Статті в журналах з теми "Organic compounds Synthesis"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Organic compounds Synthesis.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Organic compounds Synthesis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ariefin, Mokhamat, and Vety Sri Harlinda Ayudha. "Synthesis and Characterization of Benzodithiophene (BDT) Quinoid Compounds as a Potential Compound for n-Type Organic Thin-Film Transistors (OTFT)." Jurnal Kimia Sains dan Aplikasi 23, no. 7 (July 17, 2020): 261–66. http://dx.doi.org/10.14710/jksa.23.7.261-266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two potential compounds as an n-Type organic thin-film transistor (OTFT) from benzodithiophene (BDT) derivatives have been synthesized and characterized. BDT was chosen as the core because it has π-conjugated bonds, rigid structures, and planar. Quinoid structure with end-cap (terminal group) in the form of dicyanomethylene is used because it can lower the LUMO value of the compound, and side chains are selected in the form of alkoxy so that two BDT derivatives are obtained namely BDTQ-6 (hexyloxy) and BDTQ-10 (decyloxy). Based on the results of TGA, BDTQ-6 and BDTQ-10 have decomposition points of 183°C and 203°C, which indicate the compound has excellent thermal stability. From the UV-Vis measurement, the λmax value of the two compounds is 599 nm with optical gap energy (Eg°pt) of 1.7 eV. From the DPV measurement, the LUMO value for the two compounds is -4.3 eV, with an energy gap (Eg) of 1.69 eV (BDTQ-6) and 1.70 eV (BDTQ-10). Based on observations of the crystal structure through x-ray diffraction, it was found that the BDTQ-10 crystal has a "brick type" layer arrangement with a distance between layers of 3.55 Å. With excellent thermal stability and suitable LUMO values and energy gaps, it is expected that BDTQ-6 and BDTQ-10 compounds have the potential to be n-Type OTFT materials.
2

Lobzhanidze, Tea. "Synthesis, Study and Use of New Type Biologically Active Arsenic-Organic Complex Compounds." Chemistry & Chemical Technology 6, no. 4 (December 20, 2012): 371–76. http://dx.doi.org/10.23939/chcht06.04.371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gholami, Fateme, Faeze Yousefnejad, Bagher Larijani, and Mohammad Mahdavi. "Vinyl azides in organic synthesis: an overview." RSC Advances 13, no. 2 (2023): 990–1018. http://dx.doi.org/10.1039/d2ra06726a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

MURAHASHI, Shun-Ichi, and Takeshi NAOTA. "Organic synthesis using ruthenium compounds." Journal of Synthetic Organic Chemistry, Japan 46, no. 10 (1988): 930–42. http://dx.doi.org/10.5059/yukigoseikyokaishi.46.930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KUSAMA, Hiroyuki, and Koichi NARASAKA. "Rhenium Compounds in Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 54, no. 8 (1996): 644–53. http://dx.doi.org/10.5059/yukigoseikyokaishi.54.644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SHINOKUBO, Hiroshi, and Koichiro OSHIMA. "Organic Synthesis Using Organomanganese Compounds." Journal of Synthetic Organic Chemistry, Japan 57, no. 1 (1999): 13–23. http://dx.doi.org/10.5059/yukigoseikyokaishi.57.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Negishi, Ei-ichi, and Tamotsu Takahashi. "Organozirconium Compounds in Organic Synthesis." Synthesis 1988, no. 01 (1988): 1–19. http://dx.doi.org/10.1055/s-1988-27453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sadekov, Igor D., B. B. Rivkin, and Vladimir I. Minkin. "Organotellurium Compounds in Organic Synthesis." Russian Chemical Reviews 56, no. 4 (April 30, 1987): 343–54. http://dx.doi.org/10.1070/rc1987v056n04abeh003275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khusnutdinov, R. I., T. M. Oshnyakova, and U. M. Dzhemilev. "Molybdenum compounds in organic synthesis." Russian Chemical Reviews 86, no. 2 (February 28, 2017): 128–63. http://dx.doi.org/10.1070/rcr4617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jiao, Jiao, and Yasushi Nishihara. "Alkynylboron compounds in organic synthesis." Journal of Organometallic Chemistry 721-722 (December 2012): 3–16. http://dx.doi.org/10.1016/j.jorganchem.2012.05.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Knölker, H. J. "Iron Compounds in Organic Synthesis." Synthesis 1994, no. 10 (1994): 1106. http://dx.doi.org/10.1055/s-1994-25646.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Eaborn, Colin. "Organoboron Compounds in Organic Synthesis." Journal of Organometallic Chemistry 284, no. 2 (April 1985): C43. http://dx.doi.org/10.1016/0022-328x(85)87227-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Birch, Arthur J., Brian Chauncy, Lawrence F. Kelly, and David J. Thompson. "Organometallic compounds in organic synthesis." Journal of Organometallic Chemistry 286, no. 1 (April 1985): 37–46. http://dx.doi.org/10.1016/0022-328x(85)87233-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Chaloner, Penny A. "Organomercury compounds in organic synthesis." Journal of Organometallic Chemistry 307, no. 1 (June 1986): C10—C11. http://dx.doi.org/10.1016/0022-328x(86)80188-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Petasis, N. A., S. P. Lu, E. I. Bzowej, D. K. Fu, J. P. Staszewski, Irini Akritopoulou-Zanze, M. A. Patane, and Y. H. Hu. "Organotitanium compounds in organic synthesis." Pure and Applied Chemistry 68, no. 3 (January 1, 1996): 667–70. http://dx.doi.org/10.1351/pac199668030667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Roberts, R. M. G. "Iron compounds in organic synthesis." Journal of Organometallic Chemistry 490, no. 1-2 (March 1995): C37. http://dx.doi.org/10.1016/0022-328x(95)90297-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Figueroa-Quintero, Leidy, Enrique Vicente Ramos-Fernandez, and Javier Narciso. "Synthesis and Characterization of the Metal–Organic Framework CIM-80 for Organic Compounds Adsorption." Materials 15, no. 15 (August 2, 2022): 5326. http://dx.doi.org/10.3390/ma15155326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Metal–organic frameworks (MOF) are a new type of porous materials that have great potential for adsorption of voltaic organic compounds (VOCs). These types of materials composed of metal ions and organic ligands are easy to synthesize, have high surface areas, their surface chemistry can be adjusted to the desired application, and they can also have good chemical and thermal stability. Therefore, this work focuses on the synthesis of a highly hydrophobic MOF material called CIM-80, a porous material that is made up of the Al3+ cation and the mesaconate linker. This MOF has a B.E.T. of approximately 800 m2/g and has potential applications for the adsorption of hydrophobic organic compounds. However, its synthesis is expensive and very dirty. Therefore, we have studied the synthesis conditions necessary to achieve high synthesis yields (85%) and materials with high crystallinity and accessible porosity. To achieve these results, we have used urea as a mild deprotonation reagent and modulator as an alternative to NaOH, which is traditionally used for the synthesis of this MOF. Once the synthesis of this material was controlled, its adsorption/desorption behavior of water and organic compounds such as toluene, cyclohexane and m-xylene was studied by means of vapor adsorption isotherms. The results show the hydrophobic character of the material and the greater affinity the material has toward aliphatic compounds than toward aromatic ones, with toluene being the most adsorbed compound, followed by cyclohexane and m-xylene.
18

Macarie, Lavinia, Nicoleta Plesu, Smaranda Iliescu, and Gheorghe Ilia. "Synthesis of organophosphorus compounds using ionic liquids." Reviews in Chemical Engineering 34, no. 5 (August 28, 2018): 727–40. http://dx.doi.org/10.1515/revce-2017-0014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Organophosphorus chemistry was developed in the last decade by promoting the synthesis reactions using ionic liquids either as solvent or catalyst. Ionic liquids (ILs), the so-called “green solvents”, have gained interest in the synthesis of organophosphorus compounds as alternatives to flammable and toxic organic solvents and catalysts. ILs have beneficial properties because they provide high solubility for many organic and inorganic compounds or metal complexes, have no vapor pressure, and are reusable. Also, in some cases, they can enhance the reactivity of chemical reagents. In this review, we aimed at showing the synthesis of different organophosphorus compounds under green and mild conditions using ILs as reaction media or catalysts, according to a trend developed in the last years. A novel trend is to perform these syntheses under microwave irradiation conditions together with ILs as solvents and catalysts.
19

Reeves, Eoghan P., and Jens Fiebig. "Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere." Elements 16, no. 1 (February 1, 2020): 25–31. http://dx.doi.org/10.2138/gselements.16.1.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Accumulation of molecular hydrogen in geologic systems can create conditions energetically favorable to transform inorganic carbon into methane and other organic compounds. Although hydrocarbons with a potentially abiotic origin have been proposed to form in a number of crustal settings, the ubiquitous presence of organic compounds derived from biological organic matter presents a challenge for unambiguously identifying abiotic organic molecules. In recent years, extensive analysis of methane and other organics in diverse geologic fluids, combined with novel isotope analyses and laboratory simulations, have, however, yielded insights into the distribution of specific abiotic organic molecules in Earth’s lithosphere and the likely conditions and pathways under which they form.
20

Fajdek-Bieda, Anna, and Andrzej Perec. "Optimization of the organic compounds synthesis." Procedia Computer Science 207 (2022): 819–28. http://dx.doi.org/10.1016/j.procs.2022.09.137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Gouverneur, Véronique, Sophie Boldon, Ida Stenhagen, Jane Moore, and Sajinder Luthra. "Supported Synthesis of Halogenated Organic Compounds." Synthesis 2011, no. 24 (November 8, 2011): 3929–53. http://dx.doi.org/10.1055/s-0031-1289590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wirth, Thomas. "Chiral selenium compounds in organic synthesis." Tetrahedron 55, no. 1 (January 1999): 1–28. http://dx.doi.org/10.1016/s0040-4020(98)00946-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Peppe, C. "Indium(I) Compounds in Organic Synthesis." Current Organic Synthesis 1, no. 3 (July 1, 2004): 227–31. http://dx.doi.org/10.2174/1570179043366657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

DOCKX, Jozef. "Quaternary Ammonium Compounds in Organic Synthesis." Synthesis 1973, no. 08 (September 12, 2002): 441–56. http://dx.doi.org/10.1055/s-1973-22233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Samaritdinovna, Tursunova Nargiza, Shukurov Sardor Salimovich, and Asatova Marjona Otabekovna. "TECHNOLOGY FOR OBTAINING INORGANIC AND ORGANIC SEMICONDUCTOR COMPOUNDS FOR SOLAR CELLS." International Journal of Advance Scientific Research 03, no. 06 (June 1, 2023): 211–16. http://dx.doi.org/10.37547/ijasr-03-06-37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article presents the synthesis of semiconductor polymer materials and their use in photovoltaic technology, the study of one of the promising semiconductors, polyaniline, titanium dioxide deposited on one side on a transparent special glass plate and impregnated with a dye, solar cells obtained based on dyes that are sensitive to sunlight and the power generated by them, the values of voltage and current were measured.
26

Yoneda, Norihiko, Tsuyoshi Fukuhara, Yukio Takahashi, and Mitsuhiro Okimoto. "Electrochemical Synthesis of Fluoro-Organic Compounds Using Iodine Compounds." ECS Transactions 2, no. 22 (December 21, 2019): 1–6. http://dx.doi.org/10.1149/1.2408998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Iqbal, Sarosh, Hina Rasheed, Rabiya Javed Awan, Ramsha Javed Awan, Asma Mukhtar, and Mark G. Moloney. "Recent Advances in the Synthesis of Pyrroles." Current Organic Chemistry 24, no. 11 (September 11, 2020): 1196–229. http://dx.doi.org/10.2174/1385272824999200528125651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
: Pyrroles are the most prevalent heterocyclic compounds, which are present as the basic cores in many natural products, such as vitamin B12, bile pigments like bilirubin and biliverdin, the porphyrins of heme, chlorophyll, chlorins, bacteriochlorins, and porphyrinogens. The biological activities of compounds having pyrrole analogs include antimicrobial (antibacterial, antifungal), anti-cancer (anti-cytotoxic, antimitotic), anti-tumor, anti-hyperlipidemic, anti-depressant, anti-inflammatory, antihyperglycemic, antiproliferative, anti-HIV and anti-viral activities. Accordingly, significant attention has been paid to develop competent methods for the synthesis of pyrroles with improved yields in short times. This review gives an overview of different methods for the synthesis of pyrrole using easily available precursors using the following routes. . Synthesis of monosubstituted pyrrole using 2,5-dimethoxyfuran . Synthesis of pyrrole using dialkylacetylene dicarboxylate . Synthesis of pyrroles using β-ketoester . Synthesis of pyrrole using 1,2-dicarbonyl compounds . Synthesis of pyrroles using 1,3-dicarbonyl compounds . Synthesis of pyrroles using 1,3-dicarbonyl, amine, nitro and aldehyde group . Synthesis of pyrroles using 1,4-dicarbonyl compound and amines . Synthesis of pyrrole using enones . Synthesis of pyrroles using moieties having acetylene group
28

Chiriac, Ghenadie, and Sergiu Codreanu. "Synthesis and study of coordinating agents for the synthesis of new coordination compounds." Acta et commentationes: Ştiinţe Exacte şi ale Naturii 13, no. 1 (November 2022): 100–109. http://dx.doi.org/10.36120/2587-3644.v13i1.100-109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two compounds were obtained from the condensation reaction of semicarbazide (hydrazinecarboxamide) and semithiocarbohydrazide (hydrazinecarbothioamide) compounds with a 3-pyridinecarboxaldehyde carbonyl compound: (E)-1-(pyridin-3-ylmethylene)thiourea (L-1) and (E)-1-(pyridin-3-ylmethylene)urea (L-1) (L-2). The structure and composition of these compounds were determined using theoretical calculations with the GAMESS software package and IR spectroscopy. The new organic molecules L-1 and L-2 have the potential to be used as mono- or bidentate coordinating agents in the construction of coordination compounds with various useful properties.
29

Minko, Yury, and Ilan Marek. "Oxenoids in organic synthesis." Org. Biomol. Chem. 12, no. 10 (2014): 1535–46. http://dx.doi.org/10.1039/c3ob42349b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ziarani, Ghodsi Mohammadi, Mahdieh Khademi, Fatemeh Mohajer, Sangeeta Yadav, and Ravi Tomar. "Recent Advances in the Application of Barbituric Acid Derivatives in Multicomponent Reactions." Current Organic Chemistry 26, no. 2 (January 2022): 162–88. http://dx.doi.org/10.2174/1385272826666211229150318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract: Barbituric acid is a pyrimidine heterocyclic organic compound, which is pharmacologically active. It is important to build structures containing various medicinal activities. This compound attracts the scientific research community in organic synthesis. It can be used in the synthesis of polyheterocyclic, natural, medicinal compounds, and organic sensors. Herein, the utilization of barbituric or thiobarbituric acid in multicomponent reactions is reported from 2016-2021 in this manuscript.
31

Arisawa, Mieko, and Masahiko Yamaguchi. "Rhodium-Catalyzed Synthesis of Organosulfur Compounds using Sulfur." Synlett 30, no. 14 (July 2, 2019): 1621–31. http://dx.doi.org/10.1055/s-0037-1611867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Sulfur is one of the few elements that occurs uncombined in nature. Sulfur atoms are found in natural amino acids and vitamins. In the chemical industry, organosulfur compounds are used for fabricating rubber, fibers, and dyes, pharmaceuticals, and pesticides. Although sulfur, which is cheap and easy to handle, is a useful source of sulfur atom in functional organosulfur compounds, it is rarely used in organic synthesis. Activation of sulfur by high temperature, light irradiation, treatment with nucleophiles and electrophiles, and redox conditions often results in the formation of various active sulfur species, which complicate reactions. The development of a method that mildly activates sulfur is therefore desired. The use of transition-metal catalysts is a new method of activating sulfur under mild conditions, and, in this article, we describe the rhodium-catalyzed synthesis of various organosulfur compounds by the insertion of sulfur atoms into single bonds and by the addition of sulfur to unsaturated bond in various organic compounds.1 Introduction2 Sulfur Activation without using Transition Metal3 Transition-Metal-Catalyzed Activation of Sulfur4 Rhodium-Catalyzed Reactions using Sulfur4.1 Rhodium-Catalyzed Sulfur Atom Exchange Reactions using Sulfur4.2 Synthesis of Diaryl Sulfides using Rhodium-Catalyzed Exchange Reaction of Aryl Fluorides and Sulfur/Organopolysulfides4.3 Rhodium-Catalyzed Synthesis of Isothiocyanate using Sulfur4.4 Rhodium-Catalyzed Sulfur Addition Reaction to Alkenes for Thiiranes Synthesis4.5 Rhodium-Catalyzed Sulfur Addition Reaction to Alkynes for 1,4-Dithiins Synthesis5 Conclusion
32

Jordão, Alessandro K., Maria D. Vargas, Angelo C. Pinto, Fernando de C. da Silva, and Vitor F. Ferreira. "Lawsone in organic synthesis." RSC Advances 5, no. 83 (2015): 67909–43. http://dx.doi.org/10.1039/c5ra12785h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mendoza, Lisbeth, Liadis Bedoya, Elvia V. Cabrera, Dioni Arrieche, and Ajoy K. Banerjee. "Polyphosphoric Acid in Organic Synthesis." International Journal of Chemistry 15, no. 1 (April 10, 2023): 47. http://dx.doi.org/10.5539/ijc.v15n1p47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polyphosphoric acid (PPA), a powerful dehydrating agent, has been widely used to perform several important organic reactions and thus has played an important role in the synthesis of organic compounds and natural products. The present micro review describes briefly the use of PPA (i) in the cyclization of acids on the aromatic ring (ii) in acetylation and isopropylation on the aromatic ring, (iii)hydrolysis of esters, (iv) cleavage of epoxides and (v) synthesis of heterocyclic compounds.
34

Li Ran, Li Ran, Deng Yunli Deng Yunli, Wu Siliang Wu Siliang, Liao Jiayi Liao Jiayi, Tang Xiujuan Tang Xiujuan, and Han Xiaoxiang Han Xiaoxiang. "Organic-Exchanged Silicotungstic Acid Compounds as Efficient and Environmental-Friendly Catalysts for Synthesis of Glycerol Monolaurate." Journal of the chemical society of pakistan 45, no. 3 (2023): 243. http://dx.doi.org/10.52568/001244/jcsp/45.03.2023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A series of organic-exchanged silicotungstic acid catalysts were synthesized by changing the variety and amount of organic compounds. The structure, thermal stability and acidic properties of the catalysts were characterized by FT-IR, XRD, TGA and 31P-MAS NMR. The catalytic performances of the catalysts were investigated on the selective esterification of lauric acid with glycerol to glycerol monolaurate. Among the various catalysts, [QuH]1H3SiW12O40 with molar ratio of quinoline to silicotungstic acid of 1:1 showed excellent activity and reusability due to strong Brand#248;nsted acidity and “pseudo-liquid” catalytic modes. The optimal conditions optimized by response surface methodology were as follows: the molar ratio of glycerol to lauric acid was 5.3:1, the amount of catalyst was 4.8 wt%, the reaction temperature was 424 K, and the reaction time was 1.5 h. Under these conditions, the average yield of glycerol monolaurate was 79.7%, which was basically consistent with the values predicted by the mathematical model. Moreover, the kinetic data of this reaction were fitted to a second-order kinetic model and the apparent activation energy Ea was 52.35 kJ / mol
35

Wang, Jianbo. "When diazo compounds meet with organoboron compounds." Pure and Applied Chemistry 90, no. 4 (March 28, 2018): 617–23. http://dx.doi.org/10.1515/pac-2017-0713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractTransition-metal free reactions of diazo compounds with organoboron compounds provide some unique approaches for the formation of C–C, C–B and C–Si bonds. WithN-tosylhydrazones as the precursors for non-stabilized diazo compound, this type of reaction becomes practically useful in organic synthesis. Transition-metal-free synthetic methodologies for borylation,gem-diborylation,gem-silylborylation arylation, 2,2,2-trifluoroethylation andgem-difluorovinylation have been successfully developed.
36

Aneeja, Thaipparambil, Sankaran Radhika, Mohan Neetha, and Gopinathan Anilkumar. "An Overview of the One-pot Synthesis of Imidazolines." Current Organic Chemistry 24, no. 20 (December 2, 2020): 2341–55. http://dx.doi.org/10.2174/1385272824999201001153735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.
37

Aneeja, Thaipparambil, Sankaran Radhika, Mohan Neetha, and Gopinathan Anilkumar. "An Overview of the One-pot Synthesis of Imidazolines." Current Organic Chemistry 24, no. 20 (October 2020): 2341–55. http://dx.doi.org/10.2174/138527282499920100115373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.
38

Gómez Fernández, Mario Andrés, and Norbert Hoffmann. "Photocatalytic Transformation of Biomass and Biomass Derived Compounds—Application to Organic Synthesis." Molecules 28, no. 12 (June 13, 2023): 4746. http://dx.doi.org/10.3390/molecules28124746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biomass and biomass-derived compounds have become an important alternative feedstock for chemical industry. They may replace fossil feedstocks such as mineral oil and related platform chemicals. These compounds may also be transformed conveniently into new innovative products for the medicinal or the agrochemical domain. The production of cosmetics or surfactants as well as materials for different applications are examples for other domains where new platform chemicals obtained from biomass can be used. Photochemical and especially photocatalytic reactions have recently been recognized as being important tools of organic chemistry as they make compounds or compound families available that cannot be or are difficultly synthesized with conventional methods of organic synthesis. The present review gives a short overview with selected examples on photocatalytic reactions of biopolymers, carbohydrates, fatty acids and some biomass-derived platform chemicals such as furans or levoglucosenone. In this article, the focus is on application to organic synthesis.
39

Ismail, M. T., M. F. El-Zohry, and A. A. Abdel-Wahab. "Electvosynthesis of organic compounds. IV. Synthesis of some arylnitromethane compounds." Journal of Applied Electrochemistry 15, no. 3 (May 1985): 469–70. http://dx.doi.org/10.1007/bf00616003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhao, Yucheng, Qiang Xiao, Baoqu Wang, Jun Lin, and Shengjiao Yan. "Synthesis of Iminopyrrolone Compounds." Chinese Journal of Organic Chemistry 37, no. 10 (2017): 2696. http://dx.doi.org/10.6023/cjoc201705004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

SOBOLEVA, E. A., Ya A. VISURKHANOVA, N. M. IVANOVA, М. Е. BEISENBEKOVA, and S. O. KENZHETAEVA. "ULTRAFINECOPPER AND NICKEL POWDERS INTHE ELECTRO-CATALYTICHYDROGENATIONOF ORGANIC COMPOUNDS." Chemical Journal of Kazakhstan 74, no. 2 (June 30, 2021): 32–48. http://dx.doi.org/10.51580/2021-1/2710-1185.26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ultrafine copper and nickel powders are synthesized by a chemical reduction of the metal cations from their salts in an aqueous ethanol solution without and with the addition of a polymer stabilizer (polyvinylpyrrolidone and polyvinyl alcohol). The structure and morphological features of the prepared metal powders were investigated by X-ray phase analysis and electron microscopy. The electrocatalytic properties of the Cu and Ni powders have been studied in the electrohydrogenation of acetophenone, nitrobenzene, p-nitroaniline, and cyclohexanone. A higher electrocatalytic activity of Cu powders, as well as skeletal copper, was established in the electrohydrogenation of the first three of the listed compounds in comparison with nickel powders, which is explained by the ability of copper cations to be reduced from its oxides in the electrochemical system under investigation. It is shown that the use of polymer stabilizers in the synthesis of Cu and Ni powders contributes to reducing metal particle sizes, but does not increase the electrocatalytic activity of the corresponding metal powders.
42

Gennaiou, Kyriaki, Antonios Kelesidis, Maria Kourgiantaki, and Alexandros L. Zografos. "Combining the best of both worlds: radical-based divergent total synthesis." Beilstein Journal of Organic Chemistry 19 (January 2, 2023): 1–26. http://dx.doi.org/10.3762/bjoc.19.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A mature science, combining the art of the total synthesis of complex natural structures and the practicality of delivering highly diverged lead compounds for biological screening, is the constant aim of the organic chemistry community. Delivering natural lead compounds became easier during the last two decades, with the evolution of green chemistry and the concepts of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary review highlights recent total syntheses that incorporate the best of both worlds.
43

Talhi, Oualid, and Artur M. S. Silva. "Organic Synthesis of C-Prenylated Phenolic Compounds." Current Organic Chemistry 17, no. 10 (May 1, 2013): 1067–102. http://dx.doi.org/10.2174/1385272811317100009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hanamoto, Takeshi. "Application of Fluoroacetylene Compounds to Organic Synthesis." Journal of Synthetic Organic Chemistry, Japan 69, no. 9 (2011): 994–1005. http://dx.doi.org/10.5059/yukigoseikyokaishi.69.994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ishikura, Minoru. "Applications of Heteroarylboron Compounds to Organic Synthesis." Current Organic Chemistry 6, no. 6 (May 1, 2002): 507–21. http://dx.doi.org/10.2174/1385272024604907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

WADA, Makoto, and Hidenori OHKI. "Organic synthesis using bismuth and bismuth compounds." Journal of Synthetic Organic Chemistry, Japan 47, no. 5 (1989): 425–35. http://dx.doi.org/10.5059/yukigoseikyokaishi.47.425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Izumi, Minoru. "Solid-phase organic synthesis of heterocyclic compounds." Journal of Pesticide Science 31, no. 1 (2006): 1–5. http://dx.doi.org/10.1584/jpestics.31.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Fleming, Ian. "Stereocontrol in Organic Synthesis Using Silicon Compounds." Frontiers in Natural Product Chemistry 1, no. 1 (January 1, 2005): 55–64. http://dx.doi.org/10.2174/1574089054583731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhirov, A. M., and A. V. Aksenov. "Azodicarboxylates: synthesis and functionalization of organic compounds." Russian Chemical Reviews 83, no. 6 (June 27, 2014): 502–22. http://dx.doi.org/10.1070/rc2014v083n06abeh004419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ford, Alan, Hugues Miel, Aoife Ring, Catherine N. Slattery, Anita R. Maguire та M. Anthony McKervey. "Modern Organic Synthesis with α-Diazocarbonyl Compounds". Chemical Reviews 115, № 18 (18 серпня 2015): 9981–10080. http://dx.doi.org/10.1021/acs.chemrev.5b00121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії