We show that constants in Stewart’s theorem depend only on the quadratic field corresponding to a Lucas sequence. Then we study the prime divisors of orders of elliptic curves over finite fields. Fixing an elliptic curve over Fq with q power of a prime number, the sequence #E(Fqn) happens to be a linear recurrent sequence of order 4. Let P(x) be the biggest prime dividing x. A lower bound of P(#E(Fqn)) is given by using Stewart’s argument and some more delicate discussions. Next, motivated by our previous two projects, we can show that when γ is an algebraic number of degree 2 and not a root of unity, there exists a prime ideal p of Q(γ) satisfying νp(γn − 1) ≥ 1, such that the rational prime p underlying p grows quicker than n. Finally, we consider a numerical application of Stewart’s method to Fibonacci numbers Fn. Relatively sharp bounds for P(Fn) are obtained. All of the above work relies heavily on Yu’s estimate for p-adic logarithmic forms
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "P-adic logarithmic forms"

1

Yu, Kunrui. "Report on p-adic Logarithmic Forms." In A Panorama of Number Theory or The View from Baker's Garden, 11–25. Cambridge University Press, 2002. http://dx.doi.org/10.1017/cbo9780511542961.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yu, Kunrui. "Linear forms in logarithms in the p-adic case." In New Advances in Transcendence Theory, 411–34. Cambridge University Press, 1988. http://dx.doi.org/10.1017/cbo9780511897184.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії