Добірка наукової літератури з теми "Organotypic spinal cord slices"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organotypic spinal cord slices".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Organotypic spinal cord slices"
Biancotti, Juan C., Kendal A. Walker, Guihua Jiang, Julie Di Bernardo, Lonnie D. Shea, and Shaun M. Kunisaki. "Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair." Journal of Tissue Engineering 11 (January 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943833.
Повний текст джерелаSypecka, Joanna, Sylwia Koniusz, Maria Kawalec, and Anna Sarnowska. "The Organotypic Longitudinal Spinal Cord Slice Culture for Stem Cell Study." Stem Cells International 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/471216.
Повний текст джерелаHaque, Azizul, Donald C. Shields, Arabinda Das, Abhay Varma, Russel J. Reiter, and Narendra L. Banik. "Melatonin receptor-mediated attenuation of excitotoxic cell death in cultured spinal cord slices." Melatonin Research 4, no. 2 (April 30, 2021): 336–47. http://dx.doi.org/10.32794/mr11250098.
Повний текст джерелаShahar, A., S. Lustig, Y. Akov, Y. David, P. Schneider, and R. Levin. "Different pathogenicity of encephalitic togaviruses in organotypic cultures of spinal cord slices." Journal of Neuroscience Research 25, no. 3 (March 1990): 345–52. http://dx.doi.org/10.1002/jnr.490250311.
Повний текст джерелаUcar, Buket, Sedef Yusufogullari, and Christian Humpel. "Collagen hydrogels loaded with fibroblast growth factor-2 as a bridge to repair brain vessels in organotypic brain slices." Experimental Brain Research 238, no. 11 (August 29, 2020): 2521–29. http://dx.doi.org/10.1007/s00221-020-05907-7.
Повний текст джерелаLiu, Jing-Jie, Xiao-Yan Ding, Li Xiang, Feng Zhao, and Sheng-Li Huang. "A novel method for oxygen glucose deprivation model in organotypic spinal cord slices." Brain Research Bulletin 135 (October 2017): 163–69. http://dx.doi.org/10.1016/j.brainresbull.2017.10.010.
Повний текст джерелаRybachuk, O. A., Yu A. Lazarenko, V. V. Krotov, and N. V. Voitenko. "Structural/Functional Characteristics of Organotypic Spinal Cord Slices under Conditions of Long-Lasting Culturing." Neurophysiology 49, no. 2 (April 2017): 162–64. http://dx.doi.org/10.1007/s11062-017-9647-5.
Повний текст джерелаPhelps, P. E., R. P. Barber, and J. E. Vaughn. "Nonradial migration of interneurons can be experimentally altered in spinal cord slice cultures." Development 122, no. 7 (July 1, 1996): 2013–22. http://dx.doi.org/10.1242/dev.122.7.2013.
Повний текст джерелаRavikumar, Madhumitha, Seema Jain, Robert H. Miller, Jeffrey R. Capadona, and Stephen M. Selkirk. "An organotypic spinal cord slice culture model to quantify neurodegeneration." Journal of Neuroscience Methods 211, no. 2 (November 2012): 280–88. http://dx.doi.org/10.1016/j.jneumeth.2012.09.004.
Повний текст джерелаPatar, Azim, Peter Dockery, Siobhan McMahon, and Linda Howard. "Ex Vivo Rat Transected Spinal Cord Slices as a Model to Assess Lentiviral Vector Delivery of Neurotrophin-3 and Short Hairpin RNA against NG2." Biology 9, no. 3 (March 15, 2020): 54. http://dx.doi.org/10.3390/biology9030054.
Повний текст джерелаДисертації з теми "Organotypic spinal cord slices"
Rioult-Pedotti, Marc Guy. "Optical multisite recording of neural activity patterns in organotypic spinal cord tissue cultures /." [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9393.
Повний текст джерелаCocchi, M. A. "THE MELATONIN PROTECTIVE ROLE IN AN ORGANOTYPIC MODEL OF SPINAL CORD INJURY SECONDARY DAMAGE." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/351674.
Повний текст джерелаAbdoun, Oussama. "Analyse spatiotemporelle de données MEA pour l'étude de la dynamique de l'activité de la moelle épinière et du tronc cérébral immatures chez la souris." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR15266/document.
Повний текст джерелаImmature neural networks generate a peculiar type of activity that persists even in the absence of electrical inputs and was termed for this reason “endogenous”or “spontaneous”. This activity is ubiquitous and was found involved in a wide range of developmental events. In vitro, it can be observed as calcium or electrical waves propagating over great distances, often invading the whole preparation,but its dynamics remain poorly described. In order to somewhat fill this gap,we used multielectrode arrays (MEAs) to characterise the spontaneous rhythmic activity in the mouse developing spinal cord, in both acute and cultured isolated hindbrain-spinal cord preparations.To extract relevant information from the massive amounts of data yielded by MEA recordings, adapted analysis tools are needed. Thus, we have developedmethods for the detection, classification and mapping of spatiotemporal patternsof activity in multichannel data. Our mapping approach is based on the thin plates pline interpolation and includes the possibility to combine maps of activity with anatomical or stained data for multimodal imaging.These methods allowed us to analyse in great detail the evolution of spontaneousactivity at early stages (E12.5–E15.5). In addition, we have localised theinitiation site of E14.5 activity in the medulla and shown that it matches a densemidline population of serotoninergic neurons, suggesting a new role for 5-HTpathways in the maturation of spinal networks. Finally, we have recorded andtracked spontaneous limb movements of E14.5 embryos and found that features of motility were consistent with patterns of spinal activity
Parisio, Carmen. "VEGF-A/VEGFRs system in neuropathies: a crossroad between pain and neuroprotection." Doctoral thesis, 2022. http://hdl.handle.net/2158/1259994.
Повний текст джерелаPettersson, Jennie. "Neuroprotective effects of hyaluronic acid hydrogel on organotypic spinal cord cultures." Thesis, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-205222.
Повний текст джерелаXie, Huiwen. "Differentiation of motoneuron electrical properties in organotypic culture of rat spinal cord." 1994. http://catalog.hathitrust.org/api/volumes/oclc/32440401.html.
Повний текст джерелаMorais, Hermes Manuel Medina. "Development of secretome-based therapy by motor neuron modulation of miRNA-124 in ALS mouse models." Master's thesis, 2020. http://hdl.handle.net/10362/111128.
Повний текст джерелаCasa da Misericórdia de Lisboa (SCML), project ref. ALSResearch Grant ELA-2015-002
Частини книг з теми "Organotypic spinal cord slices"
Deng, Ping, and Zao C. Xu. "Whole-Cell Patch-Clamp Recordings on Spinal Cord Slices." In Methods in Molecular Biology, 65–72. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-561-9_4.
Повний текст джерелаBiggs, James E., Van B. Lu, Helena J. Kim, Aaron Lai, Kathryn G. Todd, Klaus Ballanyi, William F. Colmers, and Peter A. Smith. "Defined Medium Organotypic Cultures of Spinal Cord Put ‘Pain in a Dish’." In Isolated Central Nervous System Circuits, 405–36. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-020-5_14.
Повний текст джерелаPehl, U., H. A. Schmid, and E. Simon. "Lamina-Specific Effects of Nitric Oxide on Temperature Sensitive Neurons in Rat Spinal Cord Slices." In Thermal Balance in Health and Disease, 45–51. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-7429-8_6.
Повний текст джерелаNishi, S., M. Yoshimura, and C. Polosa. "Effect of Noradrenaline on the Electrical Activities of Lateral Horn Cells in Cat Spinal Cord Slices." In Histochemistry and Cell Biology of Autonomic Neurons and Paraganglia, 345–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72749-8_60.
Повний текст джерелаMurase, K., H. Ikeda, S. Terao, and T. Asai. "Slow Intrinsic Optical Signals in Rat Spinal Cord Slices and Their Modulation by Low-Frequency Stimulation." In Slow Synaptic Responses and Modulation, 429–35. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-66973-9_59.
Повний текст джерелаAllerton, C. A., P. R. Boden, and R. G. Hill. "In Vitro Studies on Neurones of the Superficial Dorsal Horn in Slices of 9–16 Day Old Rat Spinal Cord." In Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, 395–98. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0825-6_38.
Повний текст джерелаShahar, A., S. Lustig, Y. Akov, Y. David, P. Schneider, and R. Levin. "Spinal Cord Slices with Attached Dorsal Root Ganglia: A Culture Model for the Study of Pathogenicity of Encephalitic Viruses." In Plasticity and Regeneration of the Nervous System, 111–19. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8047-4_12.
Повний текст джерелаCrain, Stanley M. "Neuropharmacological Analyses in Organotypic Cultures of Spinal Cord and Dorsal Root Ganglia." In Cell Culture, 75–86. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-185254-2.50010-3.
Повний текст джерела