Дисертації з теми "Organic electrodes"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Organic electrodes.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Organic electrodes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hall, Geoffrey F. "Organic phase enzyme electrodes." Thesis, Cranfield University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saini, S. "Organic phase enzyme electrodes." Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Murphy, Lindy Jane. "Conducting organic salt enzyme electrodes." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Yong Hyun. "Alternative Electrodes for Organic Optoelectronic Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113279.

Повний текст джерела
Анотація:
This work demonstrates an approach to develop low-cost, semi-transparent, long-term stable, and efficient organic photovoltaic (OPV) cells and organic light-emitting diodes (OLEDs) using various alternative electrodes such as conductive polymers, doped ZnO, and carbon nanotubes. Such electrodes are regarded as good candidates to replace the conventional indium tin oxide (ITO) electrode, which is expensive, brittle, and limiting the manufacturing of low-cost, flexible organic devices. First, we report long-term stable, efficient ITO-free OPV cells and transparent OLEDs based on poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) electrodes by using a solvent post-treatment or a structure optimization. In addition, a high performance internal light out-coupling system for white OLEDs based on PEDOT:PSS-coated metal oxide nanostructures is developed. Next, we demonstrate highly efficient ITO-free OPV cells and OLEDs with optimized ZnO electrodes doped with alternative non-metallic elements. The organic devices based on the optimized ZnO electrodes show significantly improved efficiencies compared to devices with standard ITO. Finally, we report semi-transparent OPV cells with free-standing carbon nanotube sheets as transparent top electrodes. The resulting OPV cells exhibit very low leakage currents with good long-term stability. In addition, the combination of various kinds of bottom and top electrodes for semi-transparent and ITO-free OPV cells is investigated. These results demonstrate that alternative electrodes-based OPV cells and OLEDs have a promising future for practical applications in efficient, low-cost, flexible and semi-transparent device manufacturing
Die vorliegende Arbeit demonstriert einen Ansatz zur Verwirklichung von kostengünstigen, semi-transparenten, langzeitstabilen und effizienten Organischen Photovoltaik Zellen (OPV) und Organischen Leuchtdioden (OLEDs) durch die Nutzung innovativer Elektrodensysteme. Dazu werden leitfähige Polymere, dotiertes ZnO und Kohlenstoff-Nanoröhrchen eingesetzt. Diese alternativen Elektrodensysteme sind vielversprechende Kandidaten, um das konventionell genutzte Indium-Zinn-Oxid (ITO), welches aufgrund seines hohen Preises und spröden Materialverhaltens einen stark begrenz Faktor bei der Herstellung von kostengünstigen, flexiblen, organischen Bauelementen darstellt, zu ersetzten. Zunächst werden langzeitstabile, effiziente, ITO-freie Solarzellen und transparente OLEDs auf der Basis von Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS) Elektroden beschrieben, welche mit Hilfe einer Lösungsmittel-Nachprozessierung und einer Optimierung der Bauelementstruktur hergestellt wurden. Zusätzlich wurde ein leistungsfähiges, internes Lichtauskopplungs-System für weiße OLEDs, basierend auf PEDOT:PSS-beschichteten Metalloxid-Nanostrukturen, entwickelt. Weiterhin werden hoch effiziente, ITO-freie OPV Zellen und OLEDs vorgestellt, bei denen mit verschiedenen nicht-metallischen Elementen dotierte ZnO Elektroden zur Anwendung kamen. Die optimierten ZnO Elektroden bieten im Vergleich zu unserem Laborstandard ITO eine signifikant verbesserte Effizienz. Abschließend werden semi-transparente OPV Zellen mit freistehenden Kohlenstoff-Nanoröhrchen als transparente Top-Elektrode vorgestellt. Die daraus resultierenden Zellen zeigen sehr niedrige Leckströme und eine zufriedenstellende Stabilität. In diesem Zusammenhang wurde auch verschiedene Kombinationen von Elektrodenmaterialen als Top- und Bottom-Elektrode für semi-transparente, ITO-freie OPV Zellen untersucht. Zusammengefasst bestätigen die Resultate, dass OPV und OLEDs basierend auf alternativen Elektroden vielversprechende Eigenschaften für die praktische Anwendung in der Herstellung von effizienten, kostengünstigen, flexiblen und semi-transparenten Bauelement besitzen
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Korell, Ulrich. "Electrochemistry at organic conducting salt electrodes." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Driscoll, B. J. "Enzyme electrodes using conducting organic salts." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stec, Helena M. "Metal window electrodes for organic photovoltaics." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57652/.

Повний текст джерела
Анотація:
The work presented in this thesis focuses on the development ultra-thin metal film electrodes for organic photovoltaics (OPVs) with the aim of boosting device performance, lowering the cost and/or extending the range potential application. Chapter 1 gives a general overview of OPVs, including the materials used for their fabrication and the fundamental processes underpinning OPV’s operation. The experimental techniques and equipment used are described in Chapter 2. Chapter 3 describes the development of a solvent free method for the fabrication of highly transparent ultra-thin Au films on glass based on co-deposition of a mixed molecular adhesive layer prior to Au thermal evaporation. By integrating microsphere lithography into the fabrication process the transparency could be improved via the incorporation of a random array of micron-sized circular apertures into the film. In Chapter 4 it is shown that these films are amenable to rapid thermal annealing to realise highly crystalline window electrodes with improved transparency and conductivity. By capping these films with a very thin transition metal oxide layer their thermal stability can be dramatically improved, whilst at the same time improving their far field transparency. In Chapter 5 the molecular adhesive method for the fabrication of ultra-thin Au films on glass is translated to the technologically important flexible substrates and extended to the lower cost coinage metals Ag and Cu. In Chapter 6 a lithography-free approach to fabricating thin Au and Ag films with a dense array of sub-wavelength apertures is reported. These electrodes support surface plasmon resonances which couple strongly with visible light concentrating it near to the electrode surface, thereby increasing light harvesting. Chapter 7 shows how the electrodes developed in Chapter 3 can be used to investigate a fundamental question of importance in OPV research and indicates the direction of future work. The results of chapters 3, 5 and 6 have been published in peer reviewed scientific journals.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Selzer, Franz. "Transparent Electrodes for Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199652.

Повний текст джерела
Анотація:
The aim of this work was to investigate silver nanowire as well as carbon nanotube networks as transparent conducting electrodes for small molecule organic solar cells. In the framework of the nanowire investigations, a low-temperature method at less than 80 °C is developed to obtain highly conductive networks directly after the deposition and without post-processing. In detail, specific non-conductive organic materials act as a matrix where the nanowires are embedded in such that a mutual attraction based on capillary forces and hydrophobic interaction is created. This process is mediated by the ethanol contained in the nanowire dispersion and works only for sublayer materials which exhibit hydrophobic and hydrophilic groups at the same time. In contrast to high-temperature processed reference electrodes (210 °C for 90 min) without matrix, a slightly lower sheet resistance of 10.8 Ohm/sq at a transparency of 80.4 % (including substrate) is obtained by using polyvinylpyrrolidone as the sublayer material. In comparison to annealed silver nanowire networks, the novel approach yields a performance enhancement in corresponding organic solar cells which can compete with ITO-based devices. Furthermore, a novel approach for scalable, highly conductive, and transparent silver nanowire top-electrodes for organic optoelectronic devices is introduced. By utilizing a perfluorinated methacrylate as stabilizer, silver nanowires with high aspect ratio can be transferred into inert solvents which do not dissolve most organic compounds making this modified dispersion compatible with small molecule and polymer-based organic optoelectronic devices. The inert silver nanowire dispersion yields highly performing top-electrodes with a sheet resistance of 10.0 Ohm/sq at 80.0 % transparency (including substrate) directly after low-temperature deposition at 30 °C and without further post-processing. In comparison to similarly prepared reference devices comprising a thin-metal film as transparent top-electrode, reasonable power conversion efficiencies are demonstrated by spray-coating this dispersion directly on simple, air-exposed small molecule-based organic solar cells. Moreover, a deeper understanding of the percolation behavior of silver nanowire networks has been achieved. Herein, direct measurements of the basic network parameters, including the wire-to-wire junction resistance and the resistance of a single nanowire of pristine and annealed networks have been carried out for the first time. By putting the values into a simulation routine, a good accordance between measurement and simulation is achieved. Thus, an examination of the electrical limit of the nanowire system used in this work can be realized by extrapolating the junction resistance down to zero. The annealed silver nanowires are fairly close to the limit with a theoretical enhancement range of only 20 % (common absolute sheet resistance of approximately 10 Ohm/sq) such that a significant performance improvement is only expected by an enlargement of the nanowire length or by the implementation of new network geometries. In addition, carbon nanotube networks are investigated as alternative network-type, transparent bottom-electrode for organic small molecule solar cells. For that purpose, cleaning and structuring as well as planarization procedures are developed and optimized which maintain the optoelectronic performance of the carbon nanotube electrodes. Furthermore, a hybrid electrode consisting of silver nanowires covered with carbon nanotubes is fabricated yielding organic solar cells with only 0.47 % power conversion efficiency. In contrast, optimized electrodes comprising only carbon nanotubes show significantly higher efficiency. In comparison to identically prepared ITO devices, comparable or lower power conversion efficiencies of 3.96 % (in p-i-n stack), 4.83 % (in cascade cell) as well as 4.81 % (in p-n-i-p architecture) are demonstrated. For an inverted n-i-p stack design, the highest power conversion efficiency of 5.42 % is achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hutter, Oliver S. "Nanostructured copper electrodes for organic photovoltaics." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/71005/.

Повний текст джерела
Анотація:
This thesis describes a body of original research focused on the development of a viable alternative to the indium-tin oxide (ITO) glass window electrode used in organic photovoltaic (OPV) devices, based on the use of ultra-thin Cu films. The first results chapter describes a low cost, robust Cu | Al bilayer window electrode that simultaneously functions as the low work function electron-extracting electrode and as a sink for oxygen/water molecules in OPVs. When the electrode is exposed to air, an ultra-thin oxide layer forms at its surface without any increase in surface roughness, and the sheet resistance of the electrode actually decreases. However, this electrode has the disadvantage of a lower far-field transparency than ITO glass. The second results chapter describes how the transparency of ultra-thin Cu films can be increased to a level comparable to that of ITO glass across most of the spectrum over which OPVs harvest light using an overlayer of tungsten sub-oxide (WO3-x) which is spontaneously doped with Cu, increasing both its refractive index and electrical conductivity. Unfortunately these electrodes are not air stable. The third results chapter describes how the developments described in the previous two chapters might be integrated to realise an electrode that is both air-stable and highly transparent. The final results chapter describes a very different approach to coupling light into an OPV based on a Cu electrode with a dense array of sub-optical wavelength apertures. These electrodes absorb light strongly, concentrating it as surface plasmon excitations. It is shown that this trapped light can be absorbed by the light harvesting organic semiconductor in organic photovoltaics so that electrodes with very low far-field transparency can perform as well as more transparent electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schubert, Sylvio. "Transparent top electrodes for organic solar cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162670.

Повний текст джерела
Анотація:
Organic solar cells offer attractive properties for novel applications and continuous advances in material and concept development have led to significant improvements in device performance. To exploit their full potential (roll-to-roll production of flexible and top-illuminated devices, using e.g. opaque metal foil or textile as substrate), highly transparent, conductive, mechanically flexible, and cost-efficient top electrodes are of great importance. The current standard material indium tin oxide (ITO) is rigid, expensive and requires a high energy / high temperature deposition process, limiting ITO (and other transparent conductive oxides) to bottom electrode applications. This work presents fundamental investigations to understand and control the properties of transparent conductors and documents four different approaches to prepare transparent electrodes on top of efficient small molecule organic solar cells, with the aim to replace ITO. Fullerene C60 layers are investigated as completely carbon-based electrodes. For an optimized doping concentration, sheet resistance and transmittance are improved and efficient solar cells are realized. Since the lateral charge transport is still limited, a combination with a microstructured conductor is suggested. Pulsed laser deposition allows for the first time a damage-free preparation of gallium doped zinc oxide (ZnO:Ga) layers on top of organic devices by careful optimization of the deposition atmosphere. ZnO:Ga electrodes with a transmittance of Tvis = 82.7 % and sheet resistance Rs = 83 Ohm/sq are obtained. The formation of local shunts due to ZnO:Ga droplets is identified and then prevented by a shadow mask between the target and the sample, enabling solar cells with similar efficiency (2.9 %) compared to a reference device using a state-of-the-art metal top contact. Another very promising alternative are intrinsically flexible, ultra-thin silver layers. By introducing an oxide interlayer, the adverse interpenetration of silver and organic materials is prevented and the charge extraction from the solar cells is improved. With a second oxide layer on top, the silver electrode is significantly stabilized, leading to an increased solar cell lifetime of 4500 h (factor of 107). Scanning electron micrographs of Ag thin films reveal a poor wetting on organic and oxide substrates, which strongly limits the electrode performance. However, it is significantly improved by a 1 nm thin seed layer. An optimized Au/Ag film reaches Tvis = 78.1 % and Rs = 19 Ohm/sq, superior to ITO. Finally, silver electrodes blended with calcium show a unique microstructure which enables unusually high transmittance (84.3 % at 27.3 Ohm/sq) even above the expectations from bulk material properties and thin film optics. Such values have not been reached for transparent electrodes on top of organic material so far. Solar cells with a Ca:Ag top electrode achieve an efficiency of 7.2 %, which exceeds the 6.9 % of bottom-illuminated reference cells with conventional ITO electrodes and defines a new world record for top-illuminated organic solar cells. With these electrodes, semi-transparent and large-area devices, as well as devices on opaque and flexible substrates are successfully prepared. In summary, it is shown that ZnO:Ga and thin metal electrodes can replace ITO and fill the lack of high performance top electrodes. Moreover, the introduced concepts are not restricted to specific solar cell architectures or organic compounds but are widely applicable for a variety of organic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Kira, Aiko. "Nanostructured Hybrid Electrodes for Organic Photovoltaic Devices." 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tyler, Martin S. "Electrodes for top-illuminated organic photovoltaic devices." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/88398/.

Повний текст джерела
Анотація:
The work in this thesis focuses on the development of electrodes for top-illuminated organic photovoltaics (OPVs) and studies how their complex interactions with other layers affect the device. The development of a novel substrate electrode based on an Al | Cu bilayer capped with an ultra-thin Al layer is initially shown. This electrode offers the rare combination of high reflectivity, a very low work function of ~3.2 eV, and high stability towards oxidation. Photoelectron spectroscopy studies shows that an Al capping layer of ~1 nm in thickness is sufficient to block oxidation of the underlying Cu, which is remarkable given that the self-limiting oxide thickness for bulk Al is ≥2 nm. This promising substrate electrode is used to elucidate a new design rule for top-illuminated bulk-heterojunction OPVs. It is shown that for OPVs utilising high performance donor-type organic semiconductors in conjunction with a low work function electron extracting electrode, a barrier to hole-extraction spontaneously forms at the donor | electron-extracting electrode interface, blocking unwanted hole-extraction and negating the need for a hole-blocking layer, which simplifies the device architecture. This electrode design rule is underpinned by studies of the interfacial energetics with five widely used solution processed organic semiconductors as well as device based investigations. A novel organo-molybdenum oxide bronze is also developed which combines the function of wide band-gap interlayer for efficient hole-extraction with the role of a metal electrode seed layer, enabling the fabrication of highly transparent, low-sheet-resistance silver window electrodes for top-illuminated OPVs. Additionally, preliminary results relating to the fabrication of a model nanostructured reflective electrode are shown. This is designed to investigate the extent to which absorption of light can be enhanced in a top-illuminated OPVs by texturing the reflective substrate electrode.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

MacDonald, Gordon Alex. "Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/347338.

Повний текст джерела
Анотація:
This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide (TCO) electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles regarding the need for low cost power generation, the benefits of OPV technologies, as well as the key principles that govern the operation of OPV devices and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between an electrode, such as ITO, and an OSC such as the p-type OSC copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of J-V curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (nonohmic). These results strongly correlate with device PCE, as demonstrated through the controlled addition of insulating alkylphosphonic acid self-assembled monolayers (SAMs) at the ITO/CuPc interface. Subsequent chapters focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the organic semiconducting (OSC) active materials plays a critical role in determining the PCE of OPV devices and the appearance of, or lack thereof, UV light soaking sensitivity. For ZnO and fullerene interfaces, we have shown that either minimizing the oxygen partial pressure during ZnO deposition or exposure of ZnO to UV light minimizes the energetic offset at this interface and maximizes device PCE. We have used a combination of device testing, device modeling, and impedance spectroscopy to fully characterize the effects that energetic alignment has on the charge carrier transport and charge carrier distribution within the OPV device. This work can be found in Chapter 3 of this dissertation and is in preparation for publication. We have also shown that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines the local nucleation and growth of the sp-ZnO films. We demonstrate that this effects the morphology, the chemical resistance to etching as well as the surface electrical properties of the sp-ZnO films. This is likely due to differences in the surface mobility of sputtered Zn and O atoms on these crystal faces during film nucleation. This affects the nanoscale distribution of electrical and chemical properties. As a result we demonstrate that the PCE, and UV sensitivity of the J-V response of OPVs using sp-ZnO ESLs are strongly impacted by the distribution of ITO crystal faces at the surface of the substrate. This work can be found in Chapter 4 of this dissertation and is in preparation for publication. These studies have contributed to a detailed understanding of the role that electrical heterogeneity, insulating barriers and energetic alignment at the MO/OSC interface play in OPV PCE.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Tomita, Yuto. "Alternative transparent electrodes for organic light emitting diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1236711483222-35217.

Повний текст джерела
Анотація:
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zaballa, Vicente. "Photoelectrocatalytic degradation of organic pollutants with TiOâ‚‚ electrodes." Thesis, University of Strathclyde, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Tomita, Yuto. "Alternative transparent electrodes for organic light emitting diodes." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23806.

Повний текст джерела
Анотація:
Solid state lighting is a new environmentally friendly light source. So far, light emitting diodes (LEDs) and organic LEDs (OLEDs) have been presented as candidates with potentially high efficiency. Recent advances of OLEDs in device architecture, light-out coupling, and materials have ensured high efficiency, exceeding that of incandescent light bulbs. In contrast to conventional point source LEDs, OLEDs distribute light throughout the surface area and are not restricted by their size. Additionally, OLEDs are expected to reach sufficient stability in the near future. The remaining challenge for OLEDs is their cost. New OLED technologies provide cost effective manufacturing methods which could be presented for transparent electrode materials because indium tin oxide (ITO), a widely used material as a transparent electrode for OLEDs, is less than optimal due to its high element price. In this work, alternative transparent electrodes for OLEDs as a replacement of ITO were studied. First, Al doped ZnO (ZnO:Al) which is composed of abundant materials was investigated with DC magnetron sputtering under a wide range of experimental conditions. The optimised ZnO:Al received comparable performance with conventional ITO films, low sheet resistance of 22.8 Ω/sq as well as a high transparency of 93.1 % (average value in the visible range). Various type of p-i-n OLEDs were employed on the structured ZnO:Al using photolithography. Green OLEDs with double emission layers have been archived stable efficiencies even at higher luminance. Also, OLEDs using two fluorescent colour system on ZnO:Al anode showed a purely white emission. It has been found that the OLEDs on ZnO:Al anode has comparable or better device efficiencies and operational lifetime compared to OLEDs on conventional ITO anode. As another alternative electrode, the conductive polymer Baytron®PH510 (PEDOT:PSS) was investigated. Due to a relatively high sheet resistance of PEDOT:PSS, metal grid was designed for large size OLEDs. White OLEDs on PEDOT anode with a size of 5 × 5 cm2 have achieved more than 10 lm/W of power efficiency using a scattering foil. Furthermore, up-scaled devices on 10 × 10 cm2 were also demonstrated. These results showed ZnO:Al and PEDOT are suitable for OLEDs as anode and have high potential as alternative transparent electrode materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kondo, Takeshi. "Current-voltage characteristics of organic semiconductors interfacial control between organic layers and electrodes /." Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-05022007-122219/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2008.
Dr. Marder Seth R, Committee Chair ; Dr. Kippelen Bernard, Committee Co-Chair ; Dr. Brďas Jean-Luc E, Committee Member ; Dr. Perry Joseph W, Committee Member ; Dr. Srinivasarao Mohan, Committee Member.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Harrington, Tomas Seosamh. "Gas diffusion electrodes for environmental applications." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Sun, Jiaxin. "Stacked organic light-emitting diodes with metallic intermediate electrodes /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20SUNJ.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tvingstedt, Kristofer. "Light Trapping and Alternative Electrodes for Organic Photovoltaic Devices." Doctoral thesis, Linköpings universitet, Biomolekylär och Organisk Elektronik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17229.

Повний текст джерела
Анотація:
Organic materials, such as conjugated polymers, have emerged as a promising alternative for the production of inexpensive and flexible photovoltaic cells. As conjugated polymers are soluble, liquid based printing techniques enable production on large scale to a price much lower than that for inorganic based solar cells. Present day state of the art conjugated polymer photovoltaic cells are comprised by blends of a semiconducting polymer and a soluble derivative of fullerene molecules. Such bulk heterojunction solar cells now show power conversion efficiencies of up to 4-6%. The quantum efficiency of thin film organic solar cells is however still limited by several processes, of which the most prominent limitations are the comparatively low mobility and the high level of charge recombination. Hence organic cells do not yet perform as well as their more expensive inorganic counterparts. In order to overcome this present drawback of conjugated polymer photovoltaics, efforts are continuously devoted to developing materials or devices with increased absorption or with better charge carrier transporting properties. The latter can be facilitated by increasing the mobility of the pure material or by introducing beneficial morphology to prevent carrier recombination. Minimizing the active layer film thickness is an alternative route to collect more of the generated free charge carriers. However, a minimum film thickness is always required for sufficient photon absorption. A further limitation for low cost large scale production has been the dependence on expensive transparent electrodes such as indium tin oxide. The development of cheaper electrodes compatible with fast processing is therefore of high importance. The primary aim of this work has been to increase the absorption in solar cells made from thin films of organic materials. Device construction, deploying new geometries, and evaluation of different methods to provide for light trapping and photon recycling have been strived for. Different routes to construct and incorporate light trapping structures that enable higher photon absorption in a thinner film are presented. By recycling the reflected photons and enhancing the optical path length within a thinner cell, the absorption rate, as well as the collection of more charge carriers, is provided for. Attempts have been performed by utilizing a range of different structures with feature sizes ranging from nanometers up to centimeters. Surface plasmons, Lambertian scatterers, micro lenses, tandem cells as well as larger folded cell structures have been evaluated. Naturally, some of these methods have turned out to be more successful than others. From this work it can nevertheless be concluded that proper light trapping, in thin films of organic materials for photovoltaic energy conversion, is a technique capable of improving the cell performance. In addition to the study of light trapping, two new alternative electrodes for polymer photovoltaic devices are suggested and evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Makgae, Mosidi Elizabeth. "Environmental electrochemistry of organic compounds at metal oxide electrodes." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49947.

Повний текст джерела
Анотація:
Dissertation (PhD)--Stellenbosch University, 2004.
ENGLISH ABSTRACT: This study investigates the electrochemical oxidation of phenol. Phenol is a major toxin and water pollutant. In addition, during water treatment it reacts with chlorine to produce carcinogenic chlorophenols. lts treatment down to trace levels is therefore of increasing concern. For this purpose, dynamically stable anodes for the breakdown of phenols to carbon dioxide or other less harmful substances were developed and characterized. The anodes were prepared from mixed oxides of tin (Sn) and the precious metals ruthenium (Ru), tantalum (Ta) and iridium (Ir), which in tum were prepared using sol-gel techniques. This involved dip-coating the aqueous salts of the respective metals onto titanium substrates and heating to temperatures of several hundreds of degree Celsius. The properties of these mixed oxide thin films were investigated and characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), elemental dispersive energy X-ray analysis (EDX), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), particle induced X-ray emission (PIXE) and electrochemical measurements. A variety of different electrode materials including Til Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 and Ti/RhOx-Ir02 were developed and tested for their potential as oxidation catalysts for organic pollutants in wastewaters. Depending on the anode type, phenol was found to be electrochemically degraded, to different extents, on these surfaces during electrolysis. It was however found that the oxidation rate not only depended on the chemical composition but also on the oxide morphology revealed, resulting from the preparation procedure. The Ti/SnOz-Ru02-Ir02 film was found to be the most efficient surface for the electrolytic breakdown of phenol. This film oxidized phenol at a potential of 200 mV vs Ag/AgC!. The activity of the catalytic systems was evaluated both on the basis of phenol removal efficiency as well as the kinetics of these reactions. Phenol removal efficiency was more than 90% for all the film surfaces prepared and the rate of the reaction followed first order kinetics. A pathway for the electrochemical degradation of phenol was derived using techniques such as HPLC to identify the breakdown products. These pathway products included the formation of benzoquinone and the further oxidation of benzoquinone to the carboxylic acids malic, malonic and oxalic.
AFRIKAANSE OPSOMMING: Die onderwerp van hierdie studie is die elektrochemiese oksidasie van fenol deur nuwe gemengde-oksied elektrodes. Fenol is 'n belangrike gifstof en besoedelingsmiddel in water. Daarbenewens kan fenolook met chloor reageer tydens waterbehandeling om sodoende karsinogeniese chlorofenole te vorm. Dit is dus belangrik dat metodes ondersoek word wat die konsentrasie van fenol in water verminder. Hierdie studie behels die bereiding en karakterisering van nuwe dinamiese stabiele anodes (DSA) vir die afbreek van fenol tot koolstofdioksied en ander minder gevaarlike verbindings. Hierdie nuwe anodes is berei vanaf die gemengde-okside van die edelmetale tin (Sn), ruthenium (Ru), tantalum (Ta) en iridium (Ir), met behulp van sol-gel tegnieke. Die finale stap in die bereiding behels kalsinering van die oksides by temperature van "n paar honderd grade Celsius. Hierdie nuwe elektrodes is later gebruik om die oksidasie van fenol te evalueer. Die gemengde-oksied dunlae/anodes IS d.m.v. die volgende analitiesetegnieke gekarakteriseer: termiese-gravimetriese analise (TGA), skandeerelektronmikroskopie (SEM), atoomkragmikroskopie (AFM), elementverstrooiingsenergie- X-straalanalise (EDX), X-straaldiffraksie (XRD), Rutherford terug-verstrooiingspektroskopie (RBS), partikel-geinduseerde X-straal emissie (PIXE), en elektrochemiese metings. 'n Verskeidenheid elektrodes van verskillende materiale is berei en hul potensiaal as oksidasie-kataliste vir organiese besoedelingsmiddels in afloopwater bepaal. Hierdie elektrodes het die volgende ingesluit: Ti/Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 en Ti/RhOx-Ir02. Gedurende elektrolise is fenol elektrochemies afgebreek tot verskillende vlakke, afhangende van die tipe elektrode. Die oksidasietempo het egter nie alleen van die chemiese samestelling van die elektrode afgehang nie, maar ook van die morfologie van die okside, wat op hulle beurt van die voorbereidingsprosedure afgehang het. Daar is bevind dat die Ti/Sn02-Ru02-Ir02 elektrode die mees effektiewe oppervlakke vir die afbreek van fenol is. Hier het die oksidasie van fenol by 'n potensiaal van 200 mV plaasgevind. Die aktiwiteite van die katalitiese sisteme IS bepaal op grond van hulle fenolverwyderingsdoeltreffendheid. Die kinetika van die reaksies is ook bepaal. Al die elektrodes het >90% fenolverwyderingsdoeltreffendheid getoon en die reaksietempos was van die eerste-orde. Deur van analitiese tegnieke soos hoëdrukvloeistofchromatografie (HPLC) gebruik te maak is die afbreekprodukte van fenol geïdentifiseer en 'n skema vir die elektrochemiese afbreek van fenol uitgewerk. Daar is bevind dat bensokinoon gevorm het, wat later oksidasie ondergaan het om karboksielsure te vorm.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bormann, Jan Ludwig. "Transparent Silver Nanowire Bottom Electrodes in Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-216346.

Повний текст джерела
Анотація:
Organic solar cells (OSCs) is an emerging photovoltaic technology that opens up new application areas where common inorganic techniques are not able to score. Some of those key features are flexibility, light weight, semitransparency, and low cost processing. The current industry-standard for the transparent electrode, indium tin oxide (ITO), cannot provide these properties because it is brittle and expensive. This thesis aims to investigate an alternative type of promising transparent electrode: silver nanowire (AgNW) networks. They exhibit similar or even better optical and electrical performance than ITO down to a sheet resistance of 12 Ohm/sq at 84% transmission (including the glass substrate). Furthermore, AgNWs are more flexible, solution-processable, and more cost-effective than ITO. However, two challenges occur during implementation as bottom electrode in OSCs. First, their inherently high roughness causes devices to shunt. Second, the AgNW network structure exhibits – in contrast to the continuous ITO – µm²-sized voids that have to be bridged electrically by the organic layers. In the first part of this thesis, solution-processed small molecule charge transport layers are investigated. In the case of hole transport layers (HTL), the host BF-DPB and the dopant NDP9 are investigated using tetrahydrofuran as a solvent. It is shown that BF-DPB is already doped by NDP9 in solution via the formation of a hybrid molecule complex. Solution-processed layers exhibit similar conductivities as compared to the reference deposition, which is thermal evaporation in high vacuum. The layers sufficiently smoothen the AgNW electrode such that DCV5T-Me:C60 organic solar cells with an efficiency up to 4.4% are obtained. Moreover, the influence of the square micrometer large network voids is investigated using HTLs of varying conductivity. As a result, a minimum conductivity of 1e−4 S/cm is needed to avoid macroscopic performance losses. Equivalent circuit simulations are performed to confirm these results. As a second planarization method, the AgNWs are buried in an insulating polymer that serves concurrently as flexible and ultrathin substrate. Out of three different polymers tested, the optical adhesive ’NOA63’ gives the best results. The roughness is strongly reduced from 30 nm down to (2 ± 1) nm. Two different OSC types are employed as testing devices with fully-flexible alumina encapsulation against moisture ingress. Maximum power conversion efficiencies of 5.0% and 5.6% are achieved with a fullerene-free cascade layer architecture and a DCV5T-Me:C60 OSC, respectively. To evaluate the applicability of these fully-flexible and encapsulated devices, degradation studies are performed under continuous illumination and a humid climate. Although employing the intrinsically stable DCV5T-Me:C60 stack design, within one day a fast degradation of the fully-flexible solar cells is observed. The degradation is attributed to AgNW electrode failure that results from photo-oxidation and -sulfurization, photo-migration, and electromigration. It is further shown that the cascade organic solar cell lacks intrinsic stability. In summary, efficient, fully-flexible, and encapsulated devices are shown. However, in terms of competitive OSCs, the low stability of AgNW electrodes is a challenge to be taken care of. In current research, this issue needs to be addressed more frequently
Organische Solarzellen (OSZ) sind ein junges Forschungsgebiet der Photovoltaik, welches neue Anwendungsgebiete erschließt, für die herkömmliche anorganische Solarzellen nicht einsetzbar sind. Einige der Haupteigenschaften sind Flexibilität, niedriges Gewicht, Teiltransparenz und geringe Herstellungskosten. Indiumzinnoxid (ITO), der aktuelle Industriestandard transparenter Elektrodentechnologie, ist nicht in der Lage, diese Eigenschaften zu gewährleisten. Dies liegt vor allem an der Brüchigkeit von ITO und der begrenzten Verfügbarkeit von Indium, welche mit einem hohen Preis einhergeht. Das Ziel dieser Dissertation ist die Integration einer alternativen und vielversprechenden Elektrodentechnologie: Netzwerke aus Silbernanodrähten (AgNWs). Mit einem Schichtwiderstand von 12 Ohm/sq bei einer Transmission von 84% (inklusive Glassubstrat) besitzen sie ähnliche oder sogar bessere optische und elektrische Eigenschaften als ITO. Des Weiteren sind AgNW-Elektroden flexibler und kostengünstiger als ITO und aus flüssiger Phase prozessierbar. Es gibt allerdings zwei Herausforderungen, welche die Integration als Grundelektrode in OSZ erschweren. Zum einen sind AgNW-Netzwerke sehr rauh, sodass organische Bauteile kurzgeschlossen werden. Zum anderen weisen AgNW-Elektroden, im Gegensatz zu einer vollflächigen ITO-Schicht, Lücken zwischen den einzelnen Drähten auf. Diese Lücken müssen von den organischen Schichten der OSZ elektrisch überbrückt werden. Im ersten Teil der Arbeit werden daher flüssigprozessierte Ladungsträgertransportschichten aus kleinen Molekülen untersucht, welche die AgNW-Elektroden glätten und die verhältnismäßig großen Lücken füllen sollen. Im Falle von Lochleitschichten (HTL) wird BF-DPB als Matrix und NDP9 als Dotand in Tetrahydrofuran gelöst und zur Anwendung gebracht. BF-DPB wird dabei schon in Lösung von NDP9 dotiert, wobei sich ein Hybridmolekülkomplex ausbildet. Die Leitfähigkeit der entstehenden Schichten ist ähnlich zu Referenzschichten, die durch thermisches Verdampfen im Hochvakuum hergestellt wurden. Die erhaltenen HTLs glätten die AgNW-Elektroden, sodass DCV5T-Me:C60-Solarzellen mit einer Effizienz von maximal 4.4% hergestellt werden können. Weiterhin wird der Einfluss der quadratmikrometergroßen Löcher auf die makroskopische Effizienz der Solarzelle in Abhängigkeit der HTL Leitfähigkeit untersucht. Um signifikante Effizienzverluste zu verhindern, muss der HTL eine minimale Leitfähigkeit von etwa 1e−4 S/cm aufweisen. Simulationen eines Ersatzschaltkreises bestätigen hierbei die experimentellen Ergebnisse. Im zweiten Teil der Arbeit wird eine Planarisierungsmethode untersucht, in welcher die AgNWs in nichtleitfähigen Polymeren eingebettet werden. Diese Polymere fungieren anschließend als flexibles Substrat. Der optische Kleber ”NOA63” erzielt hierbei die besten Ergebnisse. Die Rauheit der AgNW-Elektroden wird von etwa 30 nm auf 1 bis 3 nm stark reduziert. Anschließend werden diese AgNW-Elektroden in zwei unterschiedlichen OSZ Konfigurationen getestet und mit einer vollflexiblen Schicht aus Aluminiumoxid gegen Wasserdampfpermeation verkapselt. Somit können maximale Effizienzen von 5% mithilfe einer organischen Kaskadenstruktur und 5.6% mit DCV5T-Me:C60 OSZ erreicht werden. Um die Anwendbarkeit dieser vollflexiblen und verkapselten OSZ zu bewerten, werden Alterungsstudien unter konstanter Beleuchtung und feuchtem Klima durchgeführt. Es wird gezeigt, dass die in das Polymer eingebettete AgNW-Elektrode aufgrund von Photooxidation und -schwefelung und Photo- und Elektromigration instabil ist. Dieser Sachverhalt ist für die Anwendung von AgNW-Elektroden in kommerziellen OSZ von großer Bedeutung und wurde in der Forschung bisher nicht ausreichend thematisiert
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Park, Yoonseok. "Light trapping substrates and electrodes for flexible organic photovoltaics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219686.

Повний текст джерела
Анотація:
Organic solar cells are one of the most promising candidates for future solar power generation. They are thin and lightweight with several additional advantages such as scalability, environmental sustainability and low cost for processing and installation. However, the low charge carrier mobility of the absorbing material for organic solar cells requires thin absorber layers, limiting photon harvesting and the overall power conversion efficiency. Several attempts, e.g., periodically patterned structures and scattering layers have been tried to enhance the absorption of thin-film solar cells as light trapping elements. However, much effort is required to introduce light trapping structures to conventional rigid metal oxide electrodes and glass substrate. For instance, almost 13 hours are required to fabricate micro structures of 1 m2 area on glass, in contrast, 1 minute on PET using a same laser set-up and an additional scattering layers are demanded for providing light trapping effects to solar cells. In the last years, flexibility is emerging as the one of the major advantages of organic solar cells. To realize flexibility of solar cells, the classically used glass substrates and ITO electrodes are too brittle. Therefore, polymer materials are promising candidates to replace them as flexible electrodes and substrates. In this thesis, the highly transparent conducting polymer, PEDOT:PSS and PET equipped with an AlOx encapsulation layer are used as electrode and substrate, respectively. Besides the flexibility, additional light trapping elements, e.g. scattering particles, nano- and microstructures can be easily applied to the polymer materials since they have the potential for easier shaping and processing. In this study, we apply different light trapping and in-coupling approaches to organic solar cells. First, PET substrates are structured with a direct laser interference patterning system, which is a powerful and scalable one-step technique for patterning polymers. Almost 80 % of the light is diffracted by these patterned PET substrates and thereby the light path in the absorption layer is increased. Optical display films, commercially developed to be used as back light units of liquid crystal displays are also examined as light trapping substrates and exhibit similar enhancement as patterned PET. Moreover, since PEDOT:PSS is prepared by a solution-based process, TiO2 nanoparticles are added as light scattering elements to the PEDOT:PSS electrodes. Consequently, those electrodes provide a dual function as electrical contact and light trapping element. Finally, 2- or 3-dimensional nanostructures are printed by a nano-imprinting technique onto the surface of PEDOT:PSS with PDMS stamps. By controlling the temperature and the time of PEDOT:PSS during an annealing step, nanostructures are transferred from PDMS masks to PEDOT:PSS. To evaluate the effects of light trapping for all above mentioned approaches, flexible organic solar cells are produced by vacuum evaporation using blends of DCV5T-Me and C60 as absorber layer. The substrates are optically characterized using UV-vis spectrometer and goniometer measurements. The topography of the samples is measured by atomic force microscopy, scanning microscopy and optical microscopy. Bending tests with various radii are performed to test the flexibility of the substrates. In summary, light trapping effects are successfully implemented in the electrodes and substrates for OPVs, giving efficiency improvements of up to 16 %. The light trapping mechanisms in our approaches are extensively discussed in this thesis
Organische Photovoltaik ist einer der vielversprechendsten Kandidaten für die zukünftige Solarstromgewinnung auf flexiblen Substraten. Um diese Flexibilität zu ermöglichen, sind herkömliche Glassubstrate mit ITO-Elektroden zu spröde. Ein vielversprechender Kandidat, um sowohl flexible Elektroden als auch flexible Substrate herzustellen, sind Polymere, da diese sehr biegsam und leicht zu verarbeiten sind. Deshalb wird in dieser Arbeit das hoch transparente, leitfähige Polymer PEDOT:PSS als Elektrode und PET (mit einer AlOx Verkapselungsschicht) als Substrat untersucht. Aufgrund der guten Prozessierbarkeit der Polymere konnten wir zusätzlich zu den eigentlichen Funktionen des Substrates und der Elektrode noch den Mechanismus des Lichteinfangs hinzufügen. Zusätzlich zu ihrer Flexibilität haben organische Solarzellen noch weitere Vorteile: sie sind dünn, leicht, skalierbar und verursachen vergleichsweise geringe Kosten für Herstellung und Installation. Ein Nachteil organischer Solarzellen ist die vergleichsweise geringe Ladungsträgerbeweglichkeit der Absorbermaterialien, welche oft die Schichtdicke der Absorbermaterialien begrenzt. Dies hat weniger absorbierte Photonen, weniger Stromdichte und somit einen geringeren Wirkungsgrad zur Folge. In den letzten Jahren wurden periodisch strukturierte Substrate und streuende Schichten als Lichteinfangelemente eingesetzt, um den Wirkungsgrad organischer Solarzellen mit dünnen Absorberschichten zu erhöhen. Gestaltungsregeln für solche Lichteinfangelemente sind noch weitestgehend unbekannt. Im Rahmen dieser Arbeit strukturieren wir PET Substrate mit einem direkten Laserinterferenzsystem, welches ein leistungsfähiges, skalierbares Einschrittverfahren zur Polymerstrukturierung ist. Da PEDOT:PSS aus der Lösung prozessiert wird, können wir weiterhin Nanopartikel hinzufügen, die der Elektrode zusätzlich noch lichtstreuende Eigenschaften geben. Außerdem können 2- bzw. 3-dimensionale Nanostrukturen leicht mithilfe einer Stempeltechnik eingeprägt werden. Um die Effekte des Lichteinfangs, welcher durch die oben genannten Methoden erzeugt wird, zu untersuchen, werden flexible organische Solarzellen mittels Vakuumverdampfung prozessiert. DCV5T-Me und C60 bilden dabei die photoaktive Schicht. Somit werden die Licht fangenden Eigenschaften dieser flexiblen Solarzellen ausgenutzt und ausführlich in der Arbeit diskutiert
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lee, Min-Hsuan. "Solution-processable organic-inorganic hybrid transparent electrode for optoelectronic applications." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/320.

Повний текст джерела
Анотація:
The aim of this PhD thesis is to undertake a comprehensive research to study the optical, electrical, surface electronic and morphologic properties, formulation and surface modification of solution processable organic-inorganic hybrid transparent electrodes as well as their applications in optoelectronic devices. In this study, MoO3 nanoparticles and graphene oxide (GO) nanosheets were incorporated into the poly(3,4-ethylenedioxythiophene) -poly(styrenesulfonate) (PEDOT:PSS) layer forming a hybrid anode interfacial layer (AIL) and subsequently a hybrid transparent electrode of AIL/silver nanowires (AgNWs), significantly improved charge injection in CdSe/ZnS-based quantum dot-light emitting diodes (QD-LEDs) and charge collection in bulk heterojunction (BHJ) organic solar cells (OSCs). The effect of oxidation behavior and charge transfer between PEDOT and MoO3, as well as PEDOT and GO, on the enhancement in conductivity of hybrid PEDOT:PSS-MoO3 and PEDOT:PSS-GO AILs was investigated systematically. The presence of a PEDOT:PSS-MoO3 AIL promotes a good interfacial contact between the hole transporting layer (HTL) and the solution-processed hybrid transparent electrode for efficient operation of QD-LEDs. This work reveals that the use of the hybrid PEDOT:PSS-MoO3 AIL benefits the performance of QD-LEDs in two ways: (1) to assist in efficient hole injection, thereby improving luminous efficiency of QD-LEDs, and (2) to improve electron-hole current balance and suppression of interfacial defects at the QD/electrode interface. The surface wettability of the PEDOT:PSS-MoO3 AIL was controlled successfully for making a good contact between the HTL and the AgNWs, enabling efficient charge injection or charge collection, and thereby improvement in the device performance. The effect of PEDOT:PSS-GO AIL on the performance of transparent QD-LEDs was also analyzed. The maximum brightness of the transparent QD-LEDs, made with a solution-processed hybrid top transparent electrode of PEDOT:PSS-GO/AgNWs, is 3633 cd/m2 at 15 V, comparable to that of a structurally identical control QD-LED made with an evaporated Ag electrode, with a brightness of 4218 cd/m2 operated under the same condition. The change in the hydrophobicity of the PEDOT:PSS-GO AIL, e.g., from the hydrophobic to hydrophilic characteristics, was observed. The interaction between PEDOT and GO nanosheets induces the transition between benzoid-quinoid structures, contributing to the enhanced charge carrier transport via the PEDOT:PSS-GO AIL. The energy level alignment at the HTL/electrode interface and the excellent electrical conductivity of PEDOT:PSS- GO/AgNWs transparent electrode result in an obvious improvement in the performance of QD-LEDs. Transparent QD-LEDs also demonstrated remarkable efficiency via cathode interfacial engineering. Two cathode interfacial modifications include incorporating (1) a hybrid bathophenanthroline (Bphen):Cs2CO3-based electron transporting buffer layer (EBL) and (2) a conjugate polymer of poly[(9,9-bis(3'-((N,N-dimethyl)-N-ethylammonium)-propyl)-2,7- fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-Br)-based EBL. The approach of n-doping effect in the BPhen:Cs2CO3 EBL not only modifies the surface electronic properties of the ZnO electron transporting layer (ETL) but also improves the electron injection at the QD/cathode interface. The n-doping mechanism in the Bphen:Cs2CO3 EBL was investigated. PFN-Br EBL has also been employed to tune the surface work function of ZnO ETL. It was observed that the ZnO/PFN-Br formed an interfacial dipole at the ETL/QD interface, which is suitable for efficient electron injection in the transparent QD-LEDs. In order to improve electron-hole current balance, a GO/MoO3-based multilayer AIL was adopted facilitating efficient charge transfer through improved energy level alignment at the HTL/hybrid electrode interface. Photoelectron spectroscopy revealed tuned surface work function with reduced interfacial barrier for efficient hole injection in transparent QD-LEDs. In these devices, the cathode and anode interfacial modifications have been optimized and studied. This study was also extended to investigate the effect of the organic-inorganic hybrid electrode on performance enhancement of all solution processable organic solar cells (OSCs). The reduction in series resistance and increase in shunt resistance of solution-processed OSCs originated from improved contact selectivity as well as enhanced charge collection efficiency. These properties are reflected in the significantly improved fill factor and short-circuit photocurrent density for the all solution-processed OSCs. Enhanced charge collection at the BHJ/electrode interfaces and improved process compatibility are mainly responsible for efficiency improvement in the cells. The outcomes of this work would allow further advances in device performance. This research also highlights the need to explore interfacial electronic properties and reduce energetic barrier at BHJ/electrode interfaces in fully solution-processed OSCs through photoelectron spectroscopy measurements. The results of this research demonstrate that the solution processable organic-inorganic hybrid transparent electrode developed in this work is beneficial for application in fully solution-processed optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Chari, Tarun. "Reduced graphene oxide based transparent electrodes for organic electronic devices." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104534.

Повний текст джерела
Анотація:
This thesis explores the utility of reduced graphene oxide and hybrid reduced graphene oxide/single walled carbon nanotubes as a transparent electrode. Graphene oxide was fabricated using the modified Hummers method, transferred to arbitrary substrates by a vacuum filtration method, and reduced chemically and thermally thus creating thin, large area reduced graphene oxide films. Films were characterized electrically, optically, spectroscopically, and topographically. Raman and X-ray photoelectron spectroscopy techniques were utilized to ensure successful fabrication of reduced graphene oxide. The reduced graphene oxide electrodes exhibit sheet resistances on the order of 10 – 100 kΩ/sq with transparencies between 60 – 90 %. To ameliorate these electronic properties, single walled nanotubes were introduced during the filtration process to separate the graphene oxide nanoplatelets and prevent structural deformation during reduction. This nanotube doping yielded a two-fold decrease in sheet resistance for low nanotube to graphene oxide ratios, but increased sheet resistance for higher nanotube to graphene oxide ratios. Reduced graphene oxide electrodes and nanotube/reduced graphene oxide hybrid electrodes were used in organic light emitting diode and organic solar cell applications. Organic light emitting diodes exhibited current efficiencies of about 1 cd/A and organic solar cells exhibited power conversion efficiencies less than 1 % for both reduced graphene oxide and hybrid electrodes.
Cette thèse examine l'utilité de l'oxyde de graphène réduit et de l'hybride oxyde de graphène réduit et nanotubes carbone en fonction d'une utilisation comme électrode transparente. L'oxyde de graphène a été fabriqué par la méthode de Hummers modifié puis a été transféré sur un substrat arbitraire par la méthode de filtration avec suction à vide, et a été réduit chimiquement et thermiquement pour créer des feuilles d'oxyde de graphène réduit qui sont minces et qui couvrent une grande surface. Les feuilles ont été caractérisées par des mesures électriques, optiques, spectroscopiques, et topographiques. Les spectroscopies Raman et par photoélectron induits par rayons-X ont été utilisées pour s'assurer que la fabrication de l'oxyde de graphène reduit a été obtenue. Les électrodes d'oxyde de graphène reduit montrent des résistances de feuille de 10– 100 kΩ/sq avec des transparences entre 60 – 90 %. Pour améliorer ces propriétés, des nanotube de carbone monoparois ont été introduits pendant le processus de filtration pour séparer les nanoplatelets d'oxyde de graphène et pour éviter la déformation structurelle pendant la processus de réduction. Ce dopage de nanotubes a diminué la résistance de feuille par un facteur deux pour des proportion faibles de nanotubes avec l'oxyde de graphène, mais a augmenté la resistance pour les hautes proportions. Les électrodes d'oxyde de graphène reduit et les électrodes hybrides nanotubes/oxyde de graphène reduit ont été utilisées dans des dispositifs optoélectroniques organiques; spécialement des diodes électroluminescentes et des cellules solaires. Les diodes électroluminescentes organiques ont des rendements de courant inferieurs à 1 cd/A et les cellules solaire ont des rendements de puissance inferieurs à 1 % pour les deux types d'életrodes: oxyde de graphène réduit et hybrides.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zhao, Shishan. "Bioelectrocatalysis at organic conducting salt electrodes : mechanism and biosensor development." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70278.

Повний текст джерела
Анотація:
A detailed, unified description of electrocatalytic mechanisms at organic conducting salt (OCS) electrodes, tetrathiafulvalene tetracyanoquinodimethane (TTFTCNQ) and hexamethylenetetratellurafulvalene tetracyanoquinodimethane (HMTTeFTCNQ), has been presented. A wide spectrum of behavior is observed depending on the electrochemical and kinetic characteristics of the analyte of interest, the nature of the OCS, and the applied potential. Both direct electron transfer and indirect (homogeneous and heterogeneous) mediation mechanisms are shown to arise, depending on the experimental conditions.
The redox chemistry of the coenzyme, pyrroloquinoline quinone (PQQ), has been investigated in detail as a function of metal complex formation and pH. The characterization of PQQ and its metal complexes provides insight into the redox chemistry of the 15-lipoxygenase active site.
A biosensor involving the coupling of a PQQ-enzyme, methanol dehydrogenase (EC 1.1.99.8.), to a TTFTCNQ electrode has been developed. Characterization of this enzyme membrane electrode shows that the substrate-reduced enzyme is rapidly turned over at the TTFTCNQ electrode whereas no turnover is evident at a conventional electrode. Enzyme properties (K$ sb{ rm me},$ stability, T$ sb{ rm sensitivity},$ pH dependence, substrate selectivity), when interfaced to the electrode, are reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Cruz, Hugo Cardoso da. "Development of electrodes in polymeric flexible substrates for organic biosensors." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/16270.

Повний текст джерела
Анотація:
Mestrado em Engenharia Física
The increase of organic electronics and consequently, the development of sensors based on organic polymers have attracted a lot of attention of the scientific community. Intrigued by these multifunctional, easily processed and low cost materials, it has started to develop odour biosensors for different applications, including medical field and the detection of various diseases. The present work, is focused in the scaling-up of a devoted laboratory approach, in particular concerning the development of organic odour biosensors (electronic nose concept) based on a conductive polymer (PEDOT:PSS) in a pre-industrial approach and produced by means of electronic printing techniques, such as screen printing and slot die. New carbon microelectrodes with different geometrical parameters were designed and processed by the screen printing technique. Further, the slot die technique was applied in order to print the PEDOT:PSS film over the microelectrodes. After the fabrication process, the sensors were morphologically characterized by optical microscopy, atomic force microscopy, profilometry and electrically identified by the two points probe method. The sensors were tested with the use of different analytes with the main focus on two gynaecological analytes. The resistive and capacitive electrical sensor responses for the analytes were analysed and discussed in depth. Important results were obtained with regard to the influence of the geometrical parameters of the carbon microelectrodes and also to the polymer thickness. Finally, the tests on the sensors were also carried out with the use of other analytes which contained blue cheese.
O desenvolvimento de eletrónica orgânica e consequentemente o desenvolvimento de sensores baseados em polímeros orgânicos, atraíram a atenção da comunidade científica. Motivada pela multifuncionalidade, fácil processamento e baixo custo destes materiais, novos biossensores de odor para diversas aplicações começaram a ser desenvolvidos, incluindo na área médica, para a deteção de doenças. Este trabalho, baseou-se no processo de “scaling-up” de um trabalho prévio que teve um objetivo meramente laboratorial, em particular no desenvolvimento de biossensores orgânicos de odor (conceito de nariz eletrónico), baseados em polímeros orgânicos (PEDOT:PSS) num paradigma pré industrial e fabricados pelo meio de técnicas de impressão de eletrónica orgânica, tais como screen printing e slot die. Foram desenhados novos microelétrodos de carbono com diferentes parâmetros geométricos que foram posteriormente produzidos por screen printing. Através da técnica de impressa de slot die, foram posteriormente impresso filmes de PEDOT:PSS sobre os microelétrodos. Após o processo de fabrico, os sensores foram morfologicamente caraterizados por microscopia ótica, microscopia de força atómica, perfilometria e eletricamente caraterizados através da técnica de duas pontas. Os sensores foram testados para diferentes analitos, nomeadamente para dois analitos ginecológicos. A resposta resistiva e capacitiva dos sensores expostos aos analitos, foi obtida e analisada, com especial atenção na influência dos parâmetros geométricos dos microelétrodos de carbono e também na espessura do polímero. Por fim, os sensores foram também testados para outros analitos compostos por queijo azul.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chang, Ci'En Sharon. "Graphene modified indium tin oxide electrodes for organic solar cells." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/27645.

Повний текст джерела
Анотація:
In this thesis, we explore the use of graphene incorporated onto indium tin oxide (G/ITO) as a structural template to modify the orientation of copper phthalocyanine (CuPc) molecules for organic photovoltaic (OPV) device applications. We also investigate the effectiveness of 2,3,5,65 tetrafluoro57,7,8,85tetracyanoquinodimethane (F45TCNQ) as a work function modifier for G/ITO without compromising the templating properties of graphene. Photoemission spectroscopy (PES) is employed to assess the electronic properties at the anode5CuPc interface, while X5ray diffraction (XRD) and near5edge X5ray absorption fine structure (NEXAFS) are used to determine the molecular orientation of CuPc. OPV devices are fabricated to attempt to correlate the observations at the microscopic level with the macroscopic device performance. First, we investigate the electronic properties of CuPc deposited on G/ITO and ITO using PES. While the interaction between CuPc molecules and ITO and G/ITO is similar, the hole injection barrier (HIB) is ~0.9 eV for CuPc/G/ITO as compared to 0.5 eV for CuPc/ITO. Therefore, further modification of G/ITO to reduce the HIB is required. The XRD spectrum of CuPc molecules deposited onto graphene grown on copper foil (G/Cu) verifies that graphene is an effective structural template, causing CuPc molecules to 'lie' on the substrate. NEXAFS data shows that the orientation of CuPc molecules changes from 'standing' on ITO to 'tilted' on G/ITO. Next, the effectiveness of F45TCNQ deposited on ITO and G/ITO as a work function modifier is assessed. A thin layer of F45TCNQ is able to increase the substrate work function to ~5 eV, which is close to the ionization potential of CuPc molecules. This suggests that barrierless extraction of holes from CuPc into F45TCNQ modified ITO or G/ITO may be possible. F45TCNQ molecules are found to be predominantly tilted on G/ITO, suggesting that the templating property of graphene may be propagated through F45TCNQ molecules. CuPc molecules deposited onto F45 TCNQ/G/ITO attain a 'lying' configuration, confirming that the templating property of graphene is preserved despite the inclusion of a layer of F45TCNQ. The HIB is dramatically reduced to ~0.2 eV for CuPc/F45TCNQ/G/ITO, and ~0.1 eV for CuPc/F45TCNQ/ITO. Optical absorption of templated CuPc molecules over the visible range is enhanced by over 40% as compared to the non5templated molecules. Therefore, the structure of F45TCNQ/G/ITO appears to be a potential anode design to improve OPV device performance. Our test cells however do not show an improvement in OPV parameters due to the poor quality of transferred graphene, and the high series resistance in our unoptimized OPV device. Finally, the diffusion of F45TCNQ through a CuPc film is studied using time5of5flight secondary ion mass spectrometry (TOF5SIMS). The F5 depth profiles establish that a higher quantity of F45 TCNQ molecules diffuse into CuPc on the G/ITO sample. This is attributed to the weaker interfacial adhesion between F45TCNQ and graphene, and the crystallinity of the templated CuPc film. The quantity of diffused F45TCNQ in the G/ITO sample is only about 0.2 mol%. At this dopant concentration, the conductivity of the film should increase; thus doping of the whole organic film may be favourable for OPV devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mandelli, Jaqueline Stecanela. "Inkjet printing of flexible organic electrodes for tissue engineering applications." reponame:Repositório Institucional da UFSC, 2012. http://repositorio.ufsc.br/handle/123456789/103419.

Повний текст джерела
Анотація:
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Florianópolis, 2012
Made available in DSpace on 2013-07-16T04:33:33Z (GMT). No. of bitstreams: 1 317340.pdf: 4306251 bytes, checksum: 3bc9d5a997edf02699f74ef5688604a9 (MD5)
A tecnologia de impressão por jato de tinta vem demonstrando ser capaz de imprimir todos os materiais necessários para a fabricação de circuitos integrados, apresentando baixos custos de fabricação quando comparada às técnicas convencionais utilizadas com silício. Com o advento da eletrônica orgânica, uma ampla gama de materiais tornou-se disponível e a fabricação de dispositivos com propriedades únicas com a interface biológica é agora possível. Um exemplo importante é a utilização de eletrodos metálicos revestidos com polímeros condutores implantados no sistema nervoso central, proporcionando estimulação elétrica aos neurônios. Este trabalho relata a fabricação de dispositivos orgânicos biocompatíveis por meio da tecnologia de impressão por jato de tinta, utilizando-se uma nova combinação de materiais. Os dispositivos foram fabricados sobre um substrato de Parileno C (PaC), um polímero flexível e biocompatível. As linhas condutoras foram impressas utilizando-se uma tinta de nanopartículas de prata, enquanto os sítios ativos foram impressos usando-se uma tinta de poli (3,4-etilenodioxitiofeno)/poliestireno sulfonado (PEDOT: PSS). Para isolar o dispositivo final foi utilizada uma tinta de poliimida para imprimir uma espessa película sobre o dispositivo, deixando pequenas janelas abertas sobre os sítios ativos de PEDOT:PSS. Caracterização elétrica do dispositivo final e avaliação de sua interface com a biologia (testes de cultura de células) foram realizadas. Os resultados mostram que um dispositivo biocompatível e de baixo custo pode ser produzido por escrita direta sem quaisquer técnicas de pre-patterning ou de auto-alinhamento, utilizando-se tintas orgânicas.

Abstract : Inkjet printing has been demonstrated to be able to print all materials required for integrated circuits at low costs when compared to conventional silicon processing. With the advent of organic electronics, a wide range of materials became available and the fabrication of devices with unique properties for interfacing with biology is now possible. One important example is the use of conducting polymer coatings on metal electrodes that are implanted in the central nervous system, which provides electrical stimulation of neurons. This work reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible, flexible polymer substrate. The contact tracks were printed using a silver nanoparticle ink, while the active sites were inkjet printed using a poly (3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small opened windows upon the active sites. Electrical characterization of the final device and evaluation of its interface with biology (cells culture assays) were performed. The results show that inexpensive and biocompatible devices can be produced by direct writing without any pre-patterning or self-alignment techniques using organic inks.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Cuentas, Gallegos Ana Karina. "Organic/inorganic hibrid materials based on conducting organic polymers as electrodes for energy storage devices." Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/3163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wu, Weimin. "Materials for organic memory devices." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Park, Hyesung Ph D. Massachusetts Institute of Technology. "Application of CVD graphene in organic photovoltaics as transparent conducting electrodes." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/84386.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 184-191).
Graphene, a hexagonal arrangement of carbon atoms forming a one-atom thick planar sheet, has gained much attention due to its remarkable physical properties. Apart from the micromechanical cleavage of highly ordered pyrolytic graphite (HOPG), several alternate methods have been explored to achieve reliable and repeatable synthesis of large-area graphene sheets. Among these, the chemical vapor deposition (CVD) process has been demonstrated as an efficient way of producing continuous, large area graphene films and the synthesis of graphene sheets up to 30-inch has been reported. Similar to graphene research, solar cells based on organic materials have also drawn significant attention as a possible candidate for the generation of clean electricity over conventional inorganic photovoltaics due to the interesting properties of organic semiconductors such as high absorption coefficients, light weight and flexibility, and potentially low-cost, high throughput fabrication processes. Transparent conducting electrodes (TCE) are widely used in organic photovoltaics, and metal oxides such as indium tin oxide (ITO) have been commonly used as window electrodes. Usually used as thin films, these materials require low sheet resistance (Rsh) with high transparency (T). Currently the dominant material used in the industry standard is ITO. However, these materials are not ideal options for organic photovoltaic applications due to several reasons: (1) non-uniform absorption across the visible to near infrared region; (2) chemical instability; (3) metal oxide electrodes easily fracture under large bending, and they are not suitable for flexible solar cell applications; (4) limited availability of indium on the earth leading to increasing costs with time. Therefore, the need for alternative/replacement materials for ITO is ever increasing and ideally need to be developed with the following characteristics: low-cost, mechanically robust, transparent, electrically conductive, and ultimately should demonstrate comparable or better performance compared to ITO-based photovoltaic devices. With superior flexibility and good electrical conductivity, as well as abundance of source material (carbon) at lower costs compared to ITO, in this thesis, we propose that the CVD graphene can be a suitable candidate material as TCE in organic photovoltaic applications, satisfying the aforementioned requirements.
by Hyesung Park.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bachman, John Christopher. "Organic electrodes and solid-state electrolytes for lithium electrochemical energy storage." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111719.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Viable electrical energy storage is essential for the development of sustainable energy technologies, such as renewable power and electric vehicles. Electrochemical energy storage devices are promising candidates for these applications, and lithium-ion batteries are the leading available technology. However, the current cost and performance of these devices limit their widespread adoption. In this thesis, we develop materials and design guidelines for positive electrodes and solid-state electrolytes to address these challenges. The positive electrode is one of the main limitations to improving both the capacity and cost of lithium-ion batteries. Organic molecules represent a class of materials, which if selected correctly, can address these issues. The electrochemical properties of various polycyclic aromatic hydrocarbons (PAHs), which are organic molecules produced in significant quantities as industrial waste products, were investigated for use as positive electrodes. By introducing PAHs within a functionalized few-walled carbon nanotube (FWNT) matrix, we developed high-energy and high-power positive electrodes. The redox potential and capacity of various PAHs were correlated with their chemical and electronic structures, and their interaction with the functionalized FWNT matrix. Another challenge limiting the adoption of lithium-ion batteries is the flammability and instability of the organic liquid electrolyte, which increases the risk of dangerous battery failures and limits the use of higher energy-density electrodes. One promising solution is to replace the organic liquid electrolyte with a solid-state lithium-ion conductor. However, the ionic conductivity of solid-state electrolytes are typically several orders of magnitude lower than organic liquid electrolytes. Using lattice dynamics, we developed a framework to understand the migration of lithium through crystalline solid-state electrolytes. The understanding of the use of organic materials in positive electrodes and solid-state lithium-ion conductors as electrolytes provides insight for the design of next-generation electrochemical energy storage solutions.
by John Christopher Bachman.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Park, Jeongwon. "Electronic properties of organic thin film transistors with nanoscale tapered electrodes." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3316420.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed September 4, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 77-82).
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jackson, Roderick Kinte'. "Development of single wall carbon nanotube transparent conductive electrodes for organic electronics." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29635.

Повний текст джерела
Анотація:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Graham, Samuel; Committee Member: Garimella, Srinivas; Committee Member: Kippelen, Bernard; Committee Member: Melkote, Shreyes; Committee Member: Ready, Jud. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Jansen, Rolf. "N4-Chelatelektroden für die organische Elektrosynthese, N4-chelate electrodes for organic electrosyntheses." Gerhard-Mercator-Universitaet Duisburg, 2002. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-01252002-084816/.

Повний текст джерела
Анотація:
The electrocatalytic characteristics of N4-chelatele electrodes is well known for several redox reactions. The N4-chelate can function thereby according to the principle of the heterogeneous redox catalysis as an intermediate fixed at the electrode surface. The main problem is the limited service life of such electrodes which prohibits the practical application in organic electrosyntheses. The electrochemical properties of N4-chelate electrodes and specially of copper phthalocyanine electrodes were investigated using several electrochemical methods. The results of these measurements lead into a significant refinement of the models of heterogenous redox reaction at N4-chelates. Furthermore models for the degradation process of N4-chelate electrodes could be derived. Finally, quite stable electodes were produced and tested.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

CASTRO, ROSALIA KRUGER DE. "DEVELOPMENT OF FLEXIBLE ELECTRODES AND POLIMERIC SUBSTRATES APPLIED TO ORGANIC PHOTOVOLTAIC DEVICES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36035@1.

Повний текст джерела
Анотація:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
Nesta tese de doutoramento apresentamos a fabricação e a caracterização de dispositivos fotovoltaicos orgânicos (OPVs) fabricados a partir de eletrodos de grafeno e de substratos híbridos flexíveis à base de polímeros recobertos com um filme fino condutor. Para isso, inicialmente sintetizamos filmes de grafeno através da técnica de deposição química em fase de vapor (CVD), seguido de modificações no processo de transferência do grafeno para o substrato desejado. Nesta etapa, desenvolvemos uma nova metodologia utilizando uma blenda condutora de EPDM-PAni que simplifica o processo de transferência e melhora as propriedades elétricas do grafeno. Em outro momento, otimizamos diferentes substratos híbridos à base de polímeros de PVC, PVA e celulose bacteriana (BC) recobertos com um filme fino condutor de ITO. Tanto os substratos híbridos flexíveis, quanto os filmes de grafeno, foram investigados por transmitância ótica e resistência de folha a fim de avaliar os seus potenciais uso para as aplicações em OPVs. Por fim, fabricamos diversas estruturas de OPVs, tanto com o grafeno como eletrodo condutor, quanto usando os substratos híbridos flexíveis. Estes dispositivos foram caracterizados principalmente através das suas curvas características JxV, no escuro e sob iluminação. Além disso, realizamos ciclos de flexão/extensão de alguns dispositivos a fim de avaliar seu comportamento frente aos esforços mecânicos a estes submetidos. Os resultados obtidos mostraram que os filmes de grafeno fabricados são promissores para a aplicação como eletrodo condutor transparente em OPVs e que os substratos híbridos investigados podem ser utilizados em dispositivos flexíveis, visto que apresentaram comportamento semelhante aos substratos inorgânicos comumente utilizados.
In this doctoral thesis we present the fabrication and characterization of organic photovoltaic devices (OPVs) assembled onto graphene electrodes and flexible hybrid polymers-based substrates coated with a conductive thin film. For this, initially the graphene films were synthesized by chemical vapor deposition (CVD) technique, followed by modifications in the transfer process of the graphene to the desired substrate. In this step, we developed a new methodology using an EPDM-PAni conductive blend that simplifies the transfer process and improves the electric properties of graphene. We also used another approach which consists in optimizing different hybrid substrates based on PVC, PVA and bacterial cellulose (BC) polymers coated with an ITO conductive thin film. The flexible hybrid substrates as well as the graphene films were investigated by optical transmittance and sheet resistance in order to evaluate their potential use for OPVs applications. Finally, we fabricate various structures of OPVs, using graphene as a conducting electrode, well as using flexible hybrid substrates. Such devices were characterized mainly through their dark and light J×V characteristic curves. In addition, we performed flexion/extension cycles in some devices in order to evaluate their behavior against the mechanical stresses submitted to them. The results showed that the graphene films are a promising material for the application as a transparent conductive electrode in OPVs and the hybrid substrates investigated can be used in flexible devices, since they presented similar behavior to the commonly used inorganic substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Paniagua, Barrantes Sergio. "Interfacial engineering of transparent electrodes and nanoparticles with phosphonic acids and metal-organic dopants for organic electronic applications." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52920.

Повний текст джерела
Анотація:
This thesis focuses on understanding the chemistry involved in a variety of surface modification reactions, both on metal oxides and graphene. In this work, the rates of chemisorption of a prototypical phosphonic acid on ITO under several processing protocols are measured using XPS to determine the optimal procedure. UPS is used to track the dependence of the electronic structure of the system, specifically of the work function and position of the valence band maximum on coverage. Phosphonic acid monolayers with appropriate tail groups can also be used to initiate chemistry from surfaces, which has potential for building layers of organic-electronic devices, including organic solar cells and capacitors. The growth of non-conjugated polymers from BaTiO₃ nanoparticles using a facile ATRP technique is studied via solution-phase and solid-state techniques to determine its applicability to make matrix-free composites for hybrid dielectrics. In addition, the surface chemistry involved in Kumada Catalyst-Transfer to grow polythiophene derivatives from ITO is examined via XPS. Finally, the newly emerged alternative for replacement of ITO as transparent electrode, graphene, is n- and p-doped using redox-active, solution-processable metal-organics, which increased its conductivity and allowed the work function to be tuned over a range of 1.8 eV. The systems are characterized in a systematic study, and the results are promising for future applications of graphene.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhang, Di, and 张笛. "Transparent electrode design and interface engineering for high performance organic solar cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/202360.

Повний текст джерела
Анотація:
With the growing needs for energy, photovoltaic solar cells have attracted increasing research interests owing to its potentially renewable, feasible and efficient applications. Compared to its inorganic counterparts, organic solar cell (OSC) is highly desirable due to the low-cost processing, light weight, and the capability of flexible applications. While rapid progress has been made with the conversion efficiency approaching 10%, challenges towards high performance OSCs remain, including further improving device efficiency, fully realizing flexible applications, achieving more feasible large-area solution process and extending the stability of organic device. Having understood the key technical issues of designing high performance OSCs, we focus our work on (1) introducing flexible graphene transparent electrodes into OSCs as effective anode and cathode; (2) interface engineering of metal oxide carrier transport layers (CTLs) in OSCs through incorporating plasmonic metal nanomaterials ;(3)proposing novel film formation approach for solution-processed CTLs in OSCs in order to improve the film quality and thus device performance. The detailed work is listed below: 1. Design of transparent graphene electrodes for flexible OSCs Flexible graphene films are introduced into OSCs as transparent electrodes, which complement the flexibility of organic materials. We demonstrate graphene can function effectively as both the anode and cathode in OSCs: a) Graphene anode: we propose an interface modification for graphene to function as anode as an alternative to using aconventional polymer CTL. Using the proposed interfacial modification, graphene OSCs show enhanced performance. Further analysis shows that our approach provides favorable energy alignment and improved interfacial contact. b) Graphene cathode: efficient OSCs using graphene cathode are demonstrated, using a new composite CTL of aluminum-titanium oxide (Al-TiO2).We show that the role of Al is two-fold: improving the wettability as well as reducing the work function of graphene. To facilitate electron extraction, self-assembledTiO2is employed on the Al-covered graphene, which exhibits uniform morphology. 2. Incorporation of plasmonic nanomaterialsinto the metal oxide CTLinOSCs By incorporating metallic nanoparticles (NPs) into the TiO2CTLin OSCs, we demonstrate the interesting plasmonic-electrical effect which leads to optically induced charge extraction enhancement. While OSCs using TiO2CTL can only operate by ultraviolet (UV)activation, NP-incorporated TiO2enables OSCs to perform efficiently at a plasmonic wavelength far longer than the UV light. In addition, the effciency of OSCs incorporated with NPs is notably enhanced. We attribute the improvement to the charge injection of plasmonically excited electrons from NPs into TiO2. 3. Formation of uniform TiO2CTLfor large area applications using a self-assembly approach A solution-processed self-assembly method is proposed for forming large-area high-quality CTL films. Owing to the careful control of solvent evaporation, uniform film is formed, leading to enhanced OSC performance. Meanwhile, our method is capable of forming large-area films. This approach can contribute to future low-cost, large-area applications.
published_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zilberberg, Kirill [Verfasser]. "Solution-processed charge extraction interlayers and electrodes for organic solar cells / Kirill Zilberberg." Wuppertal : Universitätsbibliothek Wuppertal, 2014. http://d-nb.info/1063046637/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Takeuchi, Saya. "Studies on Electrochemical Properties of Graphite Electrodes in Organic Electrolytes Containing Calcium Salts." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Joa, Susan Louise. "Electrochemical and Raman spectroscopic investigations of butanol isomers at silver and gold electrodes." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185967.

Повний текст джерела
Анотація:
The overall goal of this research is to characterize the solvent and electrolyte structure of the nonaqueous electrochemical double layer in the isomers of butanol on Ag and Au electrodes. Electrochemical and spectroscopic methods are employed to obtain structural information about the interface. In order to gain a better understanding of the Raman vibrational assignments of these alcohols, the Raman vibrational assignments were determined for a series of n-alcohols (n = 3-6, 8, 12, 14, and 18) in the spectral region from 700 to 1320 cm⁻¹ and 2800 to 3000 cm⁻¹. Solvent structure of the butanol isomers, 1-butanol, 2-butanol, and iso-butanol, were determined in-situ on rough Ag and Au electrodes using surface enhanced Raman scattering. Surface Raman selection rules were used to determine the average molecular orientation of these solvents at the electrode under potential control. The electrolyte structure in the nonaqueous electrochemical double layer has been determined using surface enhanced Raman scattering and differential capacitance measurements. Surface enhanced Raman scattering studies of the electrolyte structure were focused on probing the molecules solvating the cation and anion species, namely the alcohol and water impurity species. The ν(O-H) bands from these solvation species were monitored in these nonaqueous systems under potential control. These ν(O-H) bands distinctly describe the behavior of the LiClO₄, LiCl, LiBr, and LiI at the electrode under potential control. Differential capacitance measurements using an AC impedance method were performed to quantify anion coverages at smooth Ag electrodes in the butanol isomers. Cl⁻ and Br⁻ coverages were determined in the butanol isomers. This technique, coupled with SERS, provides complementary information about the electrolyte structure at the nonaqueous electrochemical double layer. The solvent and electrolyte structure is also determined ex-situ on emersed rough and smooth Ag and Au electrodes using Raman spectroscopy. Upon emersion of the electrodes into an inert Ar environment, solvent orientation and electrolyte behavior are investigated using Raman spectroscopy. These studies demonstrate both the utility of using Raman spectroscopy to probe emersed electrodes and the validity of emersing the electrode while preserving the double layer structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Pirzado, Azhar Ali Ayaz. "Integration of few kayer graphene nanomaterials in organic solar cells as (transparent) conductor electrodes." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD016/document.

Повний текст джерела
Анотація:
Dans cette thèse, des films à base de graphène ont été étudiés comme alternatives viables dans la fabrication d'électrodes transparentes (TCE). Elle met l'accent sur des couches fines de graphène (FLG), sur l'oxyde de graphène réduit (RGO) et leurs hybrides avec des nanotubes de carbone (NTCs) pour être utilisé comme TCE dans les cellule solaires organiques (OSC). Les FLGs et RGO ont été préparés par des méthodes d'exfoliation mécanique ou en phase liquide assistée par micro-ondes. Ces nanomatériaux dilués dans un solvant liquide ont été déposé en couche mince par aérographe. Des caractérisations de transport de charge ont été obtenues grâce à la méthode des 4 pointes. Ces échantillons ont été caractérisés: leur transparence(UV-Visible), leur morphologie et leur topographique (MEB, MET, AFM) ainsi que le travail de sortie (UPS). Pour obtenir des informations sur la qualité structurelle des échantillons, nous avons utilisés les méthodes de spectroscopie XPS, Raman et la photoluminescence
Graphene mate rials have been researched as viable alternatives of transparent conductors electrodes (TCEs) in this thesis. Current study focuses on few layer graphene (FLG), reduced graphene oxide (rGO) and their hybrids with carbon nanotubes (CNTs) for TCE applications inorganic solar cells (OSCs). FLGs and rGOs have been prepared by mechanical and microwave-assisted exfoliation methods. This films of these materials have been produced by hot-spray method. Results of charge transport characterizations by four-point probes, transparency (UV-Vis), measurements, along with morphological (SEM, TEM) and topgraphic (AFM) studies of films have been presented. UPS studies were performed to determine for a work-function. XPS,Raman and Photoluminescence studies have been employed to obtain the information about the structural quality of the samples
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kinner, Lukas. "Flexible transparent electrodes for optoelectronic devices." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22419.

Повний текст джерела
Анотація:
Transparente Elektroden (TE) sind unverzichtbar in modernen optoelektronischen Bauelementen. Die derzeitig am häufigsten verwendete TE ist Indium Zinn Oxid (ITO). Aufgrund der Nachteile von ITO setzt sich die vorliegende Arbeit mit ITO-Alternativen auseinander. Zwei Ansätze werden in dieser Arbeit untersucht. Der erste Ansatz beruht auf Dielektrikum/Metall/Dielektrikum (DMD) Filmen, im zweites Ansatz werden Silber Nanodrähten (NW) als TE untersucht. Im ersten Ansatz wurden DMD Elektroden auf Glas und Polyethylenterephthalat (PET) fabriziert. Eine Kombination von gesputterten TiOx/Ag/AZO Schichten lieferte die höchste jemals gemessene Transmission und Leitfähigkeit für eine Elektrode auf Glas und PET. Eine durchschnittliche Transmission größer als 85 % (inklusive Substrat) im Bereich von 400-700 nm und einen Schichtwiderstand von unter 6 Ω/sq wurden erreicht. Um die Leistung der TiOx/Ag/AZO Elektrode in einem Bauteil zu überprüfen, wurde sie in einer organischen Licht emittierenden Diode (OLED) implementiert. Die DMD-basierten OLEDs erreichten eine 30 % höhere Strom Effizienz auf Glas und eine 260 % höhere Strom Effizienz auf PET im Unterschied zu den ITO-basierten Bauteilen. Im zweiten Ansatz zur Realisierung flexibler transparenter Elektroden wurden NWs diskutiert. Die Implementierung von Nanodrähten in lösungsprozessierten organischen Licht emittierenden Dioden weißt noch immer zwei große Hürden auf: hohe Rauigkeit der Nanodrahtfilme und Wärmeempfindlichkeit von PET. Um die Rauigkeit zu verkleinern und gleichzeitig die Stabilität zu erhöhen werden zunächst die Nanodrähte in ein UV-härtendes Polymer eingebettet. Es wird eine Transmission von bis zu 80 % (inklusive Substrat) und ein Schichtwiderstand von 13 Ω/sq erreicht. Gleich wie bei den DMD Elektroden wurden auch NW Elektroden in eine OLED implementiert. Die Bauteile zeigten eine größere Flexibilität, Leitfähigkeit und Luminanz als die PET/ITO Referenzen während die selbe Leistungseffizienz erreicht wurde.
Transparent electrodes (TEs) are a key element in optoelectronics. TEs assure simultaneous light interaction with the active device layers and efficient charge carrier injection or extraction. The most widely used TE in today’s industry is indium tin oxide (ITO). However, there are downsides to the use of ITO. The scope of this thesis is to discuss alternatives to ITO. Two main approaches are examined in this thesis - one approach is based on using dielectric/metal/dielectric (DMD) films and the other is based on using silver nanowire (NW) films. For the first approach, a combination of sputtered TiOx/Ag/AZO was found to yield the highest transmittance and conductivity ever reported for an electrode on PET with an average transmittance larger than 85 % (including the substrate) in the range 400-700 nm and sheet resistance below 6 Ω/sq. To test the device performance of TiOx/Ag/AZO, DMD electrodes were implemented in organic light emitting diodes (OLEDs). DMD-based devices achieve up to 260 % higher efficacy on PET, as compared to the ITO-based reference devices. As a second approach, NWs were investigated. The implementation of silver nanowires as TEs in solution processed organic light emitting diodes still faces two major challenges: high roughness of nanowire films and heat sensitivity of PET. Therefore, within this thesis, an embedding process with different variations is elaborated to obtain highly conductive and transparent electrodes of NWs on flexible PET substrates. The NWs are embedded into a UV-curable polymer, to reduce the electrode roughness and to enhance its stability. A a transmittance of 80 % (including the substrate) and sheet resistance of 13 Ω/sq is achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kriegisch, Volker. "Electron transfer processes between organic redox centres and electrodes via active bridges in self-assembled monolayers." Doctoral thesis, [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=978743814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Xie, Zhaoming. "Electrochemical wastewater treatment for denitrification and toxic organic degradation using Ti-based SnO2 and RuO2 electrodes." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37824120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Canestraro, Carla Daniele. "Electrical and optical properties of thin film SnO₂ and SnO₂:F : transparent electrodes in organic photovoltiaics /." Stockholm : Materials Science and Engineering (Materialvetenskap), Kungliga Tekniskan högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Xie, Zhaoming, and 謝昭明. "Electrochemical wastewater treatment for denitrification and toxic organic degradation using Ti-based SnO2 and RuO2 electrodes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37824120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Selzer, Franz Verfasser], Karl [Akademischer Betreuer] [Leo, and Frank [Akademischer Betreuer] Nüesch. "Transparent Electrodes for Organic Solar Cells / Franz Selzer. Betreuer: Karl Leo. Gutachter: Karl Leo ; Frank Nüesch." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://d-nb.info/1095395467/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kim, Hyeok. "Improving charge injection in organic field-effect transistors by surface modification of source and drain electrodes." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC089.

Повний текст джерела
Анотація:
La perspective de l'électronique flexible nécessite le développement de transistors à effet de champ organiques (OFET) ouvrant la voie à des dispositifs de grande surface, parmi lesquels des écrans flexibles, des cartes à puce intelligentes et des capteurs. Pour améliorer les performances électriques des OFET, un problème majeur est celui de l'injection des porteurs de charge à l'interface entre les électrodes et le semi-conducteur organique. Cette sujet de cette thèse est dédié à l'optimisation de l'injection des porteurs de charge par la modification des électrodes au moyen de couches auto-assemblées (SAM) composées de molécules comportant un squelette biphényl. L'intérêt de ces molécules est de présenter une résistance série très inférieure à celle des chaînes alkyles, majoritairement utilisées jusqu'à présent. Les SAM fonctionnalisées avec du fluor en position terminale jouent permettent une amélioration substantielle de l'injection des porteurs de charge grâce, d'une part, à un effet dipolaire résultant en un abaissement de la barrière d'injection à l'interface entre l'électrode et le semi-conducteur, et d'autre part en favorisant une meilleure organisation cristalline du semi-conducteur, aussi bien en structure OFET qu'en géométrie de diode coplanaire. La caractérisation morphologique des SAM pour déterminer l'orientation des molécules ont permis d'optimiser l'injection des porteurs de charge. L'amélioration de l'injection avec le biphényl fluoré se manifeste par une augmentation de la densité de courant et une observation claire d'un courant limité par la charge d'espace (SCLC), comparé au cas du biphényl non fluoré et d'une électrode d'or nu. Dans les OFET, nous remarquons une réduction significative de la résistance de contact. Par ailleurs, nous observons également une amélioration de l'injection après la modification des électrodes avec des SAM comportant un silane comme groupe d'ancrage
A prospect of flexible electronics lines with the development of high performance organic field effect transistors (OFETs) that enables cost-effective and large-area electronic devices such as flexible displays, smart cards and sensors. In order to improve the electrical performance of OFETs, a crucial issue concerning charge injection at the interface of electrode/organic semiconductor is recently rising. The dissertation is dedicated to investigate charge injection via the modification of electrodes with self assembled monolayers (SAMs) based on biphenyl backbone bearing extremely lower resistance to its counterpart with aikyl chain and its application to organic electronic devices. Functionalized SAMs with fluorine at the end group plays a substantial role to improve charge injection through a dipolar effect to decrease barrier height at the electrode/semiconductor interface and a better morphology of organic semiconductor both in a planar diode and OFETs. Morphological characterization on SAMs to determine the orientation of the molecules renders an effective application of SAMs to elaborate highly improved electronic devices. Augmented charge injection through the introduction of fluorinated biphenyl thiol (FBPS) leads largely enhanced current density and clear observation of space-charge limited current (SCLC) as compared to the cases of biphenyl thiol (BPS) and bare Au in planar diodes. This is extended to significant enhancement of electrical performance such as field effect mobility and contact resistance in OFET. Moreover, improved charge injection through the modification of electrodes with functionalized SAMs is also exhibited by the intervention of silane anchoring group to the SAMs in planar diodes
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії