Статті в журналах з теми "Organic Electro-Optic Material"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Organic Electro-Optic Material.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Organic Electro-Optic Material".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Dalton, L. R. "Organic electro-optic materials." Pure and Applied Chemistry 76, no. 7-8 (January 1, 2004): 1421–33. http://dx.doi.org/10.1351/pac200476071421.

Повний текст джерела
Анотація:
The macroscopic electrooptic activity of organic materials depends upon the molecular hyperpolarizability, beta, of individual organic chromophores and upon the product of number density, N, and noncentrosymmetric order, <cos3theta>, of the chromophores in a hardened polymer lattice. Quantum and statistical mechanical calculations provide the basis for rational improvement of these parameters leading to electro-optic coefficients (at telecommunication wavelengths) of greater than 100 pm/V (a factor of 3 larger than values for the best inorganic material, lithium niobate). Such calculations also provide insight into what further improvements can be expected. Owing to low and relatively dispersionless dielectric constants and refractive indicies, organic materials facilitate the fabrication of devices with 3 dB operational bandwidths of greater than 100 GHz. Moreover, robust and low optical loss materials can be fabricated by design. An under-appreciated advantage of organic electro-optic materials is their processability, and a variety of stripline, cascaded prism and super-prism, and ring microresonator devices are readily fabricated. Conformal, flexible, and three-dimensional devices are also readily produced. With ring microresonator devices, active wavelength division multiplexing, optical network reconfiguration, and laser frequency tuning are straightforwardly accomplished.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Tae-Dong, Kwang-Sup Lee, So Young Lee, Young Joe Kim, and Jae Won Song. "Organic-Inorganic Hybrid Material for Electro-Optic Modulator." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 371, no. 1 (October 2001): 337–40. http://dx.doi.org/10.1080/10587250108024755.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jin, Wenwei, Peter V. Johnston, Delwin L. Elder, Karl T. Manner, Kerry E. Garrett, Werner Kaminsky, Ruimin Xu, Bruce H. Robinson, and Larry R. Dalton. "Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores." Journal of Materials Chemistry C 4, no. 15 (2016): 3119–24. http://dx.doi.org/10.1039/c6tc00358c.

Повний текст джерела
Анотація:
Structure–function relationship study in a series of organic monolithic electro-optic materials has revealed the impact of donor and bridge molecular modification, leading to material with increased EO behavior and improved thermal stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jie, Sun, Zhu Gui-Hua, Sun Xiao-Qiang, Li Tong, Gao Wei-Nan, Zhang Da-Ming, and Hou A-Lin. "High Cost Performance Organic–Inorganic Hybrid Material for Electro-optic Devices." Chinese Physics Letters 26, no. 2 (February 2009): 024206. http://dx.doi.org/10.1088/0256-307x/26/2/024206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Fenggang, Ziying Zeng, Abdul Rahman, Xunyu Chen, Zhiwei Liang, Xiaoqing Huang, Shumin Zhang, Huajun Xu, and Jiahai Wang. "Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures." Materials Chemistry Frontiers 5, no. 24 (2021): 8341–51. http://dx.doi.org/10.1039/d1qm01337h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mohammad, Syuhaimi Ab Rahman, Mohamed Shaktur Khaled, and Mohammad Rahmah. "Organic Polymer Integrated Optics: Recently Design and Simulation of an Electro-Optic 2x3 Switch." Advanced Materials Research 230-232 (May 2011): 80–84. http://dx.doi.org/10.4028/www.scientific.net/amr.230-232.80.

Повний текст джерела
Анотація:
Electrooptic waveguide technology is suitable for realization of an electro-optic 2x3 switch based on integrated Mach-Zehnder interferometer using polymer material, where ESO of polymeric materials were used. It can provide high performances and it is applicable for all optical switching networks. The relatively low cost technology, easy fabrication process with standard optoelectronic fabrication process and with high degree of integration compared to other technologies make the development of optical switch based on this technology favorable one.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ZHANG Feng, 张峰, 李晓东 LI Xiao-dong, 谭震宇 TAN Zhen-yu, 李涛 LI Tao, 陈长鸣 CHEN Chang-ming, and 张大明 ZHANG Da-ming. "Strip-loaded Waveguide Electro-optic Modulator Based on Bonded Organic-inorganic Hybrid Material." ACTA PHOTONICA SINICA 40, no. 4 (2011): 569–72. http://dx.doi.org/10.3788/gzxb20114004.0569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meredith, Gerald R. "Organic Materials for Nonlinear Optics." MRS Bulletin 13, no. 8 (August 1988): 24–29. http://dx.doi.org/10.1557/s0883769400064642.

Повний текст джерела
Анотація:
were very exciting but speculative, being technologically feasible only if new classes of materials could be developed The subject of materials in nonlinear optics (NLO) encompasses a wide range of important topics. Today the line between materials and NLO processes has become fuzzy, particularly for newer NLO processes (e.g. photorefrac-tion, and optical bistability, logic and computing). For more established NLO processes (e.g., harmonic generation, parametric processes, linear electro-optic effect, etc.) the subjects are well studied and the importance of various materials properties on the NLO process are known, though these properties are not necessarily predictable, controllable, or optimized in current materials.A decade ago, having been introduced to NLO phenomena through postdoctoral research, I had an opportunity to define and pursue an NLO research program at Xerox's Webster Research Center. The question was posed: “Are new materials needed for NLO applications?” The answer must start with another question: “Which NLO process … with light of what wavelength, pulse duration, and power… and for what purpose?”It was clear that important limitations to many of the novel things one might do with optics were: insufficient nonlin-earity magnitude, inability to fabricate reliable device structures, occurrence of deleterious optical properties, and restrictions due to other material properties. The newer NLO phenomena. Use of older NLO processes in new technological applications seemed a more down-to-earth quest.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shimoga, Ganesh, and Sang-Youn Kim. "High-k Polymer Nanocomposite Materials for Technological Applications." Applied Sciences 10, no. 12 (June 20, 2020): 4249. http://dx.doi.org/10.3390/app10124249.

Повний текст джерела
Анотація:
Understanding the properties of small molecules or monomers is decidedly important. The efforts of synthetic chemists and material engineers must be appreciated because of their knowledge of how utilize the properties of synthetic fragments in constructing long-chain macromolecules. Scientists active in this area of macromolecular science have shared their knowledge of catalysts, monomers and a variety of designed nanoparticles in synthetic techniques that create all sorts of nanocomposite polymer stuffs. Such materials are now an integral part of the contemporary world. Polymer nanocomposites with high dielectric constant (high-k) properties are widely applicable in the technological sectors including gate dielectrics, actuators, infrared detectors, tunable capacitors, electro optic devices, organic field-effect transistors (OFETs), and sensors. In this short colloquy, we provided an overview of a few remarkable high-k polymer nanocomposites of material science interest from recent decades.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Palmer, Robert, Wolfgang Freude, Juerg Leuthold, Christian Koos, Sebastian Koeber, Delwin L. Elder, Markus Woessner, et al. "High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material." Journal of Lightwave Technology 32, no. 16 (August 15, 2014): 2726–34. http://dx.doi.org/10.1109/jlt.2014.2321498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, Long-De, Jie Tang, Ruo-Zhou Li, Tong Zhang, Ling Tong, Jing Tang, and Li Xu. "Synthesis and characterization of electro-optic polyurethane-imide and fabrication of optical waveguide device." High Performance Polymers 29, no. 8 (August 19, 2016): 879–88. http://dx.doi.org/10.1177/0954008316663611.

Повний текст джерела
Анотація:
The novel electro-optic (EO) polymers of fluorinated cross-linkable Y-type polyurethane-imides (PUI) were designed and synthesized by polycondensation of second-order non-linear optical azo-based chromophores, phenyl diisocyanate, and aromatic dianhydride. Molecular structural characterization for the resulting polymers was achieved by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis, and gel permeation chromatography. The resulting polymers exhibited good film-forming properties, high glass transition temperature in the range from 186°C to 198°C and thermal stability up to 300°C, high EO coefficient ( γ33 = 43–60 pm/V) at 1550 nm wavelength, good stabilization of electrically induced chromophore dipole alignment and low optical propagation losses in the range of 1.5–1.7 dB/cm at 1550 nm, which are suitable for the EO modulators. Using the synthesized EO PUI as the active core material and of a fluorinated polyimide as cladding material, we have designed and fabricated the high-performance polymer waveguide Mach-Zehnder EO modulators. Obvious modulation was observed by application of ac voltage signal to the EO modulators.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gupta, Deepak, Przemyslaw Kula, and Ayon Bhattacharjee. "Mesomorphic, electro-optic and dielectric behaviour of a semi-fluorinated chiral liquid crystalline material forming polar smectic phases." Journal of Molecular Structure 1219 (November 2020): 128557. http://dx.doi.org/10.1016/j.molstruc.2020.128557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wang, Yan, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, and Shuhui Bo. "Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators." Journal of Semiconductors 43, no. 10 (October 1, 2022): 101301. http://dx.doi.org/10.1088/1674-4926/43/10/101301.

Повний текст джерела
Анотація:
Abstract High performance electro-optic modulator, as the key device of integrated ultra-wideband optical systems, have become the focus of research. Meanwhile, the organic-based hybrid electro-optic modulators, which make full use of the advantages of organic electro-optic (OEO) materials (e.g. high electro-optic coefficient, fast response speed, high bandwidth, easy processing/integration and low cost) have attracted considerable attention. In this paper, we introduce a series of high-performance OEO materials that exhibit good properties in electro-optic activity and thermal stability. In addition, the recent progress of organic-based hybrid electro-optic devices is reviewed, including photonic crystal-organic hybrid (PCOH), silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) modulators. A high-performance integrated optical platform based on OEO materials is a promising solution for growing high speeds and low power consumption in compact sizes.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Xu, Huajun, Lewis E. Johnson, Yovan de Coene, Delwin L. Elder, Scott R. Hammond, Koen Clays, Larry R. Dalton, and Bruce H. Robinson. "Bis(4-dialkylaminophenyl)heteroarylamino donor chromophores exhibiting exceptional hyperpolarizabilities." Journal of Materials Chemistry C 9, no. 8 (2021): 2721–28. http://dx.doi.org/10.1039/d0tc05700b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Maolin, Huajun Xu, Mingkai Fu, Min Yang, Bing He, Xiaoling Zhang, Zhonghui Li, Guowei Deng, Shuhui Bo, and Jialei Liu. "Optimizing the molecular structure of 1,1,7,7-tetramethyl julolidine fused furan based chromophores by introducing a heterocycle ring to achieve high electro-optic activity." New Journal of Chemistry 43, no. 39 (2019): 15548–54. http://dx.doi.org/10.1039/c9nj02309g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Dalton, L. R. "Rational design of organic electro-optic materials." Journal of Physics: Condensed Matter 15, no. 20 (May 9, 2003): R897—R934. http://dx.doi.org/10.1088/0953-8984/15/20/203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Thapliya, Roshan, Shigetoshi Nakamura, and Takashi Kikuchi. "Electro-optic multimode interference device using organic materials." Applied Optics 45, no. 21 (July 20, 2006): 5404. http://dx.doi.org/10.1364/ao.45.005404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dalton, Larry R. "Theory-inspired development of organic electro-optic materials." Thin Solid Films 518, no. 2 (November 2009): 428–31. http://dx.doi.org/10.1016/j.tsf.2009.07.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Sullivan, Philip A., and Larry R. Dalton. "Theory-Inspired Development of Organic Electro-optic Materials." Accounts of Chemical Research 43, no. 1 (January 19, 2010): 10–18. http://dx.doi.org/10.1021/ar800264w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wu, Jieyun, Hongyan Xiao, Ling Qiu, Zhen Zhen, Xinhou Liu, and Shuhui Bo. "Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: the relationship between molecular structure-properties and macroscopic electro-optic activities of materials." RSC Adv. 4, no. 91 (2014): 49737–44. http://dx.doi.org/10.1039/c4ra09368b.

Повний текст джерела
Анотація:
In electro-optic (EO) materials, realization of large EO coefficients for organic EO materials requires the simultaneous optimization of chromophore first hyperpolarizability, acentric order, molecular shape etc.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Li, Ming, Su Huang, Xing-Hua Zhou, Yue Zang, Jieyun Wu, Zhanchen Cui, Jingdong Luo, and Alex K. Y. Jen. "Poling efficiency enhancement of tethered binary nonlinear optical chromophores for achieving an ultrahigh n3r33 figure-of-merit of 2601 pm V−1." Journal of Materials Chemistry C 3, no. 26 (2015): 6737–44. http://dx.doi.org/10.1039/c5tc01049g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wu, Jieyun, Jingdong Luo, Nathan Cernetic, Kaixin Chen, Kin-Seng Chiang, and Alex K. Y. Jen. "PCBM-doped electro-optic materials: investigation of dielectric, optical and electro-optic properties for highly efficient poling." Journal of Materials Chemistry C 4, no. 43 (2016): 10286–92. http://dx.doi.org/10.1039/c6tc03932d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Dalton, Larry R., William H. Steier, Bruce H. Robinson, Chang Zhang, Albert Ren, Sean Garner, Antao Chen, et al. "From molecules to opto-chips: organic electro-optic materials." Journal of Materials Chemistry 9, no. 9 (1999): 1905–20. http://dx.doi.org/10.1039/a902659b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Firestone, Kimberly A., Philip Reid, Rhys Lawson, Sei-Hum Jang, and Larry R. Dalton. "RETRACTED: Advances in organic electro-optic materials and processing." Inorganica Chimica Acta 357, no. 13 (November 2004): 3957–66. http://dx.doi.org/10.1016/j.ica.2004.07.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Apitz, D., C. Svanberg, K. G. Jespersen, T. G. Pedersen, and P. M. Johansen. "Orientational dynamics in dye-doped organic electro-optic materials." Journal of Applied Physics 94, no. 10 (November 15, 2003): 6263–68. http://dx.doi.org/10.1063/1.1621725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dalton, Larry R., Stephanie J. Benight, Lewis E. Johnson, Daniel B. Knorr, Ilya Kosilkin, Bruce E. Eichinger, Bruce H. Robinson, Alex K. Y. Jen, and René M. Overney. "Systematic Nanoengineering of Soft Matter Organic Electro-optic Materials†." Chemistry of Materials 23, no. 3 (February 8, 2011): 430–45. http://dx.doi.org/10.1021/cm102166j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dalton, Larry, and Stephanie Benight. "Theory-Guided Design of Organic Electro-Optic Materials and Devices." Polymers 3, no. 3 (August 19, 2011): 1325–51. http://dx.doi.org/10.3390/polym3031325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Shi, Shouyuan, and Dennis W. Prather. "Ultrabroadband Electro-Optic Modulator Based on Hybrid Silicon-Polymer Dual Vertical Slot Waveguide." Advances in OptoElectronics 2011 (September 1, 2011): 1–6. http://dx.doi.org/10.1155/2011/714895.

Повний текст джерела
Анотація:
We present a novel hybrid silicon-polymer dual slot waveguide for high speed and ultra-low driving voltage electro-optic (EO) modulation. The proposed design utilizes the unique properties of ferroelectric materials such as LiNbO3 to achieve dual RF and optical modes within a low index nanoslot. The tight mode concentration and overlap in the slot allow the infiltrated organic EO polymers to experience enhanced nonlinear interaction with the applied electric field. Half-wavelength voltage-length product and electro-optic response are rigorously simulated to characterize the proposed design, which reveals ultrabroadband operation, up to 250 GHz, and subvolt driving voltage for a 1 cm long modulator.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kim, Se-In, Bong Joo Kang, Chan-Uk Jeong, Myeong-Hoon Shin, Won Tae Kim, Mojca Jazbinsek, Woojin Yoon, et al. "Electro-Optic Crystals: Fluorinated Organic Electro-Optic Quinolinium Crystals for THz Wave Generation (Advanced Optical Materials 4/2019)." Advanced Optical Materials 7, no. 4 (February 2019): 1970013. http://dx.doi.org/10.1002/adom.201970013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zhang, Hui, Yanxin Tian, Shuhui Bo, Linghan Xiao, Yuhui Ao, Ji Zhang, and Ming Li. "A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials." Journal of Materials Chemistry C 8, no. 4 (2020): 1380–90. http://dx.doi.org/10.1039/c9tc05704h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sherwood, John N. "The growth, perfection and structural properties of organic electro-optic materials." Pure and Applied Optics: Journal of the European Optical Society Part A 7, no. 2 (March 1998): 229–38. http://dx.doi.org/10.1088/0963-9659/7/2/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Benight, Stephanie J., Lewis E. Johnson, Robin Barnes, Benjamin C. Olbricht, Denise H. Bale, Philip J. Reid, Bruce E. Eichinger, Larry R. Dalton, Philip A. Sullivan, and Bruce H. Robinson. "Reduced Dimensionality in Organic Electro-Optic Materials: Theory and Defined Order." Journal of Physical Chemistry B 114, no. 37 (September 23, 2010): 11949–56. http://dx.doi.org/10.1021/jp1022423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Williams, GRJ. "Nonlinear Susceptabilities of Conjugated Organic Systems: Fused-ring Oligomers." Australian Journal of Physics 44, no. 3 (1991): 299. http://dx.doi.org/10.1071/ph910299.

Повний текст джерела
Анотація:
The finite-field modified neglect of diatomic overlap (MNDO) molecular orbital technique has been used to calculate the second hyperpolarisability (the molel:ular counterpart to the macroscopic nonlinear susceptability tensor X3) for selected fused-ring oligomers. The fusedring segments are the active electro-optic units in ladder polymers and rigid-rod/flexible-chain copolymers that are under current investigation as polymeric materials with applications in ultrafast optoelectronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Gao, Wu, Jialei Liu, and Iwan V. Kityk. "The Progress in the Field Auxiliary Donors and their Application in Novel Organic Second-Order Nonlinear Optical Chromophores." Mini-Reviews in Organic Chemistry 16, no. 3 (January 25, 2019): 228–35. http://dx.doi.org/10.2174/1570193x15666180627150155.

Повний текст джерела
Анотація:
Conversion efficiency between electrical and optical signals is very important for the development of modern information technologies. Due to their advantages in half-wave voltage, bandwidth, cost and integration, as well as organic electro-optic (EO) parameters, these materials are widely studied and used in microwave photonic devices. Second order nonlinear optical (NLO) chromophores, as the core of organic EO materials have an increasing interest in this branch. Auxiliary donors present a new direction for the design and improvement of organic NLO chromophores. In this short review, the advantages, theoretical calculations and experimental results of auxiliary donors are reviewed and discussed in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Chen, Changming, Xiaoqiang Sun, Fei Wang, Feng Zhang, Hui Wang, Zuosen Shi, Zhanchen Cui, and Daming Zhang. "Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials." IEEE Journal of Quantum Electronics 48, no. 1 (January 2012): 61–66. http://dx.doi.org/10.1109/jqe.2011.2179019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Anestopoulos, D., G. Tsigaridas, P. Persephonis, V. Giannetas, I. Spiliopoulos, P. Karastatiris, and J. Mikroyannidis. "Electro-optic characterization of two novel organic materials in thin polymeric films." Chemical Physics Letters 390, no. 1-3 (May 2004): 98–103. http://dx.doi.org/10.1016/j.cplett.2004.03.130.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Luo, Jingdong, Su Huang, Zhengwei Shi, Brent M. Polishak, Xing-Hua Zhou, and Alex K−Y Jen. "Tailored Organic Electro-optic Materials and Their Hybrid Systems for Device Applications†." Chemistry of Materials 23, no. 3 (February 8, 2011): 544–53. http://dx.doi.org/10.1021/cm1022344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

WANG Xi-bin, 王希斌, 曹子谏 CAO Zi-jian, 靳琳 JIN Lin, 任殿福 REN Dian-fu, and 张大明 ZHANG Da-ming. "Preparation of Electro-Optic Waveguide Based on KH560 Modified Organic/Inorganic Hybrid Materials." ACTA PHOTONICA SINICA 40, no. 4 (2011): 561–64. http://dx.doi.org/10.3788/gzxb20114004.0561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Luo, Jingdong, Xing-Hua Zhou, and Alex K. Y. Jen. "Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials." Journal of Materials Chemistry 19, no. 40 (2009): 7410. http://dx.doi.org/10.1039/b907173c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mahmood, M. H., and H. L. Saadon. "Study of the electro-optic effect in new organic nonlinear optical polymeric materials." Journal of Physics D: Applied Physics 45, no. 23 (May 22, 2012): 235302. http://dx.doi.org/10.1088/0022-3727/45/23/235302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sreeja, R., S. Najidha, S. Remya Jayan, P. Predeep, Maciej Mazur, and P. D. Sharma. "Electro-optic materials from co-polymeric elastomer–acrylonitrile butadiene rubber (NBR)." Polymer 47, no. 2 (January 2006): 617–23. http://dx.doi.org/10.1016/j.polymer.2005.09.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Dalton, Larry R., Philip A. Sullivan, and Denise H. Bale. "Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects." Chemical Reviews 110, no. 1 (January 13, 2010): 25–55. http://dx.doi.org/10.1021/cr9000429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bhowmik, Achintya K., Shida Tan, and A. Claude Ahyi. "On the electro-optic measurements in organic single-crystal films." Journal of Physics D: Applied Physics 37, no. 23 (November 20, 2004): 3330–36. http://dx.doi.org/10.1088/0022-3727/37/23/016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kim, Young Chul, Jun Young Lee, Dong Young Kim, Hyun Nam Cho, and Chung Yup Kim. "Electro-optic applications of soluble polypyrrole." Macromolecular Symposia 118, no. 1 (June 1997): 461–66. http://dx.doi.org/10.1002/masy.19971180161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hulliger, J., P. J. Langley, and S. W. Roth. "A new design strategy for efficient electro-optic single-component organic crystals." Crystal Engineering 1, no. 3-4 (December 1998): 177–89. http://dx.doi.org/10.1016/s0025-5408(98)00191-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Seok, Jin‐Hong, Uros Puc, Seung‐Jun Kim, Woojin Yoon, Hoseop Yun, In Cheol Yu, Fabian Rotermund, Dongwook Kim, Mojca Jazbinsek, and O‐Pil Kwon. "High‐Density Organic Electro‐Optic Crystals for Ultra‐Broadband THz Spectroscopy." Advanced Optical Materials 9, no. 17 (June 4, 2021): 2100618. http://dx.doi.org/10.1002/adom.202100618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Heni, Wolfgang, Christian Haffner, Delwin L. Elder, Andreas F. Tillack, Yuriy Fedoryshyn, Raphael Cottier, Yannick Salamin, et al. "Nonlinearities of organic electro-optic materials in nanoscale slots and implications for the optimum modulator design." Optics Express 25, no. 3 (February 1, 2017): 2627. http://dx.doi.org/10.1364/oe.25.002627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kwon, O.-P., S. J. Kwon, H. Figi, M. Jazbinsek, and P. Günter. "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates." Advanced Materials 20, no. 3 (February 4, 2008): 543–45. http://dx.doi.org/10.1002/adma.200701698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

ZOU, Yan-hui, Yi-meng WANG, Xiao-xue ZHANG, Zhen-lin WU, Zhuo CHEN, Shu-hui BO, Ruo-nan LIU, et al. "Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator." Optics and Precision Engineering 28, no. 10 (2020): 2138–50. http://dx.doi.org/10.37188/ope.20202810.2138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kieninger, Clemens, Yasar Kutuvantavida, Delwin L. Elder, Stefan Wolf, Heiner Zwickel, Matthias Blaicher, Juned N. Kemal, et al. "Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator." Optica 5, no. 6 (June 7, 2018): 739. http://dx.doi.org/10.1364/optica.5.000739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії