Статті в журналах з теми "Optoacoustic Imaging"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Optoacoustic Imaging.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Optoacoustic Imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

ESENALIEV, RINAT O. "BIOMEDICAL OPTOACOUSTICS." Journal of Innovative Optical Health Sciences 04, no. 01 (January 2011): 39–44. http://dx.doi.org/10.1142/s1793545811001253.

Повний текст джерела
Анотація:
Optoacoustics is a promising modality for biomedical imaging, sensing, and monitoring with high resolution and contrast. In this paper, we present an overview of our studies for the last two decades on optoacoustic effects in tissues and imaging capabilities of the optoacoustic technique. In our earlier optoacoustic works we studied laser ablation of tissues and tissue-like media and proposed to use optoacoustics for imaging in tissues. In mid-90s we demonstrated detection of optoacoustic signals from tissues at depths of up to several centimeters, well deeper than the optical diffusion limit. We then obtained optoacoustic images of tissues both in vitro and in vivo. In late 90s we studied optoacoustic monitoring of thermotherapy: hyperthermia, coagulation, and freezing. Then we proposed and studied optoacoustic monitoring of blood oxygenation, hemoglobin concentration, and other physiologic parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roberts, Sheryl, Chrysafis Andreou, Crystal Choi, Patrick Donabedian, Madhumitha Jayaraman, Edwin C. Pratt, Jun Tang, et al. "Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer." Chemical Science 9, no. 25 (2018): 5646–57. http://dx.doi.org/10.1039/c8sc01706a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Laramie, Matt, Mary Smith, Fahad Marmarchi, Lacey McNally, and Maged Henary. "Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging." Molecules 23, no. 11 (October 25, 2018): 2766. http://dx.doi.org/10.3390/molecules23112766.

Повний текст джерела
Анотація:
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Regensburger, Adrian P., Emma Brown, Gerhard Krönke, Maximilian J. Waldner, and Ferdinand Knieling. "Optoacoustic Imaging in Inflammation." Biomedicines 9, no. 5 (April 28, 2021): 483. http://dx.doi.org/10.3390/biomedicines9050483.

Повний текст джерела
Анотація:
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of “light in” and “sound out” offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bell, Gavin, Ghayathri Balasundaram, Amalina Binte Ebrahim Attia, Francesca Mandino, Malini Olivo, and Ivan P. Parkin. "Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging." Journal of Materials Chemistry B 7, no. 13 (2019): 2212–19. http://dx.doi.org/10.1039/c8tb02299b.

Повний текст джерела
Анотація:
The synthesis of iron oxide (Fe3O4) nanoparticles conjugated with an optoacoustic molecule to give multimodal imaging of magnetic resonance imaging (MRI) and multispectral optoacoustic tomography (MSOT).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tzoumas, Stratis, and Vasilis Ntziachristos. "Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, no. 2107 (October 16, 2017): 20170262. http://dx.doi.org/10.1098/rsta.2017.0262.

Повний текст джерела
Анотація:
A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO 2 ) by transforming and solving the sO 2 estimation problem from the spatial to the spectral domain. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nunes, Antonio, Vikram J. Pansare, Nicolas Beziere, Argiris Kolokithas Ntoukas, Josefine Reber, Matthew Bruzek, John Anthony, Robert K. Prud’homme, and Vasilis Ntziachristos. "Quenched hexacene optoacoustic nanoparticles." Journal of Materials Chemistry B 6, no. 1 (2018): 44–55. http://dx.doi.org/10.1039/c7tb02633a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vogt, Nina. "Optoacoustic imaging of neural activity." Nature Methods 16, no. 5 (April 30, 2019): 362. http://dx.doi.org/10.1038/s41592-019-0415-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mishra, Kanuj, Juan Pablo Fuenzalida-Werner, Vasilis Ntziachristos, and Andre C. Stiel. "Photocontrollable Proteins for Optoacoustic Imaging." Analytical Chemistry 91, no. 9 (April 2019): 5470–77. http://dx.doi.org/10.1021/acs.analchem.9b01048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Butler, Reni, Philip T. Lavin, F. Lee Tucker, Lora D. Barke, Marcela Böhm-Vélez, Stamatia Destounis, Stephen R. Grobmyer, et al. "Optoacoustic Breast Imaging: Imaging-Pathology Correlation of Optoacoustic Features in Benign and Malignant Breast Masses." American Journal of Roentgenology 211, no. 5 (November 2018): 1155–70. http://dx.doi.org/10.2214/ajr.17.18435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Karlas, Angelos, Miguel A. Pleitez, Juan Aguirre, and Vasilis Ntziachristos. "Optoacoustic imaging in endocrinology and metabolism." Nature Reviews Endocrinology 17, no. 6 (April 19, 2021): 323–35. http://dx.doi.org/10.1038/s41574-021-00482-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Buehler, Andreas, Marcin Kacprowicz, Adrian Taruttis, and Vasilis Ntziachristos. "Real-time handheld multispectral optoacoustic imaging." Optics Letters 38, no. 9 (April 24, 2013): 1404. http://dx.doi.org/10.1364/ol.38.001404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Schellenberg, Mason W., and Heather K. Hunt. "Hand-held optoacoustic imaging: A review." Photoacoustics 11 (September 2018): 14–27. http://dx.doi.org/10.1016/j.pacs.2018.07.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Paltauf, G., J. A. Viator, S. A. Prahl, and S. L. Jacques. "Iterative reconstruction algorithm for optoacoustic imaging." Journal of the Acoustical Society of America 112, no. 4 (October 2002): 1536–44. http://dx.doi.org/10.1121/1.1501898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ashkenazi, Shai, Yang Hou, Takashi Buma, and Matthew O’Donnell. "Optoacoustic imaging using thin polymer étalon." Applied Physics Letters 86, no. 13 (March 28, 2005): 134102. http://dx.doi.org/10.1063/1.1896085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

JETZFELLNER, THOMAS, and VASILIS NTZIACHRISTOS. "PERFORMANCE OF BLIND DECONVOLUTION IN OPTOACOUSTIC TOMOGRAPHY." Journal of Innovative Optical Health Sciences 04, no. 04 (October 2011): 385–93. http://dx.doi.org/10.1142/s1793545811001691.

Повний текст джерела
Анотація:
In this paper, we consider the use of blind deconvolution for optoacoustic (photoacoustic) imaging and investigate the performance of the method as means for increasing the resolution of the reconstructed image beyond the physical restrictions of the system. The method is demonstrated with optoacoustic measurement obtained from six-day-old mice, imaged in the near-infrared using a broadband hydrophone in a circular scanning configuration. We find that estimates of the unknown point spread function, achieved by blind deconvolution, improve the resolution and contrast in the images and show promise for enhancing optoacoustic images.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Messas, Tassahil, Achraf Messas, and George Kroumpouzos. "Optoacoustic imaging and potential applications of raster-scan optoacoustic mesoscopy in dermatology." Clinics in Dermatology 40, no. 1 (January 2022): 85–92. http://dx.doi.org/10.1016/j.clindermatol.2021.12.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gujrati, Vipul, Anurag Mishra, and Vasilis Ntziachristos. "Molecular imaging probes for multi-spectral optoacoustic tomography." Chemical Communications 53, no. 34 (2017): 4653–72. http://dx.doi.org/10.1039/c6cc09421j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Rudnitskii, A. G., M. A. Rudnytska, and L. V. Tkachenko. "Correction of artifacts in optoacoustic imaging using an iterative approach." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 4 (2021): 98–107. http://dx.doi.org/10.17721/1812-5409.2021/4.16.

Повний текст джерела
Анотація:
Optoacoustic tomography is effective in applying to the visualization of objects that have a high coefficient of light absorption relative to the environment. Such tasks include, for example, defectoscopy, vascular imaging, detection and monitoring of tumors, diagnosis of porosity of composite materials, high-precision local measurement of the modulus of elasticity. However, the quality of optoacoustic images largely depends on factors such as noise (equipment or environmental noise) and distortion due to the characteristics of the model and the calculation algorithm. The article proposes an iterative algorithm for improving the quality of optoacoustic images, based on the observation that artifacts increase in magnitude with each iteration, while the nature and location of the distortions remain unchanged. Numerical simulations of the propagation of ultrasonic waves in environments close to soft biological tissues have been performed. In terms of eliminating distortion and artefacts inherent to the method of image reconstruction, an iterative filter was found to be highly effective The effectiveness of the approach is manifested in the use of a small number of iterations.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kravchuk, Denis. "Construction of an optoacoustic image of biological tissues based on an algorithm for a graphics processor." Applied Physics, no. 5 (November 19, 2021): 106–9. http://dx.doi.org/10.51368/1996-0948-2021-5-106-109.

Повний текст джерела
Анотація:
The use of optical contrast between different blood particles allows the use of optoacoustic imaging to visualize the distribution of blood particles (erythrocytes, taking into account oxygen saturation), the delivery of drugs to organs through blood vessels. An algorithm for calculating the ultrasonic field obtained as a result of optoacoustic interaction has been developed to speed up calculations on the GPU board. An architecture for fast restoration of an optoacoustic signal based on graphics processing unit (GPU) programming is proposed. The algorithm used in combination with the pre-migration method provides an improvement in the resolution and sharpness of the optoacoustic image of the simulated biological tissues. Thanks to the advanced graphics processing unit (GPU) computing architecture, time-consuming main processing unit (CPU) computing is accelerated with great computational efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Huang, Wenhui, Zicong He, Xuekang Cai, Jingming Zhang, Wei Li, Kun Wang, and Shuixing Zhang. "The Dual-Targeted Peptide Conjugated Probe for Depicting Residual Nasopharyngeal Carcinoma and Guiding Surgery." Biosensors 12, no. 9 (September 5, 2022): 729. http://dx.doi.org/10.3390/bios12090729.

Повний текст джерела
Анотація:
Detecting residual nasopharyngeal carcinoma (rNPC) can be difficult because of the coexistence of occult tumours and post-chemoradiation changes, which poses a challenge for both radiologists and surgeons using current imaging methods. Currently, molecular imaging that precisely targets and visualises particular biomarkers in tumours may exceed the specificity and sensitivity of traditional imaging techniques, providing the potential to distinguish tumours from non-neoplastic lesions. Here, we synthesised a HER2/SR-BI-targeted tracer to efficiently position NPC and guide surgery in living mice. This bispecific tracer contained the following two parts: IRDye 800 CW, as an imaging reagent for both optical and optoacoustic imaging, and a fusion peptide (FY-35), as the targeting reagent. Both in vitro and in vivo tests demonstrated that the tracer had higher accumulation and longer retention (up to 48 h) in tumours than a single-targeted probe, and realised sensitive detection of tumours with a minimum size of 3.9 mm. By visualising the vascular network via a customised handheld optoacoustic scan, our intraoperative fluorescence molecular imaging system provides accurate guidance for intraoperative tumour resection. Integrating the advantages of both optical and optoacoustic scanning in an intraoperative image-guided system, this method holds promise for depicting rNPC and guiding salvage surgery.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wu, Yinglong, Fang Zeng, Yanli Zhao, and Shuizhu Wu. "Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications." Chemical Society Reviews 50, no. 14 (2021): 7924–40. http://dx.doi.org/10.1039/d1cs00358e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Deán-Ben, X. L., S. Gottschalk, B. Mc Larney, S. Shoham, and D. Razansky. "Advanced optoacoustic methods for multiscale imaging of in vivo dynamics." Chemical Society Reviews 46, no. 8 (2017): 2158–98. http://dx.doi.org/10.1039/c6cs00765a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

MacCuaig, William M., Carly Wickizer, Maged Henary, Yihan Shao, Barish H. Edil, Ajay Jain, William E. Grizzle, and Lacey R. McNally. "Abstract 2379: Tunable squaraine dyes as contrast agents for image guided surgery with optoacoustic imaging." Cancer Research 83, no. 7_Supplement (April 4, 2023): 2379. http://dx.doi.org/10.1158/1538-7445.am2023-2379.

Повний текст джерела
Анотація:
Abstract Surgical removal of cancers results in the most favorable patient outcomes. Resection margins may be tumor-positive in up to 70% of cases depending on cancer type, representing an unmet clinical need. Image-guided surgery often utilizes fluorescent dyes such as IR 800CW, but are limited to 8mm of depth and result in potential false-positive signal due to high blood binding. To overcome limitations, we are developing new contrast agents for Multispectral optoacoustic tomography (MSOT)-guided surgery to allow for greater depth of penetration and future potential of multiplexing of agents.To generate squaraine contrast agents, we prepared heterocyclic salts side arms refluxed with squaric acid to form 6 different compounds. The compounds differ only in halogenation of heterocyclic salts and inclusion of dual trimethylpropylammonium (TMAB) pendant groups. All squaraines were confirmed with NMR/spectrometry. MSOT and fluorescence were utilized to investigate the in vitro optoacoustic/fluorescence activity of the compounds. Computational modeling of squaraines through density functional theory was used to reveal quantum properties of the compounds including vibrational entropy, oscillator strength, and dipole moment. Compounds were administered orally in a murine model to confirm visualization capability with MSOT and fluorescence.Squaraine dyes functionalized with heavier halogens (Br, Cl) exhibited higher optoacoustic activity than dyes with less heavy (F), or without halogen. Specifically, TMAB/Br functionalized squaraine exhibited 2.12 optoacoustic units in vivo, compared to 0.81, 0.58, and 0.44 for Cl, F, and no halogen compounds, respectively (all p<0.001). Inclusion of the dual TMAB groups increased optoacoustic activity. When comparing Br compounds with/without TMAB, the TMAB functionalized compound outperformed the counterpart significantly, (2.12 a.u. vs. 0.21 a.u., p<0.001). Fluorescence intensity in vivo between TMAB/Br and TMAB/Cl compounds were not significantly different (3.07E9 vs. 2.81E9 counts), indicating that fluorescence signal does not necessarily predict optoacoustic activity. Computational modeling revealed heavy halogens and TMAB functionalized dyes exhibit increased vibrational entropy, oscillator strength, dipole moment, and presence of right-shifted absorbance peaks. In vivo studies in a murine model confirmed that heavy halogen and TMAB functionalized dyes were visible in the gastrointestinal tract using both MSOT and fluorescence imaging.Image-guided surgical removal of cancer yields best patient outcomes, but is currently limited by blood binding and imaging depth. MSOT is a potential candidate, but lack of contrast has hurt clinical application. This study focused on synthesis and evaluation of squaraine compounds as potential optoacoustic contrast to expand the potential of MSOT in a clinical setting for image guided surgery for cancer. Citation Format: William M. MacCuaig, Carly Wickizer, Maged Henary, Yihan Shao, Barish H. Edil, Ajay Jain, William E. Grizzle, Lacey R. McNally. Tunable squaraine dyes as contrast agents for image guided surgery with optoacoustic imaging [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2379.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ron, Avihai, Neda Davoudi, Xosé Luís Deán-Ben, and Daniel Razansky. "Self-Gated Respiratory Motion Rejection for Optoacoustic Tomography." Applied Sciences 9, no. 13 (July 6, 2019): 2737. http://dx.doi.org/10.3390/app9132737.

Повний текст джерела
Анотація:
Respiratory motion in living organisms is known to result in image blurring and loss of resolution, chiefly due to the lengthy acquisition times of the corresponding image acquisition methods. Optoacoustic tomography can effectively eliminate in vivo motion artifacts due to its inherent capacity for collecting image data from the entire imaged region following a single nanoseconds-duration laser pulse. However, multi-frame image analysis is often essential in applications relying on spectroscopic data acquisition or for scanning-based systems. Thereby, efficient methods to correct for image distortions due to motion are imperative. Herein, we demonstrate that efficient motion rejection in optoacoustic tomography can readily be accomplished by frame clustering during image acquisition, thus averting excessive data acquisition and post-processing. The algorithm’s efficiency for two- and three-dimensional imaging was validated with experimental whole-body mouse data acquired by spiral volumetric optoacoustic tomography (SVOT) and full-ring cross-sectional imaging scanners.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lev-Tov, Hadar. "Dive deep, stay focused!" Science Translational Medicine 9, no. 391 (May 24, 2017): eaan4292. http://dx.doi.org/10.1126/scitranslmed.aan4292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kuniyil Ajith Singh, Mithun, and Wenfeng Xia. "Biomedical Photoacoustic Imaging and Sensing Using Affordable Resources." Sensors 21, no. 7 (April 6, 2021): 2572. http://dx.doi.org/10.3390/s21072572.

Повний текст джерела
Анотація:
The photoacoustic (PA) effect, also called the optoacoustic effect, was discovered in the 1880s by Alexander Graham Bell and has been utilized for biomedical imaging and sensing applications since the early 1990s [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kurakina, Daria, Mikhail Kirillin, Valeriya Perekatova, Vladimir Plekhanov, Anna Orlova, Ekaterina Sergeeva, Aleksandr Khilov, et al. "Towards Bimodal Optical Monitoring of Photodynamic Therapy with Targeted Nanoconstructs: A Phantom Study." Applied Sciences 9, no. 9 (May 10, 2019): 1918. http://dx.doi.org/10.3390/app9091918.

Повний текст джерела
Анотація:
Increase of the efficiency of photodynamic therapy (PDT) requires the development of advanced protocols employing both novel photosensitizer (PS) carriers and aids for online monitoring. Nanoconstructs may be comprised of a photosensitizer, chemotherapy drugs, or inhibitors of molecular pathways that support cancer growth. In this paper, we analyze the efficiency of a bimodal approach involving fluorescence and optoacoustic imaging in monitoring drug distribution and photobleaching. The study evaluates typical sensitivities of these techniques to the presence of the two key moieties of a nanoconstruct: benzoporphyrin derivatives (BPD) serving as a PS, and IRDye800 acting as a contrast agent. Both imaging modalities employ dual-wavelength probing at the wavelengths corresponding to absorption peaks of BPD and IRDye800, which enables their separate detection. In an experiment on a tissue-mimicking phantom with inclusions containing separate BPD and IRDye800 solutions, fluorescence imaging demonstrated higher contrast as compared to optoacoustic imaging for both components, though strong light scattering in the surrounding media restricted accurate localization of the markers. It was also sensitive to photobleaching, which is a measure of PDT efficiency. Optoacoustic imaging demonstrated sufficient sensitivity to both components, though less than that of fluorescence imaging, however, it enabled depth-resolved detection of an absorber and estimation of its relative content. Employment of the bimodal approach in monitoring of PS photobleaching adds to its potential in intraprocedural PDT monitoring.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Hongtong, Ivana Ivankovic, Jiao Li, Daniel Razansky, and Xosé Luís Deán-Ben. "Coregistration and Spatial Compounding of Optoacoustic Cardiac Images via Fourier Analysis of Four-Dimensional Data." Applied Sciences 10, no. 18 (September 9, 2020): 6254. http://dx.doi.org/10.3390/app10186254.

Повний текст джерела
Анотація:
Volumetric optoacoustic tomography has been shown to provide unprecedented capabilities for ultrafast imaging of cardiovascular dynamics in mice. Three-dimensional imaging rates in the order of 100 Hz have been achieved, which enabled the visualization of transient cardiac events such as arrhythmias or contrast agent perfusion without the need for retrospective gating. The fast murine heart rates (400–600 beats per minute) yet impose limitations when it comes to compounding of multiple frames or accurate registration of multi-spectral data. Herein, we investigate on the capabilities of Fourier analysis of four-dimensional data for coregistration of independent volumetric optoacoustic image sequences of the heart. The fundamental frequencies and higher harmonics of respiratory and cardiac cycles could clearly be distinguished, which facilitated efficient retrospective gating without additional readings. The performance of the suggested methodology was successfully demonstrated by compounding cardiac images acquired by raster-scanning of a spherical transducer array as well as by unmixing of oxygenated and deoxygenated hemoglobin from multi-spectral optoacoustic data.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mallidi, Srivalleesha, Timothy Larson, Jesse Aaron, Konstantin Sokolov, and Stanislav Emelianov. "Molecular specific optoacoustic imaging with plasmonic nanoparticles." Optics Express 15, no. 11 (2007): 6583. http://dx.doi.org/10.1364/oe.15.006583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Frenz, M., M. Kitz, S. Preisser, M. Jaeger, A. Wetterwald, and G. N. Thalmann. "Gold‐nanoparticles for optoacoustic imaging and therapy." Journal of the Acoustical Society of America 129, no. 4 (April 2011): 2672. http://dx.doi.org/10.1121/1.3588952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Pai-Chi, Martin Frenz, and Alexander Oraevsky. "Special issue on optoacoustic imaging and sensing." Journal of Optics 19, no. 8 (July 17, 2017): 080402. http://dx.doi.org/10.1088/2040-8986/aa75f6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Lamela, Horacio, Daniel Gallego, and Alexander Oraevsky. "Optoacoustic imaging using fiber-optic interferometric sensors." Optics Letters 34, no. 23 (November 24, 2009): 3695. http://dx.doi.org/10.1364/ol.34.003695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Strack, Rita. "Erratum: Optoacoustic imaging at multiple spatiotemporal scales." Nature Methods 14, no. 7 (July 2017): 752. http://dx.doi.org/10.1038/nmeth0717-752d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ntziachristos, Vasilis. "Clinical translation of optical and optoacoustic imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1955 (November 28, 2011): 4666–78. http://dx.doi.org/10.1098/rsta.2011.0270.

Повний текст джерела
Анотація:
Macroscopic optical imaging has rather humble technical origins; it has been mostly implemented by photographic means using appropriate filters, a light source and a camera yielding images of tissues. This approach relates to human vision and perception, and is simple to implement and use. Therefore, it has found wide acceptance, especially in recording fluorescence and bioluminescence signals. Yet, the difficulty in resolving depth and the dependence of the light intensity recorded on tissue optical properties may compromise the accuracy of the approach. Recently, optical technology has seen significant advances that bring a new performance level in optical investigations. Quantitative real-time multi-spectral optical and optoacoustic (photoacoustic) methods enable high-resolution quantitative imaging of tissue and disease biomarkers and can significantly enhance medical vision in diagnostic or interventional procedures such as dermatology, endoscopy, surgery, and various vascular and intravascular imaging applications. This performance is showcased herein and examples are given to illustrate how it is possible to shift the paradigm of optical clinical translation.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Taruttis, Adrian, Gooitzen M. van Dam, and Vasilis Ntziachristos. "Mesoscopic and Macroscopic Optoacoustic Imaging of Cancer." Cancer Research 75, no. 8 (April 2, 2015): 1548–59. http://dx.doi.org/10.1158/0008-5472.can-14-2522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Oberheide, Uwe, Ingo Bruder, Herbert Welling, Wolfgang Ertmer, and Holger Lubatschowski. "Optoacoustic imaging for optimization of laser cyclophotocoagulation." Journal of Biomedical Optics 8, no. 2 (2003): 281. http://dx.doi.org/10.1117/1.1559998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dima, Alexander, and Vasilis Ntziachristos. "Non-invasive carotid imaging using optoacoustic tomography." Optics Express 20, no. 22 (October 18, 2012): 25044. http://dx.doi.org/10.1364/oe.20.025044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Buehler, Andreas, X. Luis Dean-Ben, Daniel Razansky, and Vasilis Ntziachristos. "Volumetric Optoacoustic Imaging With Multi-Bandwidth Deconvolution." IEEE Transactions on Medical Imaging 33, no. 4 (April 2014): 814–21. http://dx.doi.org/10.1109/tmi.2013.2282173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Özbek, Ali, Xosé Luís Deán-Ben, and Daniel Razansky. "Optoacoustic imaging at kilohertz volumetric frame rates." Optica 5, no. 7 (July 12, 2018): 857. http://dx.doi.org/10.1364/optica.5.000857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Mishra, Kanuj, Mariia Stankevych, Juan Pablo Fuenzalida-Werner, Simon Grassmann, Vipul Gujrati, Yuanhui Huang, Uwe Klemm, Veit R. Buchholz, Vasilis Ntziachristos, and Andre C. Stiel. "Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins." Science Advances 6, no. 24 (June 2020): eaaz6293. http://dx.doi.org/10.1126/sciadv.aaz6293.

Повний текст джерела
Анотація:
We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning–based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Park, Seonyeong, Umberto Villa, Alexander A. Oraevsky, and Mark Anastasio. "Virtual imaging trials to investigate impact of skin color on three-dimensional optoacoustic tomography of the breast." Journal of the Acoustical Society of America 153, no. 3_supplement (March 1, 2023): A155. http://dx.doi.org/10.1121/10.0018483.

Повний текст джерела
Анотація:
Optoacoustic tomography (OAT), also known as photoacoustic computed tomography, is being actively developed for breast imaging applications. The endogenous optical contrast in OAT images is associated with oxygen saturation and concentrations of chromophores, such as hemoglobin, melanin, fat, and water, within the tissue. In OAT breast imaging, near-infrared light propagates through the skin, where the optical energy is absorbed primarily by melanin. The photoacoustic effect results in the generation of a pressure wavefield, and the propagated pressure wavefield is measured by ultrasonic transducers located on a measurement aperture surrounding the breast. Thus, the melanin concentration influences lesion contrast in OAT images. However, the extent to which skin color affects lesion detectability in OAT breast imaging remains unexplored. To address this, we generate realistic optoacoustic 3D numerical breast phantoms containing a lesion at different locations (three depths and two polar angles) with five skin colors and virtually acquire optoacoustic data employing them. To assess the skin color impact on lesion detectability, we quantify numerical observer performance for a signal-known-exactly and background-known-exactly detection task. The results confirm that the signal-to-noise ratio of the test statistic is degraded in darker skin, and the extent depends on lesion locations and the light delivery system design.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wang, Xueding, Xinmai Yang, and Xose Luis Dean-Ben. "Special Issue on Photoacoustic Tomography." Applied Sciences 9, no. 19 (October 8, 2019): 4186. http://dx.doi.org/10.3390/app9194186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Mishra, Kanuj, Juan Pablo Fuenzalida-Werner, Francesca Pennacchietti, Robert Janowski, Andriy Chmyrov, Yuanhui Huang, Christian Zakian, et al. "Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging." Nature Biotechnology 40, no. 4 (November 29, 2021): 598–605. http://dx.doi.org/10.1038/s41587-021-01100-5.

Повний текст джерела
Анотація:
AbstractReversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Karlas, Angelos, Miguel A. Pleitez, Juan Aguirre, and Vasilis Ntziachristos. "Author Correction: Optoacoustic imaging in endocrinology and metabolism." Nature Reviews Endocrinology 17, no. 8 (May 27, 2021): 511. http://dx.doi.org/10.1038/s41574-021-00515-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bhutiani, Neal, William E. Grizzle, Susan Galandiuk, Denis Otali, Gerald W. Dryden, Nejat K. Egilmez, and Lacey R. McNally. "Noninvasive Imaging of Colitis Using Multispectral Optoacoustic Tomography." Journal of Nuclear Medicine 58, no. 6 (December 1, 2016): 1009–12. http://dx.doi.org/10.2967/jnumed.116.184705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

He, Hailong, Andreas Buehler, Dmitry Bozhko, Xiaohua Jian, Yaoyao Cui, and Vasilis Ntziachristos. "Importance of Ultrawide Bandwidth for Optoacoustic Esophagus Imaging." IEEE Transactions on Medical Imaging 37, no. 5 (May 2018): 1162–67. http://dx.doi.org/10.1109/tmi.2017.2777891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Niederhauser, J. J., D. Frauchiger, H. P. Weber, and M. Frenz. "Real-time optoacoustic imaging using a Schlieren transducer." Applied Physics Letters 81, no. 4 (July 22, 2002): 571–73. http://dx.doi.org/10.1063/1.1495539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dima, Alexander, and Vasilis Ntziachristos. "Optoacoustic imaging for clinical applications: devices and methods." Expert Opinion on Medical Diagnostics 5, no. 3 (March 2011): 263–72. http://dx.doi.org/10.1517/17530059.2011.561315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tzoumas, Stratis, Angelika Zaremba, Uwe Klemm, Antonio Nunes, Karin Schaefer, and Vasilis Ntziachristos. "Immune cell imaging using multi-spectral optoacoustic tomography." Optics Letters 39, no. 12 (June 9, 2014): 3523. http://dx.doi.org/10.1364/ol.39.003523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії