Добірка наукової літератури з теми "OPTIMIZED RECOMMENDER SYSTEM"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "OPTIMIZED RECOMMENDER SYSTEM".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "OPTIMIZED RECOMMENDER SYSTEM"
Sumariya, Shrey, Shreyas Rami, Shubham Revadekar, Vidhan Shah, and Sudhir Bagul. "Hospital Recommender System." BOHR International Journal of Engineering 2, no. 1 (2023): 1–6. http://dx.doi.org/10.54646/bije.011.
Повний текст джерелаSumariya, Shrey, Shreyas Rami Rami, Shubham Revadekar, Vidhan Shah, and Sudhir Bagul. "Hospital Recommender System." BOHR International Journal of Internet of things, Artificial Intelligence and Machine Learning 1, no. 1 (2022): 99–103. http://dx.doi.org/10.54646/bijiam.016.
Повний текст джерелаYuan, Weiwei, and Donghai Guan. "OPTIMIZED TRUST-AWARE RECOMMENDER SYSTEM USING GENETIC ALGORITHM." Neural Network World 27, no. 1 (2017): 77–94. http://dx.doi.org/10.14311/nnw.2017.27.004.
Повний текст джерелаVerma, Sandhya, and Amit Kumar Manjhvar. "Optimized Ranking Based Recommender System for Various Application Based Fields." International Journal of Database Theory and Application 9, no. 1 (February 28, 2016): 137–44. http://dx.doi.org/10.14257/ijdta.2016.9.2.15.
Повний текст джерелаLi, Jian Yang, Xiao Ping Liu, and Rui Li. "Optimized RBF for CBR-Recommendation System." Applied Mechanics and Materials 214 (November 2012): 568–72. http://dx.doi.org/10.4028/www.scientific.net/amm.214.568.
Повний текст джерелаLoukili, Manal, Fayçal Messaoudi, and Mohammed El Ghazi. "Machine learning based recommender system for e-commerce." IAES International Journal of Artificial Intelligence (IJ-AI) 12, no. 4 (December 1, 2023): 1803. http://dx.doi.org/10.11591/ijai.v12.i4.pp1803-1811.
Повний текст джерелаHerce-Zelaya, Julio, Carlos Porcel, Álvaro Tejeda-Lorente, Juan Bernabé-Moreno, and Enrique Herrera-Viedma. "Introducing CSP Dataset: A Dataset Optimized for the Study of the Cold Start Problem in Recommender Systems." Information 14, no. 1 (December 29, 2022): 19. http://dx.doi.org/10.3390/info14010019.
Повний текст джерелаBahrami, N., M. Argany, N. N. Samani, and A. R. Vafaeinejad. "DESIGNING A CONTEXT-AWARE RECOMMENDER SYSTEM IN THE OPTIMIZATION OF THE RELIEF AND RESCUE." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W18 (October 18, 2019): 171–77. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-171-2019.
Повний текст джерелаGupta, Shalini, and Veer Sain Dixit. "A Meta-Heuristic Algorithm Approximating Optimized Recommendations for E-Commerce Business Promotions." International Journal of Information Technology Project Management 11, no. 2 (April 2020): 23–49. http://dx.doi.org/10.4018/ijitpm.2020040103.
Повний текст джерелаMuruganandam, Kishore, and Shaphan Manipaul S. "A Real Time Tourism Recommender System using KNN and RBM Approach." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 357–62. http://dx.doi.org/10.22214/ijraset.2023.51527.
Повний текст джерелаЧастини книг з теми "OPTIMIZED RECOMMENDER SYSTEM"
Sandesara, Mudita, Prithvi Sharan, Deepti Saraswat, and Rupal A. Kapdi. "An Optimized Search-Enabled Hotel Recommender System." In Lecture Notes in Electrical Engineering, 487–501. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9876-8_37.
Повний текст джерелаBehera, Gopal, and Neeta Nain. "Collaborative Recommender System (CRS) Using Optimized SGD - ALS." In Communications in Computer and Information Science, 627–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81462-5_55.
Повний текст джерелаKumar, Akshi, Nitin Sachdeva, and Archit Garg. "Analysis of GA Optimized ANN for Proactive Context Aware Recommender System." In Hybrid Intelligent Systems, 92–102. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76351-4_10.
Повний текст джерелаKadıoğlu, Serdar, Bernard Kleynhans, and Xin Wang. "Optimized Item Selection to Boost Exploration for Recommender Systems." In Integration of Constraint Programming, Artificial Intelligence, and Operations Research, 427–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78230-6_27.
Повний текст джерелаBansal, Saumya, and Niyati Baliyan. "Detecting Group Shilling Profiles in Recommender Systems: A Hybrid Clustering and Grey Wolf Optimizer Technique." In Design and Applications of Nature Inspired Optimization, 133–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17929-7_7.
Повний текст джерелаAvram, Anca M. "Radioiodine Theranostics of Differentiated Thyroid Carcinoma." In Integrated Diagnostics and Theranostics of Thyroid Diseases, 111–27. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35213-3_7.
Повний текст джерелаGarosi, Ehsan. "Nurses Work System Optimization: Macroergonomics Perspective." In New Research in Nursing - Education and Practice [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110400.
Повний текст джерелаChawla, Suruchi. "Web Page Recommender System using hybrid of Genetic Algorithm and Trust for Personalized Web Search." In Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms, 656–75. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8048-6.ch034.
Повний текст джерелаKhalid, Saifullah. "Application of Adaptive Tabu Search Algorithm in Hybrid Power Filter and Shunt Active Power Filters." In Sustaining Power Resources through Energy Optimization and Engineering, 276–308. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9755-3.ch012.
Повний текст джерелаTalbot, Patricia A., and Jennifer Jones. "Engaging Heads, Hands, and Hearts to Optimize Study Abroad Outcomes." In Teacher Education, 1438–56. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0164-0.ch070.
Повний текст джерелаТези доповідей конференцій з теми "OPTIMIZED RECOMMENDER SYSTEM"
Kloucha, Chakib K., Bassem S. El Yossef, Imad Al Hamlawi, Muzahidin M Salim, Wiliem Pausin, Anik Pal, Hussein Mustapha, Soumil Shah, and Ahmad Naim Hussein. "Machine Learning Model for Drilling Equipment Recommender System for Improved Decision Making and Optimum Performance." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211731-ms.
Повний текст джерелаYap, Ghim-Eng, Ah-Hwee Tan, and Hwee-Hwa Pang. "Dynamically-optimized context in recommender systems." In the 6th international conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1071246.1071289.
Повний текст джерелаIizuka, Kojiro, Takeshi Yoneda, and Yoshifumi Seki. "Greedy optimized multileaving for personalization." In RecSys '19: Thirteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3298689.3347008.
Повний текст джерелаMallia Milanes, Mario, and Matthew Montebello. "Crowdsourced Recommender System." In Fourth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/head18.2018.8020.
Повний текст джерелаHammar, Mikael, Robin Karlsson, and Bengt J. Nilsson. "Using maximum coverage to optimize recommendation systems in e-commerce." In RecSys '13: Seventh ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2507157.2507169.
Повний текст джерелаKhandelwal, Hitesh, Viet Ha-Thuc, Avishek Dutta, Yining Lu, Nan Du, Zhihao Li, and Qi Hu. "Jointly Optimize Capacity, Latency and Engagement in Large-scale Recommendation Systems." In RecSys '21: Fifteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3460231.3474606.
Повний текст джерелаUr Rehman, Faizan, Ahmed Lbath, Bilal Sadiq, Md Abdur Rahman, Abdullah Murad, Imad Afyouni, Akhlaq Ahmad, and Saleh Basalamah. "A constraint-aware optimized path recommender in a crowdsourced environment." In 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA). IEEE, 2015. http://dx.doi.org/10.1109/aiccsa.2015.7507185.
Повний текст джерелаZhang, Lei, Xuan Liu, Yidi Cao, and Bin Wu. "O- Recommend: An Optimized User-Based Collaborative Filtering Recommendation System." In 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2018. http://dx.doi.org/10.1109/padsw.2018.8644910.
Повний текст джерелаZou, Lixin, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. "Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems." In KDD '19: The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3292500.3330668.
Повний текст джерелаFerrari Dacrema, Maurizio, Paolo Cremonesi, and Dietmar Jannach. "Methodological Issues in Recommender Systems Research (Extended Abstract)." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/650.
Повний текст джерелаЗвіти організацій з теми "OPTIMIZED RECOMMENDER SYSTEM"
Powell. L52196 Practical Guidelines for Conducting an External Corrosion Direct Assessment (ECDA) Program. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2008. http://dx.doi.org/10.55274/r0011369.
Повний текст джерелаTorrijos, Ivan Dario Pinerez, Tina Puntervold, Skule Strand, Panagiotis Aslanidis, Ingebret Fjelde, and Aleksandr Mamonov. Core restoration: A guide for improved wettability assessments. University of Stavanger, November 2021. http://dx.doi.org/10.31265/usps.198.
Повний текст джерела