Добірка наукової літератури з теми "Organogel particles"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organogel particles".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organogel particles"

1

Yang, Jianjian, Hua Yan, Hansong Zhang, and Xuemei Wang. "Oil organogel system for magnetorheological fluid." RSC Advances 6, no. 114 (2016): 113463–68. http://dx.doi.org/10.1039/c6ra24257j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Воронова (Voronova), Марина (Marina) Игоревна (Igorevna), Олег (Oleg) Валентинович (Valentinovich) Суров (Surov), Наталья (Natal'ya) Викторовна (Viktorovna) Рублева (Rubleva), Наталья (Natal'ya) Евгеньевна (Evgenievna) Кочкина (Kochkina), and Анатолий (Anatoliy) Георгиевич (Georgievich) Захаров (Zakharov). "DISPERSIBILITY OF NANOCRYSTALLINE CELLULOSE IN ORGANIC SOLVENTS." chemistry of plant raw material, no. 1 (March 6, 2019): 39–50. http://dx.doi.org/10.14258/jcprm.2019014240.

Повний текст джерела
Анотація:
Aqueous suspensions of nanocrystalline cellulose (NCC) were obtained by sulfuric acid hydrolysis using the standard procedure. Suspensions, films and airgel of NCC were characterized by various methods: the degree of polymerization was determined, elemental analysis was carried out, the degree of crystallinity and crystallite size were calculated on the basis of X-ray data, the morphology of NCC aerogels was studied using scanning electron microscopy. The particle size of the NCC was determined using a transmission electron microscope, a scanning atomic-force microscope and the method of dynamic light scattering. NFC hydrosols with different pH were used to prepare lyophilized NCC samples. From NCC hydrosols with pH 2.2, by gradual replacement of water with an organic solvent, NCC organogels with acetone, acetonitrile and ethanol were obtained. The process of dispersion of lyophilized NCC and NCC organogels (acetone, acetonitrile and ethanol) in water and in 11 organic solvents was investigated. The effect of the pH of the initial aqueous suspension of the NCC and the solvent forming the NCC organogel on the repeated dispersibility of the NCC is shown. The optimum pH value of the initial aqueous suspension of NCC was determined, which determines the maximum dispersibility of the lyophilized samples in each specific solvent. It was shown that dispersion of acetone, acetonitrile and ethanol organogels in most of the solvents studied occurs with the formation of particles less than 100 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tuncaboylu, Deniz C., and Oguz Okay. "Preparation and characterization of single-hole macroporous organogel particles of high toughness and superfast responsivity." European Polymer Journal 45, no. 7 (July 2009): 2033–42. http://dx.doi.org/10.1016/j.eurpolymj.2009.04.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, Yan, Lei Jin, Hong Wang, and Yajiang Yang. "Polymerized organogel particles formed and imprinted by chiral gelators and their selective adsorption for phenylalanine racemates." Soft Matter 7, no. 2 (2011): 348–50. http://dx.doi.org/10.1039/c0sm00460j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Qun, Yu Feng, Deqing Zhang, Guanxin Zhang, Qinghua Fan, Shuna Sun, and Daoben Zhu. "Light-Triggered Self-Assembly of a Spiropyran-Functionalized Dendron into Nano-/Micrometer-Sized Particles and Photoresponsive Organogel with Switchable Fluorescence." Advanced Functional Materials 20, no. 1 (January 8, 2010): 36–42. http://dx.doi.org/10.1002/adfm.200901358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sotirova, Yoana, Viliana Gugleva, Stanila Stoeva, Iliyan Kolev, Rositsa Nikolova, Maria Marudova, Krastena Nikolova, Yoana Kiselova-Kaneva, Minka Hristova, and Velichka Andonova. "Bigel Formulations of Nanoencapsulated St. John’s Wort Extract—An Approach for Enhanced Wound Healing." Gels 9, no. 5 (April 25, 2023): 360. http://dx.doi.org/10.3390/gels9050360.

Повний текст джерела
Анотація:
This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John’s wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl behenate (GB) as a solid lipid, almond oil (AO), or borage oil (BO) representing the liquid lipid, along with polyoxyethylene (20) sorbitan monooleate (PSMO) and sorbitan monooleate (SMO) as surfactants. The dispersions demonstrated anisometric nanoscale particles with acceptable size distribution and disrupted crystalline structure, providing entrapment capacity higher than 70%. The carrier exhibiting preferable characteristics (HP-NLC2) was gelled with Poloxamer 407 (PM407) to serve as the hydrophilic phase of a bigel, to which the combination of BO and sorbitan monostearate (SMS) organogel was added. The eight prepared bigels with different proportions (blank and nanodispersion-loaded) were characterized rheologically and texturally to investigate the impact of the hydrogel-to-oleogel ratio. The therapeutic potential of the superior formulation (HP-NLC-BG2) was evaluated in vivo on Wistar male rats through the tensile strength test on a primary-closed incised wound. Compared with a commercial herbal semisolid and a control group, the highest tear resistance (7.764 ± 0.13 N) was achieved by HP-NLC-BG2, proving its outstanding wound-healing effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Jin Woo, Sa-Won Lee, Jun Hak Lee, Sung Mo Park, Sung Jun Cho, Han-Joo Maeng, and Kwan Hyung Cho. "Supersaturated Gel Formulation (SGF) of Atorvastatin at a Maximum Dose of 80 mg with Enhanced Solubility, Dissolution, and Physical Stability." Gels 10, no. 12 (December 19, 2024): 837. https://doi.org/10.3390/gels10120837.

Повний текст джерела
Анотація:
The objective of this work was to develop a supersaturated gel formulation (SGF) loaded with the maximum atorvastatin calcium trihydrate (ATR) dose. The maximum dose strength of ATR needs to be reduced through improving solubility and dissolution rate to mitigate side effects due to the necessity of taking high doses. ATR has highly pH-dependent solubility at 37 °C, leading to poor solubility (<10 μg/mL) in stomach acid (pH 1.2). Among the various molecular weights of polyethylene glycols (PEGs) and surfactants, PEG 200 and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected as the solubilizer and precipitation inhibitor for ATR, respectively. PEG 200 demonstrated very high solubility for ATR (>60%, w/w), and the combined use of TPGS and PEG 200 formed an organogel state and suppressed ATR precipitation, showing 15-fold higher dispersion solubility in buffer solution at pH 1.2 compared to the formulation with PEG 200 alone. The optimal SGF composition (ATR/PEG 200/TPGS = 10/60/30, w/w) exhibited an over 95% dissolution rate within 2 h at pH 1.2, compared to less than 50% for the original commercial product. In a transmission electron microscope analysis, the SGF suppressed ATR precipitation and revealed smaller precipitated particles (<300 nm) compared to the control samples. In the XRD analysis, the SGF was physically stable for 100 days at room temperature without the recrystallization of ATR. In conclusion, the SGF suggested in this work would be an alternative formulation for the treatment of dyslipidemia with enhanced solubility, dissolution, and physical stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Machunsky, Stefanie, and Urs Alexander Peuker. "Liquid-Liquid Interfacial Transport of Nanoparticles." Physical Separation in Science and Engineering 2007 (January 8, 2007): 1–7. http://dx.doi.org/10.1155/2007/34832.

Повний текст джерела
Анотація:
The study presents the transfer of nanoparticles from the aqueous phase to the second nonmiscible nonaqueous liquid phase. The transfer is based on the sedimentation of the dispersed particles through a liquid-liquid interface. First, the colloidal aqueous dispersion is destabilised to flocculate the particles. The agglomeration is reversible and the flocs are large enough to sediment in a centrifugal field. The aqueous dispersion is laminated above the receiving organic liquid phase. When the particles start to penetrate into the liquid-liquid interface, the particle surface is covered with the stabilising surfactant. The sorption of the surfactant onto the surface of the primary particles leads to the disintegration of the flocs. This phase transfer process allows for a very low surfactant concentration within the receiving organic liquid, which is important for further application, that is, synthesis for polymer-nanocomposite materials. Furthermore, the phase transfer of the nanoparticles shows a high efficiency up to 100% yield. The particle size within the organosol corresponds to the primary particle size of the nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shan, Yahan, Shiwen Li, Rui Wang, Si Yi Zhu, Fei Wu, Yang Fu, and Linna Zhu. "Spontaneously hierarchical self-assembly of nanofibres into fluorescent spherical particles: a leap from organogels to macroscopic solid spheres." Soft Matter 15, no. 3 (2019): 470–76. http://dx.doi.org/10.1039/c8sm02106f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dourado, Douglas, Fabiana Pacheco Reis Batista, Biane Oliveira Philadelpho, Myla Lôbo de Souza, Mariana Barros de Cerqueira e Silva, Rone Aparecido de Grandis, Priscila Anjos Miranda, et al. "Resveratrol-Loaded Attalea funifera Oil Organogel Nanoparticles: A Potential Nanocarrier against A375 Human Melanoma Cells." International Journal of Molecular Sciences 24, no. 15 (July 28, 2023): 12112. http://dx.doi.org/10.3390/ijms241512112.

Повний текст джерела
Анотація:
This study aimed to evaluate Attalea funifera seed oil with or without resveratrol entrapped in organogel nanoparticles in vitro against A375 human melanoma tumor cells. Organogel nanoparticles with seed oil (SON) or with resveratrol entrapped in the seed oil (RSON) formed functional organogel nanoparticles that showed a particle size <100 nm, polydispersity index <0.3, negative zeta potential, and maintenance of electrical conductivity. The resveratrol entrapment efficiency in RSON was 99 ± 1%. The seed oil and SON showed no cytotoxicity against human non-tumor cells or tumor cells. Resveratrol at 50 μg/mL was cytotoxic for non-tumor cells, and was cytotoxic for tumor cells at 25 μg/mL. Resveratrol entrapped in RSON showed a decrease in cytotoxicity against non-tumor cells and cytotoxic against tumor cells at 50 μg/mL. Thus, SON is a potential new platform for the delivery of resveratrol with selective cytotoxic activity in the treatment of melanoma.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organogel particles"

1

Duret, Bérénice. "Mise au point de dispersiοns aqueuses de particules d’huiles gélifiées et applications à la prοtectiοn de la peau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH39.

Повний текст джерела
Анотація:
Cette thèse vise à développer des formules cosmétiques éco-responsables à faible nombre d’ingrédients, en lien avec le contexte actuel du « Clean-label » dans ce secteur. Nous nous sommes intéressés à des dispersions de particules d’huile gélifiée, nommées « dispersions de gélosomes », encore inexplorées pour une utilisation cosmétique. Connues pour être stables et capables d’encapsuler des actifs hydrophobe, la question de leur texture et de leur application sur la surface de la peau reste aujourd’hui non renseignée. Elles sont préparées par émulsification à chaud d’un organogel, composé d’huile et de gélifiant lipophile (acide 12-hydroxystéarique), en présence d’un agent stabilisant (alcool polyvinylique hydrolysé à 80%). L’émulsion formée conduit, après refroidissement, à une dispersion de particules d’organogel. Nous avons d’abord démontré la possibilité de réaliser des dispersions de gélosomes avec des huiles cosmétiques et un conservateur. Des textures très variées ont été obtenues allant de liquides fluides à des gels fermes et cassants. L’analyse physico-chimique et l’observation microscopique de ces nouvelles formules ont permis d’identifier leurs microstructures : dans certaines conditions, des connexions se forment entre les gélosomes, et un hydrogel colloïdal est obtenu. L’étude des interactions à l’interface a permis de déterminer les facteurs et les mécanismes menant à des gélosomes individualisés ou connectés. Les dispersions de gélosomes, même les plus fluides, ont montré une grande stabilité. Enfin, de nouvelles dispersions de gélosomes ont pu être formulées à partir de stabilisants de nature et de modes de stabilisation variés. La méthodologie employée au cours de ce travail a permis d’établir un lien entre le stabilisant et les propriétés des dispersions. Des mécanismes différents ont pu être identifiés, induisant des microstructures et des propriétés applicatives intéressantes et variées. Pour la première fois, les propriétés de texture des dispersions, caractéristiques d’une application topique ont été collectées sur l’ensemble des systèmes par une approche combinée d’analyses rhéologiques in vitro et d’analyses sensorielles in vivo ; les perceptions ont été décrites et explicitées en fonction de l’influence de la nature de l’huile, du stabilisant et du type de microstructure
This thesis aims to develop eco-responsible cosmetic formulas with a low number of ingredients, in line with the current context of “Clean-label” in this sector. We focused on dispersions of gelled oil particles, called “gelosome dispersions”, which have not yet been explored for cosmetic use. Known to be stable and capable of encapsulating hydrophobic active ingredients, the question of their texture and their application onto the surface of the skin remains unanswered to date. They are prepared by hot emulsification of an organogel, composed of oil and a lipophilic gelator (12-hydroxystearic acid), in the presence of a stabilizing agent (80% hydrolyzed polyvinyl alcohol). Upon cooling, the emulsion leads to a dispersion of organogel particles. We first demonstrated the possibility of making gelosome dispersions with cosmetic oils and a preservative. A wide variety of textures was obtained, ranging from fluid liquids to firm and brittle gels. Physicochemical analysis and microscopic observation of these new formulas made it possible to identify their microstructures: under certain conditions, connections are formed between the gelosomes, and a colloidal hydrogel is obtained. The factors and mechanisms leading to individualized or connected gelosomes were determined by the study of interactions at the interface. Gelosome dispersions, even the most fluid, showed great stability. Finally, new dispersions of gelosomes were formulated using stabilizers of various types and stabilization modes. The methodology used during this work enabled the establishment of a link between the stabilizer and the properties of the dispersions. Different mechanisms could be identified, inducing interesting and varied microstructures and application properties. For the first time, the texture properties of the dispersions, characteristic of a topical application, were collected across all systems using a combined approach of in vitro rheological analyzes and in vivo sensory analyses; the perceptions were described and explained according to the influence of the nature of the oil, the stabilizer and the type of microstructure
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lukyanova, Lyubov. "Préparation de matrices microporeuses d'organogel et évaluation en culture cellulaire." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/491/.

Повний текст джерела
Анотація:
Ce travail décrit l'élaboration et la caractérisation d'une nouvelle famille de matériaux "mous" pour des applications en génie tissulaire. Les sont préparés à partir d'un organogélifiant de faible masse, l'acide 12-hydroxystéarique (HSA) et d'huiles (triglycérides caprique/caprylique ou huile de soja). La technique de dissolution de particules à partir de gabarits préformés (sel, sucre, sucre glace) permet d'introduire une microporosité contrôlée à l'intérieur des organogels. La microscopie électronique à balayage et la microtomographie X révèlent l'architecture 3D de ces matrices microporeuses (10-500µm). La porosité effective se situe entre 55-70%. Les échanges liquides évalués par conductimétrie ont également montrés un bon niveau d'écoulement. Les matériaux élaborés sont biodégradables et peuvent être détruits en présence de lipases pancréatiques. La tenue mécanique des matrices (module d'Young de 10-75 kPa) est tout à fait adaptée pour la reconstruction de tissus mous. L'évaluation biologique in vitro avec les fibroblastes CHO montre que la matrice à base d'huile de soja obtenue à partir d'un gabarit de sucre favorise non seulement la survie et la prolifération significative des cellules, mais en plus, elle permet également la synthèse de collagène. Les résultats obtenus démontrent que ces matériaux biocompatibles et biodégradables offrent une porosité et une microarchitecture appropriées à des applications en génie tissulaire
The present work is focused on the design of a new family of soft materials, microporous organogels as matrices for tissue engineering applications. These microporous organogels matrices were prepared from biocompatible components: low-molecular weight organogelator, 12-hydroxystearic acid (HSA), and oils (caprylic/capric triglyceride or soybean oil). Particulate leaching technique with predesigned leachable sugar, salt and powdered sugar templates was used for controlled porosity introduction into the basic organogel materials. The scanning electron microscopy and microtomography reconstruction revealed the microporous architecture of these soft organogel scaffolds (10-500µm). The effective porosity was in the range of 55-70%. Conductometric investigation of draining process showed a good level of fluid exchange in the microporous matrices. The microporous organogels are enzymatically biodegradable by pancreatic lipase. The Young's moduli of resulted porous scaffolds (10-75 kPa) corresponded well to soft tissue reconstruction applications. The biological in vitro experiments with fibroblasts (CHO) showed the significant survival and proliferation of fibroblasts on sugar soybean templated scaffolds and, moreover, the collagen synthesis. The results demonstrate that designed biocompatible and biodegradable caprylic/capric triglyceride and soybean oil microporous organogels with an appropriate porosity and microarchitecture can be potential candidates as artificial extracellular matrixes for tissue engineering applications
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noppeney, Yvonne Maria Laurentia [Verfasser]. "Semicarbazide organogels containing inorganic nanoparticles : new supramer particle hybrid systems / vorgelegt von Yvonne Maria Laurentia Noppeney." 2009. http://d-nb.info/995596107/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lycke, Derek Roger. "Electrochemically assisted organosol method for nano-particle deposition on three-dimensional electrodes : application for ethanol oxidation." Thesis, 2006. http://hdl.handle.net/2429/17602.

Повний текст джерела
Анотація:
The proton exchange membrane direct ethanol fuel cell (PEM DEFC) combines the beneficial properties of ethanol (i.e. low toxicity, high energy density and wide availability) with the theoretically high efficiency of electrochemical energy conversion but is challenged by poor anodic reaction kinetics, ethanol crossover, and CO₂ disengagement. A three-dimensional anode can mitigate these challenges by extending the reaction zone and more readily disengaging CO₂. In the present work, the Bönnemann colloidal metal deposition method is extended to three-dimensional substrates (e.g. graphite felt) by conducting colloidal formation and deposition cocurrently under the application o f an electric field (e.g. 1.25 mA cm⁻² and 2 V) with the threedimensional substrate serving as the cathode. The modified methods are primarily electrophoretic coupled with chemical reduction; however, faradaic effects (i.e. electrodeposition) are still apparent. Particle size, catalyst deposit composition, and loading are dependent on the reactant that is first allowed to electrophoretically adsorb to the substrate (i.e. reducing surfactant [N( C₈H₁₇)₄B(C₂H₅)₃H] or metal salt). Various Pt:Sn (an established ethanol electrocatalyst) ratios are studied. The 9:1 bulk atomic ratio produced the most active catalyst deposit measured by cyclic voltammetry, chronopotentiometry and chronoamperometry for both the surfactant and metal adsorption variants. Surfactant adsorption results in reduced particle size (3-10 versus 5-43 nm), loadings (0.44 versus 0.96 mg cm⁻²) and Pt:Sn catalyst ratios (3.1:1 versus 3.9:1). Active catalyst surface area, measured by copper underpotential deposition and stripping, is higher for the surfactant adsorption variant (98.0 versus 73.2 cm² [sub catalyst] cm⁻² [sub substrate]) whereas the surface Pt:Sn ratio is higher for the metal adsorption variant (7.7:1 versus 3.1:1). On an area basis, the metal adsorption variant outperforms the surfactant adsorption variant in half cell electrochemical testing. Fuel cell tests of the 3-dimensional anodes show promising levels of activity when 0.5 M H₂SO₄ is added to the ethanol feed for protonic conductivity. The metal adsorption variant produces higher power densities on an area basis (e.g. 7.0 versus 2.0 mW cm⁻² at 30 mA cm⁻²); however the surfactant adsorption variant performs better on a mass activity basis (e.g. 10.0 versus 8.7 mW mg⁻¹ at 30 mA mg⁻¹). This mass activity is comparable to literature data reported for the traditional, gas diffusion, Pt-Sn anode at substantially higher catalyst loads (i.e. 2.0 versus 0.44 mg cm⁻²). In addition to fuel cell use, nano-catalyst deposited on three dimensional electrodes can be used for other applications, such as electrosynthesis.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Organogel particles"

1

Watterson, John R. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Denver, CO]: U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

S, Leventhal Joel, and Geological Survey (U.S.), eds. A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

A pyrolysis-gas chromatographic study of organic matter from Snake River flake-type placer gold particles. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Organogel particles"

1

Ashvin, P. U., I. Fernando, Matthew W. Glasscott, Garret W. George, Gilbert Kosgei, and Lee Moores. Organogel Synthesis Towards Electrochemical Sensing Applications. U.S. Army Engineer Research and Development Center, July 2022. http://dx.doi.org/10.21079/11681/44903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії