Добірка наукової літератури з теми "Organic Semiconducting Nanomaterials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organic Semiconducting Nanomaterials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organic Semiconducting Nanomaterials"

1

Kamble, Ganesh S., Thillai Sivakumar Natarajan, Santosh S. Patil, Molly Thomas, Rajvardhan K. Chougale, Prashant D. Sanadi, Umesh S. Siddharth, and Yong-Chein Ling. "BiVO4 As a Sustainable and Emerging Photocatalyst: Synthesis Methodologies, Engineering Properties, and Its Volatile Organic Compounds Degradation Efficiency." Nanomaterials 13, no. 9 (May 1, 2023): 1528. http://dx.doi.org/10.3390/nano13091528.

Повний текст джерела
Анотація:
Bismuth vanadate (BiVO4) is one of the best bismuth-based semiconducting materials because of its narrow band gap energy, good visible light absorption, unique physical and chemical characteristics, and non-toxic nature. In addition, BiVO4 with different morphologies has been synthesized and exhibited excellent visible light photocatalytic efficiency in the degradation of various organic pollutants, including volatile organic compounds (VOCs). Nevertheless, the commercial scale utilization of BiVO4 is significantly limited because of the poor separation (faster recombination rate) and transport ability of photogenerated electron–hole pairs. So, engineering/modifications of BiVO4 materials are performed to enhance their structural, electronic, and morphological properties. Thus, this review article aims to provide a critical overview of advanced oxidation processes (AOPs), various semiconducting nanomaterials, BiVO4 synthesis methodologies, engineering of BiVO4 properties through making binary and ternary nanocomposites, and coupling with metals/non-metals and metal nanoparticles and the development of Z-scheme type nanocomposites, etc., and their visible light photocatalytic efficiency in VOCs degradation. In addition, future challenges and the way forward for improving the commercial-scale application of BiVO4-based semiconducting nanomaterials are also discussed. Thus, we hope that this review is a valuable resource for designing BiVO4-based nanocomposites with superior visible-light-driven photocatalytic efficiency in VOCs degradation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sasi, Soorya, Sunish K. Sugunan, P. Radhakrishnan Nair, K. R. V. Subramanian, and Suresh Mathew. "Scope of surface-modified molecular and nanomaterials in gel/liquid forms for developing mechanically flexible DSSCs/QDSSCs." Photochemical & Photobiological Sciences 18, no. 1 (2019): 15–29. http://dx.doi.org/10.1039/c8pp00293b.

Повний текст джерела
Анотація:
In this perspective article, we discuss the possibilities of integrating liquefied organic and inorganic semiconducting materials with tunable optoelectronic properties into solvent-free fluidic systems of functional optoelectronic materials to generate flexible DSSCs/QDSSCs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gatou, Maria-Anna, Ioanna-Aglaia Vagena, Natassa Pippa, Maria Gazouli, Evangelia A. Pavlatou, and Nefeli Lagopati. "The Use of Crystalline Carbon-Based Nanomaterials (CBNs) in Various Biomedical Applications." Crystals 13, no. 8 (August 10, 2023): 1236. http://dx.doi.org/10.3390/cryst13081236.

Повний текст джерела
Анотація:
This review study aims to present, in a condensed manner, the significance of the use of crystalline carbon-based nanomaterials in biomedical applications. Crystalline carbon-based nanomaterials, encompassing graphene, graphene oxide, reduced graphene oxide, carbon nanotubes, and graphene quantum dots, have emerged as promising materials for the development of medical devices in various biomedical applications. These materials possess inorganic semiconducting attributes combined with organic π-π stacking features, allowing them to efficiently interact with biomolecules and present enhanced light responses. By harnessing these unique properties, carbon-based nanomaterials offer promising opportunities for future advancements in biomedicine. Recent studies have focused on the development of these nanomaterials for targeted drug delivery, cancer treatment, and biosensors. The conjugation and modification of carbon-based nanomaterials have led to significant advancements in a plethora of therapies and have addressed limitations in preclinical biomedical applications. Furthermore, the wide-ranging therapeutic advantages of carbon nanotubes have been thoroughly examined in the context of biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rajakumar, Govindasamy, Xiu-Hua Zhang, Thandapani Gomathi, Sheng-Fu Wang, Mohammad Azam Ansari, Govindarasu Mydhili, Gnanasundaram Nirmala, Mohammad A. Alzohairy, and Ill-Min Chung. "Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review." Processes 8, no. 3 (March 20, 2020): 355. http://dx.doi.org/10.3390/pr8030355.

Повний текст джерела
Анотація:
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical biomedical applications. Subsequently, diverse biomedical applications of carbon nanotube were also deliberately discussed in the light of various therapeutic advantages.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Annerino, Anthony, and Perena Gouma. "Gas-Selective Semiconducting Oxide Nanowires from Novel Processing Methods." ECS Meeting Abstracts MA2022-01, no. 52 (July 7, 2022): 2132. http://dx.doi.org/10.1149/ma2022-01522132mtgabs.

Повний текст джерела
Анотація:
Presented here are sensor nanomaterials that can be used for the skin-based gas “smelling” of disease. Skin testing may provide rapid and reliable results, using specific “fingerprints” or unique patterns for a variety of diseases and conditions. These can include metabolic diseases, such as diabetes and cholesterol-induced heart disease; neurological diseases, such as Alzheimer’s and Parkinson’s; quality of life conditions, such as obesity and sleep apnea; pulmonary diseases, such as cystic fibrosis, asthma, and chronic obstructive pulmonary disease; gastrointestinal tract diseases, such as irritable bowel syndrome and colitis; cancers, such as breast, lung, pancreatic, and colon cancers; infectious diseases, such as the flu and COVID-19; as well as diseases commonly found in ICU patients, such as urinary tract infections, pneumonia, and infections of the blood stream. Focusing on the most common gaseous biomarkers emitted from human skin, which are nitric oxide and carbon monoxide, and certain abundant volatile organic compounds (acetone, isoprene, ammonia, alcohols, sulfides), it is argued here that effective discrimination between the diseases mentioned above is possible by capturing the relative sensor output signals from the detection of each of these biomarkers and identifying the distinct gaseous “fingerprint” of each disease with the presented nanomaterials synthesized by novel processing methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhu, Houjuan, Chen Xie, Peng Chen, and Kanyi Pu. "Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy." Current Medicinal Chemistry 26, no. 8 (May 16, 2019): 1389–405. http://dx.doi.org/10.2174/0929867324666170921103152.

Повний текст джерела
Анотація:
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaul, Anupama B. "Solution-based Production of 2D-layered Materials." MRS Advances 1, no. 32 (2016): 2267–72. http://dx.doi.org/10.1557/adv.2016.407.

Повний текст джерела
Анотація:
ABSTRACTTwo dimensional (2D) nanomaterials such as graphene and transition-metal dichalcogenides (TMDCs) have attracted tremendous attention over recent years due to their unique properties and potential for numerous applications. Given the wide range of compositions of 2D-layered materials that have emerged in recent years, it is not surprising that they offer a rich spectrum of properties, ranging from metallic, insulating, superconducting to semiconducting. Here we report on the solution-based production of 2D layered material flakes, in particular graphene and MoS2 where the materials are chemically exfoliated in organic solvents which can then be ink jet printed using a commercially available material printer, for printed electronics applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meyer, Mbese, and Agoro. "The Frontiers of Nanomaterials (SnS, PbS and CuS) for Dye-Sensitized Solar Cell Applications: An Exciting New Infrared Material." Molecules 24, no. 23 (November 20, 2019): 4223. http://dx.doi.org/10.3390/molecules24234223.

Повний текст джерела
Анотація:
To date, extensive studies have been done on solar cells on how to harness the unpleasant climatic condition for the binary benefits of renewable energy sources and potential energy solutions. Photovoltaic (PV) is considered as, not only as the future of humanity’s source of green energy, but also as a reliable solution to the energy crisis due to its sustainability, abundance, easy fabrication, cost-friendly and environmentally hazard-free nature. PV is grouped into first, second and third-generation cells. Dye-sensitized solar cells (DSSCs), classified as third-generation PV, have gained more ground in recent times. This is linked to their transparency, high efficiency, shape, being cost-friendly and flexibility of colour. However, further improvement of DSSCs by quantum dot sensitized solar cells (QDSSCs) has increased their efficiency through the use of semiconducting materials, such as quantum dots (QDs), as sensitizers. This has paved way for the fabrication of semiconducting QDs to replace the ideal DSSCs with quantum dot sensitized solar cells (QDSSCs). Moreover, there are no absolute photosensitizers that can cover all the infrared spectrum, the infusion of QD metal sulphides with better absorption could serve as a breakthrough. Metal sulphides, such as PbS, SnS and CuS QDs could be used as photosensitizers due to their strong near infrared (NIR) absorption properties. A few great dependable and reproducible routes to synthesize better QD size have attained much ground in the past and of late. The injection of these QD materials, which display (NIR) absorption with localized surface plasmon resonances (SPR), due to self-doped p-type carriers and photocatalytic activity could enhance the performance of the solar cell. This review will be focused on QDs in solar cell applications, the recent advances in the synthesis method, their stability, and long term prospects of QDSSCs efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yao, Wei-Tang, and Shu-Hong Yu. "Synthesis of Semiconducting Functional Materials in Solution: From II-VI Semiconductor to Inorganic-Organic Hybrid Semiconductor Nanomaterials." Advanced Functional Materials 18, no. 21 (November 10, 2008): 3357–66. http://dx.doi.org/10.1002/adfm.200800672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yao, Wei-Tang, and Shu-Hong Yu. "Synthesis of Semiconducting Functional Materials in Solution: From II-VI Semiconductor to Inorganic-Organic Hybrid Semiconductor Nanomaterials." Advanced Functional Materials 18, no. 22 (November 24, 2008): NA. http://dx.doi.org/10.1002/adfm.200890095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organic Semiconducting Nanomaterials"

1

Parkinson, Patrick. "Ultrafast electronic processes at nanoscale organic-inorganic semiconductor interfaces." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:e68168c6-bcc0-437d-9133-1bfaf955c80a.

Повний текст джерела
Анотація:
This thesis is concerned with the influence of nanoscale boundaries and interfaces upon the electronic processes that occur within both organic and inorganic semiconductors. Photoluminescent polymers, highly conducting polymers and nanoscale inorganic semiconductors have been investigated using state-of-the-art ultrafast optical techniques, to provide information on the sub-picosecond photoexcitation dynamics in these systems. The influence of dimensionality on the excitation transfer dynamics in a conjugated polymer blend is studied. Using time-resolved photoluminescence spectroscopy, the transfer transients both for a three-dimensional blend film, and for quasi-two-dimensional monolayers formed through intercalation of the polymer blend between the crystal planes of a SnS2 matrix have been measured. A comparison of the experimental data with a simple, dimensionality-dependent model is presented, based on point dipole electronic coupling between electronic transition moments. Within this approximation, the energy transfer dynamics are found to adopt a three-dimensional character in the solid film, and a two-dimensional nature in the monolayers present in the SnS2 -polymer nanocomposite. The time-resolved conductivity of isolated GaAs nanowires has been investigated by optical-pump terahertz-probe time-domain spectroscopy. The electronic response exhibits a pronounced surface plasmon mode that forms within 300 fs, before decaying within 10 ps as a result of charge trapping at the nanowire surface. The mobility has been extracted using the Drude model for a plasmon and is found to be remarkably high, being roughly one third of that typical for bulk GaAs at room-temperature and indicating the high quality and low bulk defect density in the nanowires studied. Finally, the time-resolved conductivity dynamics of photoexcited polymer-fullerene bulk heterojunction blends for two model polymers, P3HT and MDMO-PPV, blended with PCBM are presented. The observed terahertz-frequency conductivity is characteristic of dispersive charge transport for photoexcitation both at the π−π* absorption peak (560 nm for P3HT), and significantly below it (800 nm). The photoconductivity at 800 nm is unexpectedly high, which is attributed to the presence of a charge transfer complex. In addition, the excitation-fluence dependence of the photoconductivity is studied over more than four orders of magnitude. The time-averaged photoconductivity of the P3HT:PCBM blend is over 20 times larger than that of P3HT, indicating that long-lived positive polarons are responsible for the high photovoltaic efficiency of polymer:fullerene blends. At early times (~ ps) the linear dependence of photoconductivity upon fluence indicates that interfacial charge transfer dominates as an exciton decay pathway, generating charges with mobility of at least ~0.1cm2 V−1 s−1. At later times, a sub-linear relationship shows that carrier-carrier recombination effects influence the conductivity on a longer timescale (> 1 μs).
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Organic Semiconducting Nanomaterials"

1

Guan, Jie, Ziwei Wang, Yuan-Cheng Zhu, Wei-Wei Zhao, and Qin Xu. "Organic–Inorganic Semiconducting Nanomaterial Heterojunctions." In Optoelectronic Organic–Inorganic Semiconductor Heterojunctions, 101–25. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367348175-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Datta, Sudipto, and Ranjit Barua. "Fluorescent Nanomaterials and Its Application in Biomedical Engineering." In Modeling and Simulation of Functional Nanomaterials for Forensic Investigation, 164–86. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8325-1.ch009.

Повний текст джерела
Анотація:
Currently, in the field of biomedical engineering and biological applications, the use of soft florescent nanomaterials has increased because of their excellent biocompatibility, easy biofunctionalization, and high brightness properties. This chapter summarizes the current developments of nano-sized fluorescent soft biological imaging agents. Many fluorescent soft nanoparticles like biomaterial-based NPs, vesicles, micelles, nanogels, small-molecule organic NPs, semiconducting polymer NPs, and dye-doped polymer NPs are mentioned briefly starting from the preparation methods, their structures, their optical properties, as well as their functionalization. Depending upon the nano-sized imaging agents' functional as well as optical properties, their uses are briefly described in relation to Vivo imaging, cellular process imaging, and in vitro imaging by using nonspecific and specific targeting.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jolivet, Jean-Pierre. "Titanium, Manganese, and Zirconium Dioxides." In Metal Oxide Nanostructures Chemistry. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190928117.003.0011.

Повний текст джерела
Анотація:
The dioxides of titanium (TiO2), manganese (MnO2), and zirconium (ZrO2) are important materials because of their technological uses. TiO2 is used mainly as white pigment. Because of its semiconducting properties, TiO2, in its nanomaterial form, is also used as an active component of photocells and photocatalysis for self-cleaning glasses and cements . MnO2 is used primarily in electrode materials. ZrO2 is used in refractory ceramics, abrasive materials, and stabilized zirconia as ionic conductive materials stable at high temperature. Many of these properties are, of course, dependent on particle size and shape (§ Chap. 1). Dioxides of other tetravalent elements with interesting properties have been studied elsewhere in this book, especially VO2, which exhibits a metal–isolator transition at 68°C, used, for instance, in optoelectronics (§ 4.1.5), and silica, SiO2 (§ 4.1.4), which is likely the most ubiquitous solid for many applications and uses. Aqueous chemistry is of major interest in synthesizing these oxides in the form of nanoparticles from inorganic salts and under simple, cheap, and envi­ronmental friendly conditions. However, as the tetravalent elements have re­stricted solubility in water (§ 2.2), metal–organic compounds such as titanium and zirconium alkoxides are frequently used in alcoholic solution as precursors for the synthesis of TiO2 and ZrO2 nanoparticles. An overview of the conversion of alkoxides into oxides is indicated about silica formation (§ 4.1.4), and since well-documented works have already been published, these compounds are not considered here. The crystal structures of most MO2 dioxides are of TiO2 rutile type for hexacoordinated cations (e.g., Ti, V, Cr, Mn, Mo, W, Sn, Pb) and CaF2 fluorite type for octacoordinated, larger cations (e.g., Zr, Ce), but polymorphism is common. Some dioxides of elements such as chromium and tin form only one crystal­line phase. So, hydrolysis of SnCl4 or acidification of stannate [Sn(OH)6]2− leads both to the same rutile-type phase, cassiterite, SnO2. Many other dioxides are polymorphic, especially TiO2, which exists in three main crystal phases: anatase, brookite, and rutile; and MnO2, which gives rise to a largely diversified crystal chemistry.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії