Добірка наукової літератури з теми "Overexpanded flow"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Overexpanded flow".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Overexpanded flow"

1

Moore, J., and K. M. Elward. "Shock Formation in Overexpanded Tip Leakage Flow." Journal of Turbomachinery 115, no. 3 (July 1, 1993): 392–99. http://dx.doi.org/10.1115/1.2929266.

Повний текст джерела
Анотація:
Shock formation due to overexpansion of supersonic flow at the inlet to the tip clearance gap of a turbomachine has been studied. The flow was modeled on a water table using a sharp-edged rectangular channel. The flow exhibited an oblique hydraulic jump starting on the channel sidewall near the channel entrance. This flow was analyzed using hydraulic theory. The results suggest a model for the formation of the jump. The hydraulic analogy between free surface water flows and compressible gas flows is used to predict the location and strength of oblique shocks in analogous tip leakage flows. Features of the flow development are found to be similar to those of compressible flow in sharp-edged orifices. Possible implications of the results for high-temperature gas turbine design are considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Verma, S. B., and Oskar Haidn. "Flow Characteristics of Overexpanded Rocket Nozzles." International Journal of Aerospace Innovations 2, no. 4 (December 2010): 259–77. http://dx.doi.org/10.1260/1757-2258.2.4.259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MIYAZATO, Yoshiaki, Masashi KASHITANI, Hiroshi KATANODA, and Kazuyasu MATSUO. "Characteristics of Overexpanded Flow in a Supersonic Nozzle." Journal of the Visualization Society of Japan 15, Supplement2 (1995): 23–26. http://dx.doi.org/10.3154/jvs.15.supplement2_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chung, Chan-Hong, Kenneth J. De Witt, Robert M. Stubbs, and Paul F. Penko. "Simulation of overexpanded low-density nozzle plume flow." AIAA Journal 33, no. 9 (September 1995): 1646–50. http://dx.doi.org/10.2514/3.12812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Silnikov, M. V., and M. V. Chernyshov. "Supersonic flow gradients at an overexpanded nozzle lip." Shock Waves 28, no. 4 (November 13, 2017): 765–84. http://dx.doi.org/10.1007/s00193-017-0772-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sharma, H., A. Vashishtha, E. Rathakrishnan, and P. Lovaraju. "Experimental study of overexpanded co-flowing jets." Aeronautical Journal 112, no. 1135 (September 2008): 537–46. http://dx.doi.org/10.1017/s0001924000002499.

Повний текст джерела
Анотація:
Abstract An experimental investigation was carried out to find the effect of an annular co-flow jet on the primary supersonic jet from Mach 2 nozzle at different levels of overexpansion. In this study, a convergent-divergent circular nozzle of exit Mach number 2, surrounded by an annular convergent circular nozzle with an annular gap of 4·4mm was used. Nozzle pressure ratios (NPRs) 3, 4, 5, 6, 7 are investigated for overexpanded states of the primary jet and NPR 8 is investigated for almost correctly expanded state. The centreline pressure distributions were taken at all NPRs for both with and without co-flow case, to investigate the supersonic core extent and mixing activity in the jet field. In the radial direction pitot pressure at different axial locations at all NPRs for both the cases are measured to find the jet development and shadowgraph visualisation of jet structure was done to visualise the shock structure in near-field. It is found that the co-flow acts as mixing inhibitor at all levels of overexpansion for Mach 2 nozzle.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SHIMSHI, E., G. BEN-DOR, and A. LEVY. "Viscous simulation of shock-reflection hysteresis in overexpanded planar nozzles." Journal of Fluid Mechanics 635 (September 10, 2009): 189–206. http://dx.doi.org/10.1017/s002211200900771x.

Повний текст джерела
Анотація:
A computational fluid dynamics simulation of the flow in an overexpanded planar nozzle shows the existence of Mach-reflection hysteresis inside the nozzle. Previous simulations have dealt only with the flow outside the nozzle and thus concluded that the hysteresis phenomenon takes place outside the nozzle even when viscous effects are introduced. When including the geometry of the nozzle in the simulation it becomes evident that flow separation will occur before the transition from regular to Mach reflection for all relevant Mach numbers. The simulation reveals complex changes in the flow structure as the pressure ratio between the ambient and the jet is increased and decreased. The pressure along the nozzle wall downstream of the separation point is found to be less than the ambient pressure, and a modification of the Schilling curve fit is suggested for cases of extensive flow separation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zebiri, B., A. Piquet, A. Hadjadj, and S. B. Verma. "Shock-Induced Flow Separation in an Overexpanded Supersonic Planar Nozzle." AIAA Journal 58, no. 5 (May 2020): 2122–31. http://dx.doi.org/10.2514/1.j058705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Satyajit, De, and Ethirajan Rathakrishnan. "Experimental study of supersonic co-flowing jet." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 4 (January 9, 2018): 1237–49. http://dx.doi.org/10.1177/0954410017749866.

Повний текст джерела
Анотація:
A detailed experimental study was carried out to investigate the behaviour of a Mach 2 primary jet in the presence of a Mach 1.6 annular co-flow. The lip thickness of the inner nozzle was 7.75 mm. The characteristics of jets were investigated at nozzle pressure ratios 3 to 8, in steps of 1. At nozzle pressure ratios 3 to 7, the centre jet is overexpanded; and at nozzle pressure ratio 8, it is marginally underexpanded. Both primary and secondary jets were operated at the nozzle pressure ratio. Centreline pressure distribution was measured to examine the supersonic core length of the centre jet in the presence and absence of the co-flow at all nozzle pressure ratios. It is found that the co-flow reduces the core length of the primary jet at all overexpanded states. A maximum core length reduction of about 61% is at nozzle pressure ratio 4, whereas the core increases by 5% at the marginally underexpanded state corresponding to nozzle pressure ratio 8. The co-flow jet merges with the primary jet at 4 D, at nozzle pressure ratio 3, and at 8 D for nozzle pressure ratios above 4. Shadowgraph images of the jet in the presence and absence of co-flow reveal that the waves in the core of the jet are strongly influenced by the co-flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moiseev, M. G., E. A. Nikulicheva, and V. S. Suminova. "Convergent-Divergent Nozzle under Highly Overexpanded Conditions." Fluid Dynamics 39, no. 3 (May 2004): 503–10. http://dx.doi.org/10.1023/b:flui.0000038569.29058.7e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Overexpanded flow"

1

Elward, Kevin M. "Shock formation in overexpanded flow: a study using the hydraulic analogy." Thesis, Virginia Tech, 1989. http://hdl.handle.net/10919/45949.

Повний текст джерела
Анотація:

Tests were performed to study the mechanism of shock formation in supersonic flow in long orifices to gain insight into the leakage flow of turbine tip gaps. The flow was modeled on a water table using a sharp-edged rectangular channel. The hydraulic analogy between free surface water flows and compressible gas flows was used to study the implications of the water table flow on tip leakage flows.

The flow on the water table exhibited oblique hydraulic jumps starting on the channel sidewall near the channel entrance. This flow was analyzed using the oblique hydraulic jump relations developed by classical hydraulic theory. The results of this analysis suggested a model for the formation of the jump. As the flow accelerates around the corner of the channel entrance, supercritical free stream flow is turned as it intersects the sidewall. The abrupt change in flow direction results in the formation of the oblique hydraulic jump.

An acceptable hydraulic analogy of compressible gas flows with shocks was obtained by reducing the surface tension of the water and using a large model size. The modified analogy for non-isentropic flow then allowed quantitative evaluation of the modeled shock structure in a compressible flow field. The predicted shock formation in such a flow has possible implications for both the efficiency of a gas turbine and the useful life of the turbine blade.


Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Östlund, Jan. "Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side-Loads." Licentiate thesis, KTH, Mechanics, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Östlund, Jan. "Supersonic flow separation with application to rocket engine nozzles." Doctoral thesis, KTH, Mechanics, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3793.

Повний текст джерела
Анотація:

The increasing demand for higher performance in rocketlaunchers promotes the development of nozzles with higherperformance, which basically is achieved by increasing theexpansion ratio. However, this may lead to flow separation andensuing instationary, asymmetric forces, so-called side-loads,which may present life-limiting constraints on both the nozzleitself and other engine components. Substantial gains can bemade in the engine performance if this problem can be overcome,and hence different methods of separation control have beensuggested. However, none has so far been implemented in fullscale, due to the uncertainties involved in modeling andpredicting the flow phenomena involved.

In the present work the causes of unsteady and unsymmetricalflow separation and resulting side-loads in rocket enginenozzles are investigated. This involves the use of acombination of analytical, numerical and experimental methods,which all are presented in the thesis. A main part of the workis based on sub-scale testing of model nozzles operated withair. Hence, aspects on how to design sub-scale models that areable to capture the relevant physics of full-scale rocketengine nozzles are highlighted. Scaling laws like thosepresented in here are indispensable for extracting side-loadcorrelations from sub-scale tests and applying them tofull-scale nozzles.

Three main types of side-load mechanisms have been observedin the test campaigns, due to: (i) intermittent and randompressure fluctuations, (ii) transition in separation patternand (iii) aeroelastic coupling. All these three types aredescribed and exemplified by test results together withanalysis. A comprehensive, up-to-date review of supersonic flowseparation and side-loads in internal nozzle flows is givenwith an in-depth discussion of different approaches forpredicting the phenomena. This includes methods for predictingshock-induced separation, models for predicting side-loadlevels and aeroelastic coupling effects. Examples are presentedto illustrate the status of various methods, and theiradvantages and shortcomings are discussed.

A major part of the thesis focus on the fundamentalshock-wave turbulent boundary layer interaction (SWTBLI) and aphysical description of the phenomenon is given. Thisdescription is based on theoretical concepts, computationalresults and experimental observation, where, however, emphasisis placed on the rocket-engineering perspective. This workconnects the industrial development of rocket engine nozzles tothe fundamental research of the SWTBLI phenomenon and shows howthese research results can be utilized in real applications.The thesis is concluded with remarks on active and passive flowcontrol in rocket nozzles and directions of futureresearch.

The present work was performed at VAC's Space PropulsionDivision within the framework of European spacecooperation.

Keywords:turbulent, boundary layer, shock wave,interaction, overexpanded,rocket nozzle, flow separation,control, side-load, experiments, models, review.

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zebiri, Boubakr. "Étude numérique des interactions onde de choc / couche limite dans les tuyères propulsives Shock-induced flow separation in an overexpanded supersonic planar nozzle A parallel high-order compressible flows solver with domain decomposition method in the generalized curvilinear coordinates system Analysis of shock-wave unsteadiness in conical supersonic nozzles." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR06.

Повний текст джерела
Анотація:
La nécessité d’une meilleure compréhension du mécanisme d’entrainement pour l’instabilité à basse fréquence observée dans un écoulement dans une tuyère sur-détendue a été discutée. Le caractère instable de l’onde de choc/couche limite reste un défi pratique important pour les problèmes des écoulements dans les tuyères. De plus, pour une couche limite turbulente incidente donnée, ce type d’écoulement présente généralement des mouvements de choc à basse fréquence plus élevées qui sont moins couplés aux échelles de temps de la turbulence en amont. Cela peut être bon du point de vue d’un expérimentateur, en raison de difficultés à mesurer des fréquences plus élevées, mais c’est plus difficile d’un point de vue calcul numérique en raison de la nécessité d’obtenir des séries temporelles plus longues pour résoudre les mouvements à basse fréquence. En excellent accord avec les résultats expérimentaux, une série de calcul LES de très longue durée a été réalisée, il a été clairement démontré l’existence de mouvements énergétiques à basse fréquence et à large bande près du point de séparation. Des efforts particuliers ont été faits pour éviter tout forçage à basse fréquence en amont, et il a été explicitement démontré que les oscillations de choc à basse fréquence observées n’étaient pas liées à la génération de turbulence d’entrée, excluant la possibilité d’un artefact numérique. Différentes méthodes d’analyse spectrales, et en décomposition en mode dynamique ont été utilisées pour montrer que les échelles de temps impliquées dans un tel mécanisme sont environ deux ordres de grandeur plus grandes que les échelles de temps impliquées dans la turbulence de la couche limite, ce qui est cohérent avec les mouvements de basse fréquence observés. En outre, ces échelles de temps se sont avérées être fortement modulées par la quantité de flux inversé à l’intérieur de la bulle de séparation. Ce scénario peut, en principe, expliquer à la fois l’instabilité des basses fréquences et sa nature à large bande
The need for a better understanding of the driving mechanism for the observed low-frequency unsteadiness in an over-expanded nozzle flows was discussed. The unsteady character of the shock wave/boundary layer remains an important practical challenge for the nozzle flow problems. Additionally, for a given incoming turbulent boundary layer, this kind of flow usually exhibits higher low-frequency shock motions which are less coupled from the timescales of the incoming turbulence. This may be good from an experimenter’s point of view, because of the difficulties in measuring higher frequencies, but it is more challenging from a computational point of view due to the need to obtain long time series to resolve low-frequency movements. In excellent agreement with the experimental findings, a very-long LES simulation run was carried out to demonstrate the existence of energetic broadband low-frequency motions near the separation point. Particular efforts were done in order to avoid any upstream low-frequency forcing, and it was explicitly demonstrated that the observed low-frequency shock oscillations were not connected with the inflow turbulence generation, ruling out the possibility of a numerical artefact. Different methods of spectral analysis and dynamic mode decomposition have been used to show that the timescales involved in such a mechanism are about two orders of magnitude larger than the time scales involved in the turbulence of the boundary layer, which is consistent with the observed low-frequency motions. Furthermore, those timescales were shown to be strongly modulated by the amount of reversed flow inside the separation bubble. This scenario can, in principle, explain both the low-frequency unsteadiness and its broadband nature
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sainte-Rose, Bruno. "Simulations numériques d'écoulements réactifs massivement décollés par une approche hybride RANS/LES." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00635538.

Повний текст джерела
Анотація:
Les premières simulations numériques d'écoulements réactifs sur des configurationscomplexes ont été réalisées à l'aide d'approches RANS (Reynolds Averaged Navier Stokes). Ces dernières, bien adaptées aux écoulements de type couches limites attachées et relativement peu coûteuses en temps de calcul, ne donnent accès qu'à des résultats stationnaires qui s'éloignent parfois de la réalité. Pour réaliser des simulations instationnaires d'écoulements, les méthodes de type LES (Large Eddy Simulation) -- plus précises mais plus coûteuses -- sont de plus en plus utilisées. Cependant, ces méthodes sont mal adaptées à la simulation de la dynamique pariétale, car elles nécessitent un effort de maillage souvent prohibitif près de la paroi. Cette thèse est consacrée au développement dans le code CEDRE (code de simulation d'écoulements réactifs complexes de l'Onera) d'une méthode hybride RANS/LES, appelée Delayed Detached Eddy Simulation (DDES), et à son application à des écoulements réactifs massivement décollés. Après une étape de validation sur des couches limites attachées, la DDES a été appliquée à la simulation des écoulements inerte et réactif dans une chambre de combustion en forme de marche descendante (A3C) et comparée aux résultats des approches RANS et LES classiques, ainsi qu'aux résultats expérimentaux. Cette méthode a ensuite permis de réaliser l'étude de la dynamique de l'écoulement réactif décollé dans la tuyère ATAC montée sur le banc cryotechnique MASCOTTE de l'Onera.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Overexpanded flow"

1

GrÄsel, Jűrgen, and Alfred E. Beylich. "Enhanced Thrust-Efficiency of Overexpanded Nozzles by Passive Venting." In IUTAM Symposium on Mechanics of Passive and Active Flow Control, 69–74. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4199-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silnikov, M. V., M. V. Chernyshov, and V. N. Uskov. "Overexpanded Jet Flow Theoretical Analysis in the Vicinity of the Nozzle Lip." In 30th International Symposium on Shock Waves 1, 293–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46213-4_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martelli, Emanuele, Barbara Betti, Francesco Nasuti, and Marcello Onofri. "Effect of the Adiabatic Index on the Shock Reflection in Overexpanded Nozzle Flow." In 30th International Symposium on Shock Waves 1, 89–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46213-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Uskov, V. N., and M. V. Chernyshov. "Some special features of the flow in compressed layer downstream the incident shock in overexpanded jet." In Shock Waves, 1509–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85181-3_116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Silnikov, M. V., and M. V. Chernyshov. "Overexpanded Jet Flow Type of Symmetry Influence on the Differential Characteristics of Flowfield in the Compressed Layer." In Shock Wave Interactions, 57–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73180-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Overexpanded flow"

1

Moore, John, and Kevin M. Elward. "Shock Formation in Overexpanded Tip Leakage Flow." In ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-001.

Повний текст джерела
Анотація:
Shock formation due to overexpansion of supersonic flow at the inlet to the tip clearance gap of a turbomachine has been studied. The flow was modelled on a water table using a sharp-edged rectangular channel. The flow exhibited an oblique hydraulic jump starting on the channel sidewall near the channel entrance. This flow was analyzed using hydraulic theory. The results suggest a model for the formation of the jump. The hydraulic analogy between free surface water flows and compressible gas flows is used to predict the location and strength of oblique shocks in analogous tip leakage flows. Features of the flow development are found to be similar to those of compressible flow in sharp-edged orifices. Possible implications of the results for high-temperature gas turbine design are considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zerjeski, David. "Semi-empirical Flow Separation Model For Overexpanded Rocket Nozzles." In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-s.p.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reijasse, Ph, L. Morzenski, D. Blacodon, and J. Birkemeyer. "Flow separation experimental analysis in overexpanded subscale rocket-nozzles." In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ostlund, Jan, and Mattias Jaran. "Assessment of turbulence models in overexpanded rocket nozzle flow simulations." In 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xia, Yang, and R. Schwane. "CFD-Aided Aerodynamic Stability Analysis of an Overexpanded Rocket Nozzle Under the Influence of Unsteady Side Loads." In 2nd AIAA Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hamed, A., and C. Vogiatzis. "Assessment of turbulence models in overexpanded 2D-CD nozzle flow simulations." In 31st Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-2615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hamed, A., C. Vogiatzis, A. Hamed, and C. Vogiatzis. "Three dimensional flow computations and thrust predictions in 2DCD overexpanded nozzles." In 35th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ben-Dor, G., I. Elperin, O. Igra, and E. Vasiliev. "Gas-Solid Suspension Flow in a Nozzle and the Overexpanded Free Jet." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0773.

Повний текст джерела
Анотація:
Abstract Two-phase gas-solid particles nonstationary axisymmetric flows through converging-diverging nozzles and the free overexpanded jets emerging from the nozzles are studied numerically. The solution of the flowfield is carried out until a steady flow is established. The Eulerian approach is used to describe the flowfield and both phases are treated in the homogeneous mixtures approximation. A monotone second order accurate in space and time W-modification of Godunov’s scheme is applied for the numerical solution of the governing equations. The evolution of the discontinuities is investigated as well as the effects of the particle size and the loading ratio on the flow pattern. The two-phase flowfield is compared with a similar pure gas flowfield in a two-dimensional nozzle and in the plume. Limiting cases of the two-phase flow, frozen and equilibrium, are considered. Intermediate regimes of the two-phase flow are compared with the frozen and the equilibrium flows.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schomberg, Kyll A., Graham Doig, John Olsen, and Andrew J. Neely. "Geometric Analysis of the Linear Expansion-Deflection Nozzle at Highly Overexpanded Flow Conditions." In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-4001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Girard, Sébastien, and Philippe Reijasse. "Effect of an internal shock wave on the flow patter in an overexpanded regime." In 25th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Overexpanded flow"

1

Liu, Junhui, Andrew Corrigan, K. Kailasanath, Nicholas Heeb, and Ephraim Gutmark. Numerical Study of Noise Characteristics in Overexpanded Jet Flows. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada625866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії