Зміст
Добірка наукової літератури з теми "Oxygen-17 anomaly"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Oxygen-17 anomaly".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Oxygen-17 anomaly"
Wang, Fan, Wensheng Ge, Hao Luo, Ji-Hye Seo, and Greg Michalski. "Oxygen-17 anomaly in soil nitrate: A new precipitation proxy for desert landscapes." Earth and Planetary Science Letters 438 (March 2016): 103–11. http://dx.doi.org/10.1016/j.epsl.2016.01.002.
Повний текст джерелаZhang, Wenqi, and Yanlin Zhang. "Oxygen isotope anomaly (Δ<sup>17</sup>O) in atmospheric nitrate: A review." Chinese Science Bulletin 64, no. 7 (January 30, 2019): 649–62. http://dx.doi.org/10.1360/n972018-01028.
Повний текст джерелаMorin, S., R. Sander та J. Savarino. "Simulation of the diurnal variations of the oxygen isotope anomaly (Δ<sup>17</sup>O) of reactive atmospheric species". Atmospheric Chemistry and Physics Discussions 10, № 12 (14 грудня 2010): 30405–51. http://dx.doi.org/10.5194/acpd-10-30405-2010.
Повний текст джерелаSchütte, Florian, Johannes Karstensen, Gerd Krahmann, Helena Hauss, Björn Fiedler, Peter Brandt, Martin Visbeck, and Arne Körtzinger. "Characterization of “dead-zone” eddies in the eastern tropical North Atlantic." Biogeosciences 13, no. 20 (October 28, 2016): 5865–81. http://dx.doi.org/10.5194/bg-13-5865-2016.
Повний текст джерелаMorin, S., R. Sander та J. Savarino. "Simulation of the diurnal variations of the oxygen isotope anomaly (Δ<sup>17</sup>O) of reactive atmospheric species". Atmospheric Chemistry and Physics 11, № 8 (19 квітня 2011): 3653–71. http://dx.doi.org/10.5194/acp-11-3653-2011.
Повний текст джерелаDigtiar, V. A., D. G. Vernihora, Yu V. Zavorotnya, A. P. Gladkiy, and M. O. Kaminska. "Application of Near-infrared reflectance spectroscopy in the diagnosis of varicocele in children and adolescents." Medicni perspektivi 29, no. 1 (April 1, 2024): 101–8. http://dx.doi.org/10.26641/2307-0404.2024.1.300597.
Повний текст джерелаWang, Kun, Shohei Hattori, Mang Lin, Sakiko Ishino, Becky Alexander, Kazuki Kamezaki, Naohiro Yoshida, and Shichang Kang. "Isotopic constraints on atmospheric sulfate formation pathways in the Mt. Everest region, southern Tibetan Plateau." Atmospheric Chemistry and Physics 21, no. 10 (June 1, 2021): 8357–76. http://dx.doi.org/10.5194/acp-21-8357-2021.
Повний текст джерелаMaaziz, Nada, Mathilde Jaillard, Céline Garrec, Fabrice Airaud, Bernard Aral, Stephane Bezieau, Betty Gardie, and Francois Girodon. "Hereditary Erythrocytosis: Results from Europe's Largest Idiopathic Erythrocytosis Database." Blood 144, Supplement 1 (November 5, 2024): 3842. https://doi.org/10.1182/blood-2024-207790.
Повний текст джерелаBalting, Daniel F., Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann. "Large-scale climate signals of a European oxygen isotope network from tree rings." Climate of the Past 17, no. 3 (May 7, 2021): 1005–23. http://dx.doi.org/10.5194/cp-17-1005-2021.
Повний текст джерелаLiblik, Taavi, Yijing Wu, Daidu Fan, and Dinghui Shang. "Wind-driven stratification patterns and dissolved oxygen depletion off the Changjiang (Yangtze) Estuary." Biogeosciences 17, no. 10 (May 29, 2020): 2875–95. http://dx.doi.org/10.5194/bg-17-2875-2020.
Повний текст джерелаДисертації з теми "Oxygen-17 anomaly"
Pesnin, Marie. "Apports des nouveaux traceurs d'anomalies isotopiques à l'étude des déséquilibres isotopiques dans les biocarbonates." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASJ033.
Повний текст джерелаBiocarbonates produced by marine organisms such as foraminifera or corals serve as important archives for studying past environments and climates. Since the work of H. Urey in 1947, it has been established that the oxygen-18 isotopic composition (δ18O) of carbonates reflects both the formation temperature and the isotopic ratio (18O/16O) of seawater. However, this relationship, supposedly based on the thermodynamic equilibrium between carbonate and water, can be disturbed by either environmental parameters or biological mechanisms. In certain organisms, such as corals, these "vital effects" manifest as significant isotopic disequilibrium, complicating the interpretation of a substantial portion of the fossil sedimentary record.In response to these challenges, this thesis adopts an innovative approach by leveraging new isotopic tracers, namely oxygen-17 anomalies (Δ17O) and "clumped isotopes" (Δ47, Δ48), in addition to traditional δ13C and δ18O measurements. By working with modern samples for which growth conditions are well documented, the additional constraints provided by these tracers allow for a better characterization of the factors influencing the isotopic composition of biocarbonates.This work began with an exploratory phase, aimed at (1) identifying the organisms/case studies by combining low spatial resolution isotopic measurements with in situ observations that provide mineralogical, elemental, and isotopic information at much higher resolution, and (2) establishing optimized experimental protocols for cutting-edge instrumental techniques used for Δ47/Δ48 measurements (via ultra-high sensitivity mass spectrometry) and Δ17O (via VCOF-CRDS, an innovative spectroscopic technology).The first part of this work resulted in the first published study on clumped isotopes in bryozoan skeletons. The results highlight a strong influence of mineralogy on the Δ47 signal, which seems to result from a simple thermodynamic effect. However, it appears that organisms from certain sites exhibit specific isotopic disequilibrium, potentially linked to local salinity. These findings raise new questions about the influence of certain environmental parameters on the activity of specific enzymes, particularly carbonic anhydrase, which plays a key role in maintaining isotopic equilibrium between water and dissolved inorganic carbon (DIC).The second part focuses on characterizing isotopic disequilibria in five isotopic dimensions (δ13C, δ18O, Δ17O, Δ47, Δ48) in cold-water corals, observed together here for the first time. The observations on Δ47 and Δ48 are consistent with a recent independent publication and align with a theoretical DIC model, suggesting that the isotopic signature of deep-sea corals is primarily controlled by kinetic effects related to the absorption of metabolic CO₂. However, the predictions of this same model are at odds with our Δ17O measurements (which have since been confirmed by independent observations), underscoring the need to revise certain model parameters.The richness of new questions raised by this thesis highlights the value of combining observations in a five-dimensional multi-isotopic space with quantitative theoretical models, while confronting these models with the biological specifics of each marine organism. This approach enables a deeper understanding of biomineralization mechanisms and allows for a more precise quantification of the influence of vital effects in biocarbonates on paleo-reconstructions