Книги з теми "Orthogonal time frequency space"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Orthogonal time frequency space.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 книг для дослідження на тему "Orthogonal time frequency space".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Liang, Guan Yong, and Tjhung Tjeng Thiang, eds. Quasi-orthogonal space-time block code. London: Distributed by World Scientific, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Le Tran, Chung, Tadeusz A. Wysocki, Alfred Mertins, and Jennifer Seberry. Complex Orthogonal Space-Time Processing in Wireless Communications. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29544-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tran, Le Chung. Complex orthogonal space-time processing in wireless communications. New York: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Combes, Jean-Michel. Wavelets: Time-Frequency Methods and Phase Space. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Deng, Wei. Time Multiplexed Beam-Forming with Space-Frequency Transformation. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deng, Wei, Reza Mahmoudi, and Arthur H. M. van Roermund. Time Multiplexed Beam-Forming with Space-Frequency Transformation. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5046-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goldblatt, Robert. Orthogonality and spacetime geometry. New York: Springer-Verlag, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Time-frequency analysis and synthesis of linear signal spaces: Time-frequency filters, signal detection and estimation, and range-Doppler estimation. Boston: Kluwer Academic Publishers, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Swain, A. K. Weighted complex orthogonal estimator for identifying linear and nonlinear continuous time models from generalised frequency response functions. Sheffield: University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

K, Brodzik Andrzej, and Tolimieri Richard 1940-, eds. Ideal sequence design in time-frequency space: Applications to radar, sonar, and communication systems. Boston, Mass: Birkhäuser, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sydnor, Richard L. 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting: Proceedings of a meeting sponsored by the U.S. Naval Observatory, the NASA Goddard Space Flight Center, the Space and Naval Warfare Systems Command...[et al.] and held at the Sheraton Premiere Hotel, Vienna, Virginia, December 4-6, 1990. Edited by Goddard Space Flight Center, U.S. Space and Naval Warfare Systems Command, United States Naval Observatory, and Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting (22nd : 1990 : Vienna, Virginia). Greenbelt, Md: Goddard Space Flight Center, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

European Frequency and Time Forum (6th 1992 Noordwijk, Netherlands). Proceedings of the 6th European Frequency and Time Forum: Noordwijk, the Netherlands, 17-19 March 1992. Paris, France: European Space Agency, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

1941-, Combes J. M., Grossmann A. 1930-, and Tchamitchian Philippe, eds. Wavelets: Time-frequency methods and phase space : proceedings of the international conference, Marseille, France, December 14-18, 1987. Berlin: Springer-Verlag, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

1941-, Combes J. M., Grossmann A. 1930-, and Tchamitchian Philippe, eds. Wavelets: Time-frequency methods and phase space : proceedings of the international conference, Marseille, France, December 14-18, 1987. 2nd ed. Berlin: Springer-Verlag, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sydnor, Richard L. 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting: Proceedings of a meeting sponsored by the U.S. Naval Observatory, the NASA Goddard Space Flight Center, the Jet Propulsion Laboratory ...[et al.] and held at the Ritz-Carlton Huntington Hotel, Pasadena, California, December 3-5, 1991. Edited by Goddard Space Flight Center, Jet Propulsion Laboratory (U.S.), United States Naval Observatory, and Annual Precise Time and time Interval (PTTI) Applications and Planning Meeting (23rd : 1991 : Pasadena, Calif.). Greenbelt, Md: Goddard Space Flight Center, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ninul, Anatolij Sergeevič. Tensor Trigonometry. Moscow, Russia: Fizmatlit Publisher, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ninul, Anatolij Sergeevič. Tenzornaja trigonometrija: Teorija i prilozenija / Theory and Applications /. Moscow, Russia: Mir Publisher, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Prasad, Ramjee, and Suvra Sekhar Das. Orthogonal Time Frequency Space Modulation: A Waveform For 6G. River Publishers, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Prasad, Ramjee, and Suvra Sekhar Das. Orthogonal Time Frequency Space Modulation: OTFS a Waveform For 6G. River Publishers, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Prasad, Ramjee, and Suvra Sekhar Das. Orthogonal Time Frequency Space Modulation: OTFS a Waveform For 6G. River Publishers, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Orthogonal Time Frequency Space Modulation: OTFS a Waveform For 6G. River Publishers, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Prasad, Ramjee, and Suvra Sekhar Das. Orthogonal Time Frequency Space Modulation: OTFS a Waveform For 6G. River Publishers, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ganesan, Girish. Designing Space-Time Codes Using Orthogonal Designs. Uppsala Universitet, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Seberry, Jennifer, Alfred Mertins, Le Chung Tran, and Tadeusz A. Wysocki. Complex Orthogonal Space-Time Processing in Wireless Communications. Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mertins, Alfred, Le Chung Tran, Tadeusz A. Wysocki, and Jennifer Seberry. Complex Orthogonal Space-Time Processing in Wireless Communications. Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

The Clockwork Rocket Orthogonal. Orion Publishing Co, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ideal Sequence Design in Time-Frequency Space. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4738-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

The Arrows of Time: Orthogonal Book Three. Gollancz, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Egan, Greg. The Clockwork Rocket: Orthogonal Book One. Night Shade, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Roermund, Arthur H. M. van, Wei Deng, and Reza Mahmoudi. Time Multiplexed Beam-Forming with Space-Frequency Transformation. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Arthur H. M. van Roermund, Wei Deng, Reza Mahmoudi, and Arthur H. M. Roermund. Time Multiplexed Beam-Forming with Space-Frequency Transformation. Springer New York, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Beres, Elzbieta. Blind channel estimation for orthogonal space-time block codes in MISO systems. 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kajita, Masatoshi. Measuring Time: Frequency measurements and related developments in physics. Institute of Physics Publishing, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Kajita, Masatoshi. Measuring Time: Frequency Measurements and Related Developments In Physics. Iop Publishing Ltd, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Goldblatt, Robert. Orthogonality and Spacetime Geometry. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

(Editor), Jean-Michel Combes, Alexander Grossmann (Editor), and Philippe Tchamitchian (Editor), eds. Wavelets: Time-Frequency Methods and Phase Space (inverse problems and theoretical imaging). 2nd ed. Springer, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Brodzik, Andrzej K., Myoung An, and Richard Tolimieri. Ideal Sequence Design in Time-Frequency Space: Applications to Radar, Sonar, and Communication Systems. Springer London, Limited, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tchamitchian, Philippe, Alexander Grossmann, and Jean-Michel Combes. Wavelets: Time-Frequency Methods and Phase Space Proceedings of the International Conference, Marseille, France, December 14-18 1987. Springer London, Limited, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

M, Combes J., Grossmann A, and Tchamitchian Philippe, eds. Wavelets: Time-frequency methods and phase space : proceedings of the international conference, Marseille, France, December 14-18, 1987. 2nd ed. Berlin: Springer-Verlag, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

al, et, and J. Combes. Wavelets: Time-Frequency Methods and Phase Space. Proceedings of the International Conference, Marseille, France, December 14-18, 1987. Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Advanced Signal Processing on Event-Related Potentials: Filtering Erps in Time, Frequency and Space Domains Sequentially and Simultaneously. World Scientific Publishing Co Pte Ltd, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Combes, J. M. Wavelets: Time-Frequency Methods and Phase Space : Proceedings of the International Conference, Marseille, France, December 14-18, 1987 (Inverse Pro). Springer-Verlag, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Combes, J. M. Wavelets: Time-Frequency Methods and Phase Space. Proceedings of the International Conference, Marseille, France, December 14-18 (Monographs on Endocrinology). Springer, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Akemann, Gernot. Random matrix theory and quantum chromodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0005.

Повний текст джерела
Анотація:
This chapter was originally presented to a mixed audience of physicists and mathematicians with some basic working knowledge of random matrix theory. The first part is devoted to the solution of the chiral Gaussian unitary ensemble in the presence of characteristic polynomials, using orthogonal polynomial techniques. This includes all eigenvalue density correlation functions, smallest eigenvalue distributions, and their microscopic limit at the origin. These quantities are relevant for the description of the Dirac operator spectrum in quantum chromodynamics with three colors in four Euclidean space-time dimensions. In the second part these two theories are related based on symmetries, and the random matrix approximation is explained. In the last part recent developments are covered, including the effect of finite chemical potential and finite space-time lattice spacing, and their corresponding orthogonal polynomials. This chapter also provides some open random matrix problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Johnston, Richard. Survey Methodology. Edited by Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier. Oxford University Press, 2009. http://dx.doi.org/10.1093/oxfordhb/9780199286546.003.0016.

Повний текст джерела
Анотація:
This article addresses three dimensions for data collection: mode, space, and time. It considers the problems of adequately representing persons by ensuring high response rates and measuring opinions validly and reliably through the design of high-quality questions. The advent of the internet and the World Wide Web is dramatically expanding the repertoire for survey research. The evidence suggests that the forces driving response rate down are largely orthogonal to substantive political choices. Surveys overrepresent political interest and its correlates and so may replicate class and other barriers to political participation.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Santillán LIma, Juan Carlos, Nestor Augusto Estrada Brito, Santiago Israel Logroño Naranjo, and José Hernán Negrete Costales. EVALUACIÓN DEL RENDIMIENTO DE ACCESO MÚLTIPLE NO-ORTOGONAL (NOMA) EN SISTEMAS LTE (LONG TERM EVOLUTION). Edited by Fernando TIverio Molina Granja. I2D Editorial Académica, 2022. http://dx.doi.org/10.55204/i2d.4.

Повний текст джерела
Анотація:
Debido a la creciente demanda de datos a través de las redes móviles, se están considerando nuevas técnicas que incrementen la eficiencia espectral. El acceso múltiple no-ortogonal (Non-Orthogonal Multiple Access, NOMA) es una de las técnicas que están siendo evaluadas dentro del 3GPP (Third Generation Partnership Project). NOMA, también conocida como LDM (Layered-Division-Multiplexing), proporciona servicios a múltiples usuarios mediante multiplexación en potencia. Debido la utilización del 100% del tiempo y ancho de banda del sistema mediante el uso de esta técnica, se espera conseguir una mayor eficiencia espectral que las tecnologías de acceso múltiple ortogonales convencionales TDM (Time Division Multiplexing) o FDM (Frequency Division Multiplexing). Esta ganancia ya ha sido demostrada en el nuevo estándar de televisión digital terrestre ATSC (Advanced Television Systems Committee), ATSC 3.0. En este trabajo se evaluará la utilización de NOMA en sistemas LTE (Long Term Evolution) mediante simulaciones de capa física, y se compararán las ganancias obtenidas con las publicadas en la bibliografía de ATSC 3.0. Así también se hace una revisión de las aplicaciones de la telefonía celular, principalmente de LTE en la seguridad industrial.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Mann, Peter. Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0027.

Повний текст джерела
Анотація:
In this chapter, Noether’s theorem as a classical field theory is presented and the properties of variations are again discussed for fields (i.e. field variations, space variations, time variations, spacetime variations), resulting in the Noether condition. Quasisymmetries and spontaneous symmetry breaking are discussed, as well as local symmetry and global symmetry. Following these definitions, Noether’s first theorem and Noether’s second theorem are developed. The classical Schrödinger field is investigated and the key equations of classical mechanics are summarised into a single Lagrangian. Symmetry properties of the field action and equations of motion are then compared. The chapter discusses the energy–momentum tensor, the Klein–Utiyama theorem, the Liouville equation and the Hamilton–Jacobi equation. It also discusses material science, special orthogonal groups and complex scalar fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Shapiro, Kimron, and Simon Hanslmayr. The Role of Brain Oscillations in the Temporal Limits of Attention. Edited by Anna C. (Kia) Nobre and Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.037.

Повний текст джерела
Анотація:
Attention is the ubiquitous construct referring to the ability of the brain to focus resources on a subset of perceptual input which it is trying to process for a response. Attention has for a long time been studied with reference to its distribution across space where, for example, visual input from an attentionally monitored location is given preference over non-monitored (i.e. attended) locations. More recently, attention has been studied for its ability to select targets from among rapidly, sequentially presented non-targets at a fixed location, e.g. in visual space. The present chapter explores this latter function of attention for its relevance to behaviour. In so doing, it highlights what is becoming one of the most popular approaches to studying communication across the brain—oscillations—at various frequency ranges. In particular the authors discuss the alpha frequency band (8–12 Hz), where recent evidence points to an important role in the switching between processing external vs. internal events.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Isett, Philip. Structure of the Book. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691174822.003.0002.

Повний текст джерела
Анотація:
This chapter provides an overview of the book's structure. Section 3 deals with the error terms which need to be controlled, whereas Part III explains some notation of the book and presents a basic construction of the correction. The goal is to clarify how the scheme can be used to construct Hölder continuous weak solutions—continuous in space and time—to the incompressible Euler equations that fail to conserve energy. Part IV shows how to iterate the construction of Part III to obtain continuous solutions to the Euler equations. It then discusses the concept of frequency energy levels, along with the Main Lemma. It also highlights some additional difficulties which arise as one approaches the optimal regularity and illustrates how these difficulties can be overcome. Parts V–VII verify all the estimates needed for the proof of the Main Lemma.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tibaldi, Stefano, and Franco Molteni. Atmospheric Blocking in Observation and Models. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.611.

Повний текст джерела
Анотація:
The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas.Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere.Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics.When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors.Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії