Добірка наукової літератури з теми "Organic Films - Electrical Transport"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Organic Films - Electrical Transport".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Organic Films - Electrical Transport"

1

CAMPBELL, I. H., and D. L. SMITH. "ELECTRICAL TRANSPORT IN ORGANIC SEMICONDUCTORS." International Journal of High Speed Electronics and Systems 11, no. 02 (June 2001): 585–615. http://dx.doi.org/10.1142/s0129156401000952.

Повний текст джерела
Анотація:
Organic semiconductors have processing and performance advantages for low cost and/or large area applications that have led to their rapid commercialization. Organic semiconductors are π conjugated materials, either small molecules or polymers. Their electrical transport properties are fundamentally distinct from those of inorganic semiconductors. Organic semiconductor thin films are amorphous or polycrystalline and their electronic structures consist of a distribution of localized electronic states with different energies. The localized sites are either individual molecules or isolated conjugated segments of a polymer chain. Electrical transport results from carrier hopping between neighboring sites. At room temperature, equilibration between neighboring sites of different energy is fast enough that carrier transport can be described using a mobility picture. Hopping transport in these disordered systems leads to a mobility that can depend strongly on both the electric field and carrier density. This article presents experimental measurements and theoretical analysis of the electrical transport properties of representative organic semiconductors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kumar, Arvind, R. Prasad, A. K. Debnath, Ajay Singh, S. Samanta, D. K. Aswal, and S. K. Gupta. "Growth and Electrical Transport Properties of Organic Semiconductor Thin Films." Solid State Phenomena 209 (November 2013): 1–5. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.1.

Повний текст джерела
Анотація:
Hexadecafluorophthalocyanine (F16CuPc) and Cobalt phthalocyanone (CoPc) thin films of different thickness (20-200nm) have been grown by Molecular Beam Epitaxy (MBE) using different deposition rate (0.2 – 1.0 Å/s). For nanowire type growth lower deposition rate and for films of smooth surface higher deposition rate are found suitable. Charge transport (J~V) of CoPc and F16CuPc films is governed by bulk-limited processes with a bias dependent crossover from Ohmic to trap-free space-charge-limited conduction. The mobility (μ) values at 300 K were found 4.5 and 5.5 cm2 V−1 s−1 for CoPc and F16CuPc films respectively. Mechanism of reverse rectification behavior of an organic heterojunction comprising of CoPc and F16CuPc is explained by Kelvin Probe measurement.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Robaschik, Peter, Pablo F. Siles, Daniel Bülz, Peter Richter, Manuel Monecke, Michael Fronk, Svetlana Klyatskaya, et al. "Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt." Beilstein Journal of Nanotechnology 5 (November 11, 2014): 2070–78. http://dx.doi.org/10.3762/bjnano.5.215.

Повний текст джерела
Анотація:
The optical and electrical properties of terbium(III) bis(phthalocyanine) (TbPc2) films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE) and current sensing atomic force microscopy (cs-AFM). Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Niemelä, J. P., A. J. Karttunen, and M. Karppinen. "Inorganic–organic superlattice thin films for thermoelectrics." Journal of Materials Chemistry C 3, no. 40 (2015): 10349–61. http://dx.doi.org/10.1039/c5tc01643f.

Повний текст джерела
Анотація:
Nanoscale layer-engineering using the combined atomic/molecular layer deposition (ALD/MLD) technique for the fabrication of oxide–organic thin-film superlattices is an attractive way to tailor the performance of thermoelectric materials as it potentially allows us to suppress thermal conductivity without significantly hindering the electrical transport properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ebrahim, Shaker. "Electrical Transport Mechanism in Polyaniline/Formvar Blend Films." High Performance Polymers 21, no. 4 (October 13, 2008): 468–83. http://dx.doi.org/10.1177/0954008308095839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Xiaoxue, Xu Zhang, Lei Sun, Dongwook Lee, Sunghwan Lee, Minghui Wang, Junjie Zhao, et al. "High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment." Science Advances 4, no. 9 (September 2018): eaat5780. http://dx.doi.org/10.1126/sciadv.aat5780.

Повний текст джерела
Анотація:
Air-stable, lightweight, and electrically conductive polymers are highly desired as the electrodes for next-generation electronic devices. However, the low electrical conductivity and low carrier mobility of polymers are the key bottlenecks that limit their adoption. We demonstrate that the key to addressing these limitations is to molecularly engineer the crystallization and morphology of polymers. We use oxidative chemical vapor deposition (oCVD) and hydrobromic acid treatment as an effective tool to achieve such engineering for conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We demonstrate PEDOT thin films with a record-high electrical conductivity of 6259 S/cm and a remarkably high carrier mobility of 18.45 cm2V−1s−1by inducing a crystallite-configuration transition using oCVD. Subsequent theoretical modeling reveals a metallic nature and an effective reduction of the carrier transport energy barrier between crystallized domains in these thin films. To validate this metallic nature, we successfully fabricate PEDOT-Si Schottky diode arrays operating at 13.56 MHz for radio frequency identification (RFID) readers, demonstrating wafer-scale fabrication compatible with conventional complementary metal-oxide semiconductor (CMOS) technology. The oCVD PEDOT thin films with ultrahigh electrical conductivity and high carrier mobility show great promise for novel high-speed organic electronics with low energy consumption and better charge carrier transport.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Scheunemann, Dorothea, Emmy Järsvall, Jian Liu, Davide Beretta, Simone Fabiano, Mario Caironi, Martijn Kemerink, and Christian Müller. "Charge transport in doped conjugated polymers for organic thermoelectrics." Chemical Physics Reviews 3, no. 2 (June 2022): 021309. http://dx.doi.org/10.1063/5.0080820.

Повний текст джерела
Анотація:
Research on conjugated polymers for thermoelectric applications has made tremendous progress in recent years, which is accompanied by surging interest in molecular doping as a means to achieve the high electrical conductivities that are required. A detailed understanding of the complex relationship between the doping process, the structural as well as energetic properties of the polymer films, and the resulting thermoelectric behavior is slowly emerging. This review summarizes recent developments and strategies that permit enhancing the electrical conductivity of p- and n-type conjugated polymers via molecular doping. The impact of the chemical design of both the polymer and the dopant, the processing conditions, and the resulting nanostructure on the doping efficiency and stability of the doped state are discussed. Attention is paid to the interdependence of the electrical and thermal transport characteristics of semiconductor host-dopant systems and the Seebeck coefficient. Strategies that permit to improve the thermoelectric performance, such as an uniaxial alignment of the polymer backbone in both bulk and thin film geometries, manipulation of the dielectric constant of the polymer, and the variation of the dopant size, are explored. A combination of theory and experiment is predicted to yield new chemical design principles and processing schemes that will ultimately give rise to the next generation of organic thermoelectric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Lin, Madeleine P. Gordon, Akanksha K. Menon, Alexandra Bruefach, Kyle Haas, M. C. Scott, Ravi S. Prasher, and Jeffrey J. Urban. "Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics." Science Advances 7, no. 20 (May 2021): eabe6000. http://dx.doi.org/10.1126/sciadv.abe6000.

Повний текст джерела
Анотація:
Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baschir, Laurentiu, Madalin Rusu, Valeriu Savu, and Daniel Tenciu. "Study of some Complex Organic Materials Characteristics in Thin Films." Applied Mechanics and Materials 760 (May 2015): 233–38. http://dx.doi.org/10.4028/www.scientific.net/amm.760.233.

Повний текст джерела
Анотація:
Studies were carried out in order to investigate the sensitivity of some thin films, to ultraviolet light, based on barium stearate and carbon nanotubes structures. A three – five monolayers structures were developed using the Langmuir – Blodgett technique onto ceramic substrate. Obtained Langmuir – Blodgett complex thin films shows sensitivity to ultra violet light radiation, taking into consideration the presence of carbon nanotubes that facilitates the charge carriers transport. Also the investigations performed, revealed the properties of carbon nanotubes and point out the fine chemistry of these materials. Based on this premise we proceed to investigate and characterize the photo – electrical behavior of the obtained structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yurasik G. A., Kulishov A. A., Givargizov M. E., and Postnikov V. A. "Dedicated to the memory of V.D. Aleksandrov Effect of annealing in an inert atmosphere on the electrical properties of crystalline pentacene films." Technical Physics Letters 48, no. 15 (2022): 30. http://dx.doi.org/10.21883/tpl.2022.15.55278.18983.

Повний текст джерела
Анотація:
The results of a study of the effect of annealing at 150^oC in an inert atmosphere (Ar + 5% H2) on the electrical properties of organic field-effect transistors based on pentacene are presented. Crystalline pentacene films with a thickness of 95±5 nm were obtained using thermal vacuum deposition. The transfer and output characteristics of field-effect transistors before and after annealing for 15 hours are investigated. It was found that as a result of heat treatment, the hole mobility in the saturation regime increased by an average of 30%, and the threshold voltage decreased approximately two times. According to the data of atomic force microscopy, annealing led to a more than twofold decrease in the surface roughness of pentacene films, as well as to a noticeable enlargement of grains, which led to a decrease in the concentration of traps for hole electric transport in the channel of the field-effect transistor. Keywords: pentacene, vacuum thermal deposition, crystalline films, organic field-effect transistors, hole mobility, annealing in an inert atmosphere.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Organic Films - Electrical Transport"

1

Xu, Wenwei. "Carrier transport characterization and thin film transistor applications of amorphous organic electronic materials." HKBU Institutional Repository, 2013. http://repository.hkbu.edu.hk/etd_ra/1542.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Alexiou, I. "Hole transport materials for organic thin films." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595437.

Повний текст джерела
Анотація:
The aim of this project is to prepare and characterise novel triarylamine-based hole transport materials for xerographic applications that exhibit favourable electrochemical properties and amorphous nature. As an introduction, the six steps of the xerographic process and the common classes of hole transporting materials are described. The basic theories that have been developed for charge transport are discussed and an overview of the palladium-mediated amination and Suzuki reactions is given. In the following chapters, the synthesis and characterisation of a number of hole transporting triarylamines is reported. A series of linear trimeric arylamines is synthesised using the palladium-catalysed Suzuki protocol and their properties were determined using cyclic voltammetry, thermal gravimetric analysis and differential scanning calorimetry. Similar characterisation is carried out for a number of relatively unsubstituted phenyl and thiophene-based triarylamines. The synthesis of a series of oligomeric materials based on MPPD (Bis-methoxyphenyl-diphenyl-biphenyl-diamine) is reported and their electrochemical and thermal properties are investigated. Thiophene and dioctyl-fluorene-substituted MPPD-derivatives are studied as hole transport materials. Star-shaped and dendritic triarylamines with biphenyl and bithiophene-core molecules are also prepared using palladium-mediated chemistry and characterised. Finally, the attempts to synthesise macrocyclic triarylamine hole transporting materials are described in detail. The charge carrier properties for some of the synthesised materials are measured using the time-of-flight technique of using field-effect-transistors. Each set-up is described in detail and the hole mobility of the materials is calculated. A correlation between structural characteristics and charge-transporting properties is attempted.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mohamed, Norani M. "Electrical and optical properties of organic materials." Thesis, University of Essex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Danti. "Local electron transport of organic semiconducting monolayers /." Connect to online version, 2009. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2009/363.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dalkiranis, Pereira Gustavo Gonçalves. "Thermal transport and thermoelectricity in organic and inorganic thin films." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yang, Dengliang. "Charge transport and chemical sensing properties of organic thin-films." Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3262181.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2007.
Title from first page of PDF file (viewed July 10, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 104-113).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Limketkai, Benjie 1982. "Charge-carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43063.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
Includes bibliographical references (p. 101-106).
Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have proven to be a promising material set for novel optical and/or electrical devices. Not only do they have the advantage of tunable properties using chemistry, but organic semiconductors hold the potential of being fabricated cheaply with low temperature deposition on flexible plastic substrates, ink jet printing, or roll-to-roll manufacturing. These fabrication techniques are possible because organic semiconductors are composed of molecules weakly held together by van der Waals forces rather than covalent bonds. Van der Waals bonding eliminates the danger of dangling bond traps in amorphous or polycrystalline inorganic films, but results in narrower electronic bandwidths. Combined with spatial and energetic disorder due to weak intermolecular interactions, the small bandwidth leads to localization of charge carriers and electron-hole pairs, called excitons. Thus, the charge-carrier mobility in organic semiconductors is generally much smaller than in their covalently-bonded, highly-ordered crystalline semiconductor counterparts. Indeed, one major barrier to the use of organic semiconductors is their poor charge transport characteristics. Yet this major component of the operation of disordered organic semiconductor devices remains incompletely understood. This thesis analyzes charge transport and injection in organic semiconductor materials. A first-principles analytic theory that explains the current-voltage characteristics and charge-carrier mobility for different metal contacts and organic semiconductor materials over a wide range of temperatures, carrier densities, and electric field strengths will be developed.
(cont) Most significantly, the theory will enable predictive models of organic semiconductor devices based on physical material parameters that may be determined by experimental measurements or quantum chemical simulations. Understanding charge transport and injection through these materials is crucial to enable the rational design for organic device applications, and also contributes to the general knowledge of the physics of materials characterized by charge localization and energetic disorder.
by Benjie N. Limketkai.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Limketkai, Benjie 1982. "Charge carrier transport in amorphous organic semiconductors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Benedetto, Alessandro. "Grafting organic thin films for the lubrification of electrical contacts." Paris 11, 2008. http://www.theses.fr/2008PA112352.

Повний текст джерела
Анотація:
Au cours de cette thèse a été étudié le rôle de films minces organiques immobilisés comme lubrifiants pour les contacts électriques. Les films minces ont été électrogreffés sur or qui est un métal couramment utilisé comme revêtement métallique final de certains connecteurs électriques bas-niveau. Les films étudiés appartiennent à deux familles : les poly(methacrylate)s obtenus par électrogreffage cathodique et des films de type poly(phenylene) obtenus par la réduction électrochimique de sels de diazonium aromatiques. Des films composites de poly(methacrylate) électrogreffés avec des nanotubes de carbone ou des polymères conducteurs ont été aussi réalisés. D’abord le comportement électrochimique des molécules de départ puis le greffage électrochimique des films ainsi que leur propriétés physico-chimiques ont été étudiés. Ensuite des tests tribologiques et électriques ont été effectués sur les substrats fonctionnalisés pour étudier l’effet lubrifiant des films organiques et la résistance électrique du contact ainsi protégé. Les recherches effectuées au cours de cette thèse ont mené à l’identification des films minces électrogreffés qui réduisent efficacement le frottement et l’usure des substrats métalliques en préservant des résistances électriques de contact satisfaisantes du même ordre qu’un contact direct or/or
In this thesis thin organic grafted films have been studied as lubrifiant for electrical contacts. Thin film were electrografted on gold which is currently used for the final metallic layer of some common low-level electrical connectors. Two families have been studied : the cathodic electrografted poly(methacrylate)s and the poly(phenylene)-like films obtained by the reduction of aromatic diazonium salts. Composite films have also been fabricated between the electrografted poly(methacrylate) and carbon nanotubes or conducting polymers in order to ameliorate electrical conduction properties. First the physical chemistry properties of the film have been studied and in particular the electrochemical behaviour of the molecules used as building blocks, the electrochemical grafting of the molecules used as building blocks, the electrochemical grafting of the films and the film surface physical chemistry properties. Then tribological and electrical tests were effectuated to study the lubrication effect obtained upon substrate functionalization by the organic films and their effect on the contact electrical resistance. The researches effectuated during this thesis allowed for the identification of thin electrografted films capable of effective reduction of friction and wear of gold substrates preserving low electrical resistances
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krause, Stefan. "Determination of the transport levels in thin films of organic semiconductors." Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/4047/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Organic Films - Electrical Transport"

1

Ying-quan, Peng, ed. Charge carrier transport in organic semiconductor thin film devices. New York: Nova Science Publishers, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Jinsong. Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49927-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abad, Enrique. Energy Level Alignment and Electron Transport Through Metal/Organic Contacts: From Interfaces to Molecular Electronics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

American Chemical Society. Division of Polymer Chemistry., American Chemical Society. Division of Polymeric Materials: Science and Engineering., and Optical Society of America, eds. Organic thin films for photonics applications: Technical digest, October 15-17, 1997, Hyatt Regency Long Beach, Long Beach, California. Washington, DC: Optical Society of America, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

American Chemical Society. Division of Polymer Chemistry., Optical Society of America, and American Chemical Society. Division of Polymeric Materials: Science and Engineering., eds. Organic thin films for photonics applications: Technical digest, September 24-26, 1999, Santa Clara Marriott, Santa Clara, California. Washington, DC: Optical Society of America, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Jinsong. Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer Berlin / Heidelberg, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Jinsong. Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer London, Limited, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Jinsong. Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Abad, Enrique. Energy Level Alignment and Electron Transport Through Metal/Organic Contacts: From Interfaces to Molecular Electronics. Springer Berlin / Heidelberg, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

America, Optical Society Of. Organic Thin Films for Photonics Applications: Technical Digest, October 15-17, 1997, Hyatt Regency Long Beach, Long Beach, California (1997 Osa Technical Digest Series). Optical Society of America, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Organic Films - Electrical Transport"

1

Lochbrunner, S., and M. Schlosser. "Energy Transport Mechanisms in Doped Organic Films." In Ultrafast Phenomena XV, 306–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_99.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

He, Wenjuan, Suyun Wang, Beiqing Hang, Xianfu Wei, and Lijuan Liang. "Development of Solution-Processed Organic Semiconductor Thin Films." In Lecture Notes in Electrical Engineering, 471–79. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1673-1_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yamasaki, Kazuo, and Masahiro Kotani. "Gallium Phthalocyanine Thin Films Studied by Electroabsorption." In Electrical and Related Properties of Organic Solids, 219–25. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5790-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Borsenberger, P. M. "Hole Transport in Triphenylmethane Doped Polymers." In Electrical and Related Properties of Organic Solids, 25–38. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5790-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alvisi, M., P. Aversa, G. Cassano, E. Serra, M. A. Tagliente, M. Schioppa, R. Rossi, D. Suriano, E. Piscopiello, and M. Penza. "Organic Vapor Detection by QCM Sensors Using CNT-Composite Films." In Lecture Notes in Electrical Engineering, 79–85. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dante, S., M. G. Ponzi-Bossi, and F. Rustichelli. "Langmuir-Blodgett Films of Archaeal Lipids: Properties and Perspectives." In Electrical and Related Properties of Organic Solids, 431–43. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5790-2_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ballarotto, M., W. N. Herman, and D. B. Romero. "High Fill-Factor Organic Bulk Heterojunction Photovoltaic Devices Using a Highly Conducting Hole-Doped Polymer Transport Layer." In Organic Thin Films for Photonic Applications, 199–210. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1039.ch014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Baudoin, Fulbert, Christian Laurent, Séverine Le Roy, and Gilbert Teyssedre. "Conduction Mechanisms and Numerical Modeling of Transport in Organic Insulators." In Dielectric Materials for Electrical Engineering, 37–78. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557419.ch03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Africa, Pasquale Claudio, Dario A. Natali, Mario Caironi, and Carlo de Falco. "Automatic Extraction of Transport Model Parameters of an Organic Semiconductor Material." In Scientific Computing in Electrical Engineering, 93–104. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44101-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krishnaswamy, Jagdish A., Praveen C. Ramamurthy, Gopalkrishna Hegde, and Debiprosad Roy Mahapatra. "The Semiclassical Charge Transport Model and Its Extension to Organic Semiconductors." In Energy Systems in Electrical Engineering, 125–60. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0607-7_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Organic Films - Electrical Transport"

1

Moerner, W. E., C. Poga, Y. Jia, and R. J. Twieg. "Photorefractive Polymers for Holographic Optical Storage." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/otfa.1995.wgg.1.

Повний текст джерела
Анотація:
In the past few years, a new class of polymeric materials for photonic applications has appeared called photorefractive (PR) polymers. Photorefractivity is defined as modulation of the index of refraction in an electro-optic material by internal electric fields produced by optical redistribution of charge carriers; hence it must not be confused with the more standard local mechanisms of index change such as photochromism, excited state population, heating, etc. When a material shows the required properties of charge generation, transport, trapping, and dependence of the index of refraction upon the internal electric field, it can be tested for photorefractivity by observation of asymmetric energy transfer (two-beam coupling) between two laser beams in the material.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Song, David W., Wei-Ning Shen, Taofang Zeng, Weili Liu, Gang Chen, Bruce Dunn, Caroline D. Moore, Mark S. Goorsky, Tamara Radetic, and Ronald Gronsky. "Thermal Conductivity of Nano-Porous Bismuth Thin Films for Thermoelectric Applications." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1003.

Повний текст джерела
Анотація:
Abstract Good thermoelectric materials require a small thermal conductivity while maintaining a high electrical conductivity and Seebeck coefficient. Nano-porous systems provide one possible route of increasing the thermoelectric figure-of-merit by disturbing phonon transport more than electron transport. In this work, the temperature dependent thermal conductivity of nano-porous bismuth thin films was measured. Thin Bi films of various porosity and thickness were deposited by metal-organic deposition onto Si substrates. The thermal conductivity of Bi films was measured using a differential 3-ω method, in which the temperature rise across a Bi film was experimentally measured and used to calculate its thermal conductivity. Experimental results show an order-of-magnitude reduction in the porous Bi thin film thermal conductivity due to nano-pores compared to non-porous films. The drastic reduction in thermal conductivity cannot be explained by available models on the thermal conductivity of porous media.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yee, Shannon K., Nelson Coates, Jeffrey J. Urban, Arun Majumdar, and Rachel A. Segalman. "A High-Performance Solution-Processable Hybrid Thermoelectric Material." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75002.

Повний текст джерела
Анотація:
Thermoelectrics have the potential to become an alternative power source for distributed electrical generation as they could provide co-generation anywhere thermal gradients exist. More recent material and manufacturing advances have further suggested that thermoelectrics could independently generate primary power [1]. However, due to cost, manufacturability, abundance, and material performance, the full potential of thermoelectrics has yet to be realized. In the last decade, thermoelectric material improvements have largely been realized by diminishing thermal conductivities via nanostructuring without sacrificing performance in electrical transport [2]. An alternative approach is to decouple and optimize the electrical conductivity and thermopower using the unique properties of organic-inorganic interfaces [3]. One method to do this could leverage the electrical properties of a conducting polymer in combination with the thermoelectric proprieties of an inorganic semiconductor in such a way that the interaction between these materials breaks mixture theory. Furthermore, it is expected that the thermal conductivity of this hybrid material would be low due to the inherent vibration mode mismatch between polymers and inorganics. Previously, we have developed a method for producing a solution-processable thermoelectric material suitable for thin film applications using a hybrid polymer-inorganic systems consisting of crystalline tellurium nanowires coated in a thin layer of a conducting polymer (i.e., PEDOT:PSS) [4]. The interfacial properties could be realized in bulk and films demonstrate enhanced transport properties beyond those of either component. More recently, we have been able to significantly improve the thermoelectric properties of these materials by morphological and chemical modifications. Here, we present our methodology and experimental transport properties of this new material where the thermal conductivity, electrical conductivity, and thermopower predictably vary as a function of composition, size, and the structural conformation caused by the solvent. The mechanism for these improvements is currently under investigation, but experimental results suggest that transport is dominated by interfacial phenomena. Furthermore, experiments suggest that both the electrical conductivity and thermopower can be independently increased without appreciably increasing the thermal conductivity. These improvements, in concert with the solution processable nature of this material, make it ideal for new thermoelectric applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kobori, Hiromi, Kohei Hamada, Sara Kawaguchi, Toshifumi Taniguchi, and Tetsuo Shimizu. "Electrical Transport Properties of La1−xSrxMnO3 Thin Films Produced by Metal Organic Decomposition Method." In Proceedings of the 29th International Conference on Low Temperature Physics (LT29). Journal of the Physical Society of Japan, 2023. http://dx.doi.org/10.7566/jpscp.38.011119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Badano, Aldo, and Jerzy Kanicki. "Monte carlo modeling method for light transport in organic thin film light-emitting devices." In Organic Thin Films. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/otf.1999.sud2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lochbrunner, S., and M. Schlosser. "Energy Transport Mechanisms in Doped Organic Films." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.the8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Engelbrecht, Stefan G., Markus Prinz, Thomas R. Arend, and Roland Kersting. "Terahertz study of hole transport in pentacene thin films." In SPIE Organic Photonics + Electronics, edited by Zhenan Bao, Iain McCulloch, Ruth Shinar, and Ioannis Kymissis. SPIE, 2014. http://dx.doi.org/10.1117/12.2060817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

WESSLING, FRANCIS, and STEVEN NOOJIN. "Vapor transport furnace for organic crystals and films." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yong-Sung Choi, Young-Soo Kwon, and Kyung-Sup Lee. "Electrical property of organic thin films." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388904.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Song, Yanlin. "Organic optical/electrical functional thin films." In 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5698077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Organic Films - Electrical Transport"

1

Barnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.

Повний текст джерела
Анотація:
The properties of composite materials are strongly influenced by both the physical and chemical properties of their individual constituents, as well as the interactions between them. For nanocomposites, the incorporation of nano-sized dopants inside a host material matrix can lead to significant improvements in mechanical strength, toughness, thermal or electrical conductivity, etc. In this work, the effect of cellulose nanofibrils on the structure and mechanical properties of cellulose nanofibril poly(vinylidene fluoride) (PVDF) composite films was investigated. Cellulose is one of the most abundant organic polymers with superior mechanical properties and readily functionalized surfaces. Under the current processing conditions, cellulose nanofibrils, as-received and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidized, alter the crystallinity and mechanical properties of the composite films while not inducing a crystalline phase transformation on the 𝛾 phase PVDF composites. Composite films obtained from hydrated cellulose nanofibrils remain in a majority 𝛾 phase, but also exhibit a small, yet detectable fraction of 𝛼 and ß PVDF phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії