Статті в журналах з теми "Osmotic coefficients"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Osmotic coefficients.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Osmotic coefficients".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Moggia, Elsa. "Osmotic Coefficients of Electrolyte Solutions." Journal of Physical Chemistry B 112, no. 4 (January 2008): 1212–17. http://dx.doi.org/10.1021/jp074648a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Frosch, Mia, Merete Bilde, and Ole F. Nielsen. "From Water Clustering to Osmotic Coefficients." Journal of Physical Chemistry A 114, no. 44 (November 11, 2010): 11933–42. http://dx.doi.org/10.1021/jp103129u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Drake, R. E., S. Dhother, R. A. Teague, and J. C. Gabel. "Protein osmotic pressure gradients and microvascular reflection coefficients." American Journal of Physiology-Heart and Circulatory Physiology 273, no. 2 (August 1, 1997): H997—H1002. http://dx.doi.org/10.1152/ajpheart.1997.273.2.h997.

Повний текст джерела
Анотація:
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ding-Quan, Wu, Xu Zheng-Liang, and Qu Song-Sheng. "The Activity Coefficients and Osmotic Coefficients of Sodium Tungstate in Aqueous Solution." Acta Physico-Chimica Sinica 6, no. 05 (1990): 633–37. http://dx.doi.org/10.3866/pku.whxb19900523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Passamonti, Francisco J., María R. Gennero de Chialvo, and Abel C. Chialvo. "Evaluation of the activity coefficients of ternary molecular solutions from osmotic coefficient data." Fluid Phase Equilibria 559 (August 2022): 113464. http://dx.doi.org/10.1016/j.fluid.2022.113464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nagy, Endre, Imre Hegedüs, Danyal Rehman, Quantum J. Wei, Yvana D. Ahdab, and John H. Lienhard. "The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes." Membranes 11, no. 2 (February 14, 2021): 128. http://dx.doi.org/10.3390/membranes11020128.

Повний текст джерела
Анотація:
The widely used van ’t Hoff linear relation for predicting the osmotic pressure of NaCl solutions may result in errors in the evaluation of key system parameters, which depend on osmotic pressure, in pressure-retarded osmosis and forward osmosis. In this paper, the linear van ’t Hoff approach is compared to the solutions using OLI Stream Analyzer, which gives the real osmotic pressure values. Various dilutions of NaCl solutions, including the lower solute concentrations typical of river water, are considered. Our results indicate that the disparity in the predicted osmotic pressure of the two considered methods can reach 30%, depending on the solute concentration, while that in the predicted power density can exceed over 50%. New experimental results are obtained for NanoH2O and Porifera membranes, and theoretical equations are also developed. Results show that discrepancies arise when using the van ’t Hoff equation, compared to the OLI method. At higher NaCl concentrations (C > 1.5 M), the deviation between the linear approach and the real values increases gradually, likely indicative of a larger error in van ’t Hoff predictions. The difference in structural parameter values predicted by the two evaluation methods is also significant; it can exceed the typical 50–70% range, depending on the operating conditions. We find that the external mass transfer coefficients should be considered in the evaluation of the structural parameter in order to avoid overestimating its value. Consequently, measured water flux and predicted structural parameter values from our own and literature measurements are recalculated with the OLI software to account for external mass transfer coefficients.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hess, Berk, Christian Holm, and Nico van der Vegt. "Osmotic coefficients of atomistic NaCl (aq) force fields." Journal of Chemical Physics 124, no. 16 (April 28, 2006): 164509. http://dx.doi.org/10.1063/1.2185105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhalla, Gaurav, and William M. Deen. "Effects of molecular shape on osmotic reflection coefficients." Journal of Membrane Science 306, no. 1-2 (December 2007): 116–24. http://dx.doi.org/10.1016/j.memsci.2007.08.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Bo, Dahong Yu, Hong-Lai Liu, and Ying Hu. "Osmotic coefficients of polyelectrolyte solutions, measurements and correlation." Polymer 43, no. 10 (May 2002): 2975–80. http://dx.doi.org/10.1016/s0032-3861(02)00119-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Toğrul, İnci Türk, and Ayşe İspir. "Equilibrium distribution coefficients during osmotic dehydration of apricot." Food and Bioproducts Processing 86, no. 4 (December 2008): 254–67. http://dx.doi.org/10.1016/j.fbp.2008.03.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Frosch, Mia, Merete Bilde, and Ole F. Nielsen. "Correction to “From Water Clustering to Osmotic Coefficients”." Journal of Physical Chemistry A 115, no. 17 (May 5, 2011): 4563. http://dx.doi.org/10.1021/jp202148v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zielinski, Michal W., Locksley E. McGann, John A. Nychka, and Janet A. W. Elliott. "Measurement of grouped intracellular solute osmotic virial coefficients." Cryobiology 97 (December 2020): 198–216. http://dx.doi.org/10.1016/j.cryobiol.2019.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Castellanos, Miguel A., Mercedes Caceres, and Javier Nunez. "Osmotic and activity coefficients of some cobaltammine salts." Journal of Chemical & Engineering Data 30, no. 3 (July 1985): 344–49. http://dx.doi.org/10.1021/je00041a033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mayor, Luis, Ramón Moreira, Francisco Chenlo, and Alberto M. Sereno. "Effective Diffusion Coefficients during Osmotic Dehydration of Vegetables with Different Initial Porosity." Defect and Diffusion Forum 258-260 (October 2006): 575–85. http://dx.doi.org/10.4028/www.scientific.net/ddf.258-260.575.

Повний текст джерела
Анотація:
Chesnut and pumpkin fruits were dehydrated with osmotic solutions of sucrose and NaCl at 25°C. These food materials have different structure, composition and porosity. Water loss and solids gain kinetics were experimentally determined and modeled using a diffusional model. In spite of the several mass transfer mechanisms taking place along with diffusion during osmotic dehydration, the modeling was satisfactory and involved effective coefficients of diffusion useful to quantify the different mass transfer fluxes. Water and sucrose transfer rates during osmotic dehydration with sucrose solutions are independent on the initial food material characteristics; however they seem to be related with the permeability of these components to a sucrose layer formed in the surface of the samples. In the case of osmotic dehydration with sodium chloride solutions, the coefficients of diffusion show a dependence on food material characteristic and higher values of these coefficients for pumpkin (more porous material) were found.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Horkay, Ferenc, and Jack F. Douglas. "Evidence of Many-Body Interactions in the Virial Coefficients of Polyelectrolyte Gels." Gels 8, no. 2 (February 4, 2022): 96. http://dx.doi.org/10.3390/gels8020096.

Повний текст джерела
Анотація:
Simulation studies of aqueous polymer solutions, and heuristic arguments by De Gennes for aqueous polyethylene oxide polymer solutions, have suggested that many-body interactions can give rise to the ‘anomalous’ situation in which the second osmotic virial coefficient is positive, while the third virial coefficient is negative. This phenomenon was later confirmed in analytic calculations of the phase behavior and the osmotic pressure of complex fluids exhibiting cooperative self-assembly into extended dynamic polymeric structures by Dudowicz et al. In the present study, we experimentally confirm the occurrence of this osmotic virial sign inversion phenomenon for several highly charged model polyelectrolyte gels (poly(acrylic acid), poly(styrene sulfonate), DNA, hyaluronic acid), where the virial coefficients are deduced from osmotic pressure measurements. Our observations qualitatively accord with experimental and simulation studies indicating that polyelectrolyte materials exhibit supramolecular assembly in solution, another symptomatic property of fluids exhibiting many-body interactions. We also find that the inversion in the variation of the second (A2) and third (A2) virial coefficients upon approach to phase separation does not occur in uncharged poly(vinyl acetate) gels. Finally, we briefly discuss the estimation of the osmotic compressibility of swollen polyelectrolyte gels from neutron scattering measurements as an alternative to direct, time-consuming and meticulous osmotic pressure measurements. We conclude by summarizing some general trends and suggesting future research directions of natural and synthetic polyelectrolyte hydrogels.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yu, Cao, Shun Yao, Xianlong Wang, Tian Yao, and Hang Song. "Prediction of osmotic coefficients for ionic liquids in various solvents with artificial neural network." Journal of the Serbian Chemical Society 82, no. 4 (2017): 399–409. http://dx.doi.org/10.2298/jsc160725013d.

Повний текст джерела
Анотація:
The relationship between the structural descriptions and osmotic coefficients of binary mixtures containing sixteen different ionic liquids and seven kinds of solvents has been investigated by back propagation artificial neural network (BP ANN). The influence of temperature on the osmotic coefficients was considered and the concentrations of ionic liquids were close to 1 mol kg-1, except in acetonitrile. Multi linear regression (MLR) was used to choose the variables for the artificial neural network (ANN) model. A three layer BP ANN with seven variables containing structural descriptions of the ionic liquids and the character of the solvent as input variables was developed. Compared with experimental data, the osmotic coefficients calculated using the ANN model had a high squared correlation coefficient (R2) and a low root mean squared error (RMSE).
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Neal, B. L., D. Asthagiri, and A. M. Lenhoff. "Molecular Origins of Osmotic Second Virial Coefficients of Proteins." Biophysical Journal 75, no. 5 (November 1998): 2469–77. http://dx.doi.org/10.1016/s0006-3495(98)77691-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ho, Patience C., T. M. Bender, and M. A. Kahlow. "Osmotic coefficients of low-equivalent-weight organic salts. 2." Journal of Chemical & Engineering Data 30, no. 3 (July 1985): 292–95. http://dx.doi.org/10.1021/je00041a017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Scibona, Giancarlo, Nunzia Radatti, Claudio Botrê, Francesco Botrê, and Giorgio Gavelli. "Electrolyte and Water Osmotic Flow Coefficients in Nafion Membranes." Berichte der Bunsengesellschaft für physikalische Chemie 93, no. 7 (July 1989): 766–70. http://dx.doi.org/10.1002/bbpc.19890930706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kakehashi, R., H. Yamazoe, and H. Maeda. "Osmotic coefficients of vinylic polyelectrolyte solutions without added salt." Colloid & Polymer Science 276, no. 1 (January 23, 1998): 28–33. http://dx.doi.org/10.1007/s003960050204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Tomasula, Peggy, Gregory J. Czerwienski, and Dimitrios Tassios. "Vapor pressures and osmotic coefficients: electrolyte solutions of methanol." Fluid Phase Equilibria 38, no. 1-2 (January 1987): 129–53. http://dx.doi.org/10.1016/0378-3812(87)90008-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Tsurko, Elena N., Roland Neueder, Rainer Müller, and Werner Kunz. "Osmotic Coefficients and Activity Coefficients in Aqueous Aminoethanoic Acid–NaCl Mixtures at 298.15 K." Journal of Chemical & Engineering Data 59, no. 9 (August 19, 2014): 2741–49. http://dx.doi.org/10.1021/je500271z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pathak, Jai, Sean Nugent, Michael Bender, Christopher Roberts, Robin Curtis, and Jack Douglas. "Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies." Polymers 13, no. 4 (February 17, 2021): 601. http://dx.doi.org/10.3390/polym13040601.

Повний текст джерела
Анотація:
The Huggins coefficient kH is a well-known metric for quantifying the increase in solution viscosity arising from intermolecular interactions in relatively dilute macromolecular solutions, and there has been much interest in this solution property in connection with developing improved antibody therapeutics. While numerous kH measurements have been reported for select monoclonal antibodies (mAbs) solutions, there has been limited study of kH in terms of the fundamental molecular interactions that determine this property. In this paper, we compare measurements of the osmotic second virial coefficient B22, a common metric of intermolecular and interparticle interaction strength, to measurements of kH for model antibody solutions. This comparison is motivated by the seminal work of Russel for hard sphere particles having a short-range “sticky” interparticle interaction, and we also compare our data with known results for uncharged flexible polymers having variable excluded volume interactions because proteins are polypeptide chains. Our observations indicate that neither the adhesive hard sphere model, a common colloidal model of globular proteins, nor the familiar uncharged flexible polymer model, an excellent model of intrinsically disordered proteins, describes the dependence of kH of these antibodies on B22. Clearly, an improved understanding of protein and ion solvation by water as well as dipole–dipole and charge–dipole effects is required to understand the significance of kH from the standpoint of fundamental protein–protein interactions. Despite shortcomings in our theoretical understanding of kH for antibody solutions, this quantity provides a useful practical measure of the strength of interprotein interactions at elevated protein concentrations that is of direct significance for the development of antibody formulations that minimize the solution viscosity.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sergievskii, V. V., and A. M. Rudakov. "Dependence of the osmotic coefficients and average ionic activity coefficients on hydrophobic hydration in solutions." Russian Journal of Physical Chemistry A 90, no. 8 (July 21, 2016): 1567–73. http://dx.doi.org/10.1134/s003602441607027x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wu, Dingquan, Songsheng Qu, and Zhengliang Xu. "Isopiestic activity coefficients and osmotic coefficients of sodium molybdate and sodium tungstate in aqueous solution." Journal of Chemical Thermodynamics 22, no. 1 (January 1990): 35–39. http://dx.doi.org/10.1016/0021-9614(90)90028-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kim, K. S., I. S. Davis, P. A. Macpherson, T. J. Pedley, and A. E. Hill. "Osmosis in small pores: a molecular dynamics study of the mechanism of solvent transport." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, no. 2053 (January 8, 2005): 273–96. http://dx.doi.org/10.1098/rspa.2004.1374.

Повний текст джерела
Анотація:
Osmosis through semi–permeable pores is a complex process by which solvent is driven by its free energy gradient towards a solute–rich reservoir. We have studied osmotic flow across a semi–permeable cylindrical pore using hard–sphere molecular dynamics which simulates osmosis in the absence of attractive forces between solute and solvent. In addition, we recorded the rates of pressure–driven solvent flow and the diffusive flow of labelled solvent under concentration gradients. It is apparent that there are differences, which are radius dependent, between viscous and diffusive solvent permeabilities in small pores. The osmotic flow rate is decreased by allowing solute entry into part of the pore, an effect which is not due to solute obstruction. The flow rate is dependent on the structure of the pore, which for asymmetric pores leads, surprisingly, to flow asymmetry or osmotic rectification. In the absence of any possible viscous rectification at these very low flow rates the effect correlates with changes between diffusive and pressure flows created by the presence of solute, an effect which has been predicted from thermodynamic arguments. The geometry of a semi–permeable pore in relation to the solute size is therefore required to predict the osmotic flow rate, a departure from the classical picture. Finally, by extracting transport parameters from simulations with pure solvent, we examine the departure of observed flow rate from that predicted by continuum mechanics, obtaining drag coefficients which we compare with those derived from hydrodynamics alone.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ramallo, L. A., C. Schvezov, and R. H. Mascheroni. "Mass Transfer During Osmotic Dehydration of Pineapple." Food Science and Technology International 10, no. 5 (October 2004): 323–32. http://dx.doi.org/10.1177/1082013204047904.

Повний текст джерела
Анотація:
The diffusion coefficients of water and solutes are important parameters in the analysis, design and optimisation of an osmotic dehydration process. This work estimated by Fick’s Law the diffusion coefficients of water and sucrose during the osmotic dehydration of slices of pineapple fruit in sucrose solution at different temperatures. In addition, it analysed the effect of the change in thickness (shrinkage) during the process, and the use of higher order terms in the analytical solution. The model results were in good agreement with experimental data of water loss and solid gain. The best fit was found when the shrinkage was considered in a simple model based on the solution of Fick’s Law. The equilibrium water content ranged between 34 and 36% for a 60% w/w sucrose solution and was practically independent of temperature. Equilibrium sugar content increased from 45 to 54% as the temperature rose from 30 to 50°C. Thickness variation was found to be independent of temperature and was only dependent on water content.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Duignan, Timothy T., and X. S. Zhao. "Prediction of the Osmotic/Activity Coefficients of Alkali Hydroxide Electrolytes." Industrial & Engineering Chemistry Research 60, no. 41 (October 6, 2021): 14948–54. http://dx.doi.org/10.1021/acs.iecr.1c02950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Lyubartsev, Alexander P., and Aatto Laaksonen. "Osmotic and activity coefficients from effective potentials for hydrated ions." Physical Review E 55, no. 5 (May 1, 1997): 5689–96. http://dx.doi.org/10.1103/physreve.55.5689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

IPPOHSHI, Shigetoshi, Hideaki IMURA, Koji KONYA, and Nobutaka AOYAMA. "Filtration Coefficients and Physical Properties of Fluids for Osmotic Action." Transactions of the Japan Society of Mechanical Engineers Series B 64, no. 620 (1998): 1179–86. http://dx.doi.org/10.1299/kikaib.64.1179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Telis, V. R. N., R. C. B. D. L. Murari, and F. Yamashita. "Diffusion coefficients during osmotic dehydration of tomatoes in ternary solutions." Journal of Food Engineering 61, no. 2 (February 2004): 253–59. http://dx.doi.org/10.1016/s0260-8774(03)00097-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Attwood, D., N. A. Dickinson, V. Mosquera, and V. Perez Villar. "Osmotic and activity coefficients of amphiphilic drugs in aqueous solution." Journal of Physical Chemistry 91, no. 15 (July 1987): 4203–6. http://dx.doi.org/10.1021/j100299a050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Striolo, Alberto, and John M. Prausnitz. "Osmotic second virial cross coefficients for star and linear polystyrenes." Journal of Chemical Physics 113, no. 7 (August 15, 2000): 2927–31. http://dx.doi.org/10.1063/1.1305888.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sagert, Norman H., Kiran Bangu, and Danny W. P. Lau. "Osmotic coefficients of triorganophosphorus compounds in n-octane and benzene." Journal of Chemical & Engineering Data 32, no. 4 (October 1987): 460–61. http://dx.doi.org/10.1021/je00050a022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ippohshi, Shigetoshi, Hideaki Imura, Koji Konya, and Nobutaka Aoyama. "Filtration coefficients and physical properties of fluids for osmotic action." Heat Transfer?Asian Research 29, no. 1 (January 2000): 72–90. http://dx.doi.org/10.1002/(sici)1523-1496(200001)29:1<72::aid-htj7>3.0.co;2-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Jang, Larry K., Ernesto J. Quintero, Grisel Gordon, Markus Röhricht, and Gill G. Geesey. "The osmotic coefficients of the sodium form of some biopolymers." Biopolymers 28, no. 8 (August 1989): 1485–89. http://dx.doi.org/10.1002/bip.360280812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Zhou, Jun, Qi-Yuan Chen, Yong Zhou, and Zhou-Lan Yin. "A new isopiestic apparatus for the determination of osmotic coefficients." Journal of Chemical Thermodynamics 35, no. 12 (December 2003): 1939–63. http://dx.doi.org/10.1016/j.jct.2003.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gonçalvès, J., and J. Trémosa. "Estimating thermo-osmotic coefficients in clay-rocks: I. Theoretical insights." Journal of Colloid and Interface Science 342, no. 1 (February 2010): 166–74. http://dx.doi.org/10.1016/j.jcis.2009.09.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Apelblat, Alexander. "Activity and osmotic coefficients in electrolyte solutions at elevated temperatures." AIChE Journal 39, no. 5 (May 1993): 918–23. http://dx.doi.org/10.1002/aic.690390523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Miladinović, Jelena, Rozalija Ninković, Milica Todorović, and Joseph A. Rard. "Isopiestic Investigation of the Osmotic and Activity Coefficients of {yMgCl2+(1−y)MgSO4}(aq) and the Osmotic Coefficients of Na2SO4⋅MgSO4(aq) at 298.15 K." Journal of Solution Chemistry 37, no. 3 (January 18, 2008): 307–29. http://dx.doi.org/10.1007/s10953-007-9238-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zavitsas, Andreas A. "Properties of aqueous solutions. A treatise against osmotic and activity coefficients." Journal of Molecular Liquids 348 (February 2022): 118410. http://dx.doi.org/10.1016/j.molliq.2021.118410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Baes, C. F., and Bruce A. Moyer. "ESTIMATING ACTIVITY AND OSMOTIC COEFFICIENTS IN UO2(NO3)2- HNO3- NaNO3MIXTURES." Solvent Extraction and Ion Exchange 6, no. 4 (January 1988): 675–97. http://dx.doi.org/10.1080/07366298808917960.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sergievskii, V. V., A. M. Rudakov, E. A. Ananyeva, and M. A. Glagoleva. "Nonlinear Contribution of Hydrophobic Hydration in Osmotic Coefficients of Electrolyte Solutions." Physics Procedia 72 (2015): 73–78. http://dx.doi.org/10.1016/j.phpro.2015.09.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Mendoza, R., and M. E. Schmalko. "DIFFUSION COEFFICIENTS OF WATER AND SUCROSE IN OSMOTIC DEHYDRATION OF PAPAYA." International Journal of Food Properties 5, no. 3 (January 11, 2002): 537–46. http://dx.doi.org/10.1081/jfp-120015490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Calvar, N., Á. Domínguez, and E. A. Macedo. "Osmotic coefficients of alcoholic mixtures containing BMpyrDCA: Experimental determination and correlation." Journal of Chemical Thermodynamics 72 (May 2014): 9–15. http://dx.doi.org/10.1016/j.jct.2013.12.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Winzor, Donald J. "Measurement of osmotic second virial coefficients by zonal size-exclusion chromatography." Analytical Biochemistry 504 (July 2016): 59–63. http://dx.doi.org/10.1016/j.ab.2016.04.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Arsuaga, Jesus M., Alejandro Martin, Mercedes Caceres, and Javier Nunez. "Osmotic coefficients of some cobalt-amine-type salts from cryoscopic measurements." Journal of Chemical & Engineering Data 35, no. 2 (April 1990): 137–40. http://dx.doi.org/10.1021/je00060a012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Passamonti, Francisco J., María R. Gennero de Chialvo, and Abel C. Chialvo. "Alternative formalism for the evaluation of the activity coefficients on ternary electrolyte solutions from osmotic coefficient data." Fluid Phase Equilibria 547 (November 2021): 113169. http://dx.doi.org/10.1016/j.fluid.2021.113169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Venkateswarlu, Ch, and J. Ananthaswamy. "Thermodynamics of electrolyte solutions: activity coefficients of NaCl in the NaCl–NiCl2–H2O system at 25, 35, and 45 °C." Canadian Journal of Chemistry 68, no. 2 (February 1, 1990): 294–97. http://dx.doi.org/10.1139/v90-040.

Повний текст джерела
Анотація:
The activity coefficients of NaCl in the NaCl–NiCl2–H2O system were estimated at 25, 35, and 45 °C and total ionic strengths of 0.5, 1.0, 2.0, and 3.0 m by an EMF method using a Na-ion selective electrode and a silver–silver chloride reference electrode. The Harned coefficients were calculated at all the temperatures studied. At 25 °C the data were analysed using the Pitzer formalism. The osmotic coefficients and the excess free energies of mixing were also calculated at 25 °C. Keywords: activity coefficients, sodium chloride, nickel chloride, Pitzer equations, thermodynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rard, Joseph A., and Donald G. Miller. "Mutual diffusion coefficients of aqueous MnCl2 and CdCl2, and osmotic coefficients of aqueous CdCl2 at 25°C." Journal of Solution Chemistry 14, no. 4 (April 1985): 271–99. http://dx.doi.org/10.1007/bf00644459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії