Зміст
Добірка наукової літератури з теми "Oubli catastrophique (informatique)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Oubli catastrophique (informatique)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Oubli catastrophique (informatique)"
Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.
Повний текст джерелаThe main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Mainsant, Marion. "Apprentissage continu sous divers scénarios d'arrivée de données : vers des applications robustes et éthiques de l'apprentissage profond." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALS045.
Повний текст джерелаThe human brain continuously receives information from external stimuli. It then has the ability to adapt to new knowledge while retaining past events. Nowadays, more and more artificial intelligence algorithms aim to learn knowledge in the same way as a human being. They therefore have to be able to adapt to a large variety of data arriving sequentially and available over a limited period of time. However, when a deep learning algorithm learns new data, the knowledge contained in the neural network overlaps old one and the majority of the past information is lost, a phenomenon referred in the literature as catastrophic forgetting. Numerous methods have been proposed to overcome this issue, but as they were focused on providing the best performance, studies have moved away from real-life applications where algorithms need to adapt to changing environments and perform, no matter the type of data arrival. In addition, most of the best state of the art methods are replay methods which retain a small memory of the past and consequently do not preserve data privacy.In this thesis, we propose to explore data arrival scenarios existing in the literature, with the aim of applying them to facial emotion recognition, which is essential for human-robot interactions. To this end, we present Dream Net - Data-Free, a privacy preserving algorithm, able to adapt to a large number of data arrival scenarios without storing any past samples. After demonstrating the robustness of this algorithm compared to existing state-of-the-art methods on standard computer vision databases (Mnist, Cifar-10, Cifar-100 and Imagenet-100), we show that it can also adapt to more complex facial emotion recognition databases. We then propose to embed the algorithm on a Nvidia Jetson nano card creating a demonstrator able to learn and predict emotions in real-time. Finally, we discuss the relevance of our approach for bias mitigation in artificial intelligence, opening up perspectives towards a more ethical AI
Daou, Andrea. "Real-time Indoor Localization with Embedded Computer Vision and Deep Learning." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR002.
Повний текст джерелаThe need to determine the location of individuals or objects in indoor environments has become an essential requirement. The Global Navigation Satellite System, a predominant outdoor localization solution, encounters limitations when applied indoors due to signal reflections and attenuation caused by obstacles. To address this, various indoor localization solutions have been explored. Wireless-based indoor localization methods exploit wireless signals to determine a device's indoor location. However, signal interference, often caused by physical obstructions, reflections, and competing devices, can lead to inaccuracies in location estimation. Additionally, these methods require access points deployment, incurring associated costs and maintenance efforts. An alternative approach is dead reckoning, which estimates a user's movement using a device's inertial sensors. However, this method faces challenges related to sensor accuracy, user characteristics, and temporal drift. Other indoor localization techniques exploit magnetic fields generated by the Earth and metal structures. These techniques depend on the used devices and sensors as well as the user's surroundings.The goal of this thesis is to provide an indoor localization system designed for professionals, such as firefighters, police officers, and lone workers, who require precise and robust positioning solutions in challenging indoor environments. In this thesis, we propose a vision-based indoor localization system that leverages recent advances in computer vision to determine the location of a person within indoor spaces. We develop a room-level indoor localization system based on Deep Learning (DL) and built-in smartphone sensors combining visual information with smartphone magnetic heading. To achieve localization, the user captures an image of the indoor surroundings using a smartphone, equipped with a camera, an accelerometer, and a magnetometer. The captured image is then processed using our proposed multiple direction-driven Convolutional Neural Networks to accurately predict the specific indoor room. The proposed system requires minimal infrastructure and provides accurate localization. In addition, we highlight the importance of ongoing maintenance of the vision-based indoor localization system. This system necessitates regular maintenance to adapt to changing indoor environments, particularly when new rooms have to be integrated into the existing localization framework. Class-Incremental Learning (Class-IL) is a computer vision approach that allows deep neural networks to incorporate new classes over time without forgetting the knowledge previously learned. In the context of vision-based indoor localization, this concept must be applied to accommodate new rooms. The selection of representative samples is essential to control memory limits, avoid forgetting, and retain knowledge from previous classes. We develop a coherence-based sample selection method for Class-IL, bringing forward the advantages of the coherence measure to a DL framework. The relevance of the methodology and algorithmic contributions of this thesis is rigorously tested and validated through comprehensive experimentation and evaluations on real datasets
Hocquet, Guillaume. "Class Incremental Continual Learning in Deep Neural Networks." Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPAST070.
Повний текст джерелаWe are interested in the problem of continual learning of artificial neural networks in the case where the data are available for only one class at a time. To address the problem of catastrophic forgetting that restrain the learning performances in these conditions, we propose an approach based on the representation of the data of a class by a normal distribution. The transformations associated with these representations are performed using invertible neural networks, which can be trained with the data of a single class. Each class is assigned a network that will model its features. In this setting, predicting the class of a sample corresponds to identifying the network that best fit the sample. The advantage of such an approach is that once a network is trained, it is no longer necessary to update it later, as each network is independent of the others. It is this particularly advantageous property that sets our method apart from previous work in this area. We support our demonstration with experiments performed on various datasets and show that our approach performs favorably compared to the state of the art. Subsequently, we propose to optimize our approach by reducing its impact on memory by factoring the network parameters. It is then possible to significantly reduce the storage cost of these networks with a limited performance loss. Finally, we also study strategies to produce efficient feature extractor models for continual learning and we show their relevance compared to the networks traditionally used for continual learning
Besedin, Andrey. "Continual forgetting-free deep learning from high-dimensional data streams." Electronic Thesis or Diss., Paris, CNAM, 2019. http://www.theses.fr/2019CNAM1263.
Повний текст джерелаIn this thesis, we propose a new deep-learning-based approach for online classification on streams of high-dimensional data. In recent years, Neural Networks (NN) have become the primary building block of state-of-the-art methods in various machine learning problems. Most of these methods, however, are designed to solve the static learning problem, when all data are available at once at training time. Performing Online Deep Learning is exceptionally challenging.The main difficulty is that NN-based classifiers usually rely on the assumption that the sequence of data batches used during training is stationary, or in other words, that the distribution of data classes is the same for all batches (i.i.d. assumption).When this assumption does not hold Neural Networks tend to forget the concepts that are temporarily not available in thestream. In the literature, this phenomenon is known as catastrophic forgetting. The approaches we propose in this thesis aim to guarantee the i.i.d. nature of each batch that comes from the stream and compensates for the lack of historical data. To do this, we train generative models and pseudo-generative models capable of producing synthetic samples from classes that are absent or misrepresented in the stream and complete the stream’s batches with these samples. We test our approaches in an incremental learning scenario and a specific type of continuous learning. Our approaches perform classification on dynamic data streams with the accuracy close to the results obtained in the static classification configuration where all data are available for the duration of the learning. Besides, we demonstrate the ability of our methods to adapt to invisible data classes and new instances of already known data categories, while avoiding forgetting the previously acquired knowledge