Добірка наукової літератури з теми "Optimization of HVAC energy consumption"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optimization of HVAC energy consumption".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Optimization of HVAC energy consumption"

1

Abedi, Milad. "Directional Airflow for HVAC Systems." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/88524.

Повний текст джерела
Анотація:
Directional airflow has been utilized to enable targeted air conditioning in cars and airplanes for many years, where the occupants could adjust the direction of flow. In the building sector however, HVAC systems are usually equipped with stationary diffusors that can only supply the air either in the form of diffusion or with fixed direction to the room in which they have been installed. In the present thesis, the possibility of adopting directional airflow in lieu of the conventional uniform diffusors has been investigated. The potential benefits of such a modification in control capabilities of the HVAC system in terms of improvements in the overall occupant thermal comfort and energy consumption of the HVAC system have been investigated via a simulation study and an experimental study. In the simulation study, an average of 59% per cycle reduction was achieved in the energy consumption. The reduction in the required duration of airflow (proportional to energy consumption) in the experimental study was 64% per cycle. The feasibility of autonomous control of the directional airflow, has been studied in a simulation experiment by utilizing the Reinforcement Learning algorithm which is an artificial intelligence approach that facilitates autonomous control in unknown environments. In order to demonstrate the feasibility of enabling the existing HVAC systems to control the direction of airflow, a device (called active diffusor) was designed and prototyped. The active diffusor successfully replaced the existing uniform diffusor and was able to effectively target the occupant positions by accurately directing the airflow jet to the desired positions.<br>M.S.<br>The notion of adjustable direction of airflow has been used in the car industry and airplanes for decades, enabling the users to manually adjust the direction of airflow to their satisfaction. However, in the building the introduction of the incoming airflow to the environment of the room is achieved either by non-adjustable uniform diffusors, aiming to condition the air in the environment in a homogeneous manner. In the present thesis, the possibility of adopting directional airflow in place of the conventional uniform diffusors has been investigated. The potential benefits of such a modification in control capabilities of the HVAC system in terms of improvements in the overall occupant thermal comfort and energy consumption of the HVAC system have been investigated via a simulation study and an experimental study. In the simulation study, an average of 59% per cycle reduction was achieved in the energy consumption. The reduction in the required duration of airflow (proportional to energy consumption) in the experimental study was 64% per cycle on average. The feasibility of autonomous control of the directional airflow, has been studied in a simulation experiment by utilizing the Reinforcement Learning algorithm which is an artificial intelligence approach that facilitates autonomous control in unknown environments. In order to demonstrate the feasibility of enabling the existing HVAC systems to control the direction of airflow, a device (called active diffusor) was designed and prototyped. The active diffusor successfully replaced the existing uniform diffusor and was able to effectively target the occupant positions by accurately directing the airflow jet to the desired positions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taghi, Nazari Alireza. "Interaction between thermal comfort and HVAC energy consumption in commercial buildings." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/597.

Повний текст джерела
Анотація:
The primary purpose of the current research was to implement a numerical model to investigate the interactions between the energy consumption in Heating, Ventilating, and Air Conditioning (HVAC) systems and occupants’ thermal comfort in commercial buildings. A numerical model was developed to perform a thermal analysis of a single zone and simultaneously investigate its occupants’ thermal sensations as a non-linear function of the thermal environmental (i.e. temperature, thermal radiation, humidity, and air speed) and personal factors (i.e. activity and clothing). The zone thermal analyses and thermal comfort calculations were carried out by applying the heat balance method and current thermal comfort standard (ASHRAE STANDARD 55-2004) respectively. The model was then validated and applied on a single generic zone, representing the perimeter office spaces of the Centre for Interactive Research on Sustainability (CIRS), to investigate the impacts of variation in occupants’ behaviors, building’s envelope, HVAC system, and climate on both energy consumption and thermal comfort. Regarding the large number of parameters involved, the initial summer and winter screening analyses were carried out to determine the measures that their impacts on the energy and/or thermal comfort were most significant. These analyses showed that, without any incremental cost, the energy consumption in both new and existing buildings may significantly be reduced with a broader range of setpoints, adaptive clothing for the occupants, and higher air exchange rate over the cooling season. The effects of these measures as well as their combination on the zone thermal performance were then studied in more detail with the whole year analyses. These analyses suggest that with the modest increase in the averaged occupants’ thermal dissatisfaction, the combination scenario can notably reduce the total annual energy consumption of the baseline zone. Considering the global warming and the life of a building, the impacts of climate change on the whole year modeling results were also investigated for the year 2050. According to these analyses, global warming reduced the energy consumption for both the baseline and combination scenario, thanks to the moderate and cold climate of Vancouver.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xie, Wang. "Energy Consumption Modeling in Wireless Sensor Networked Smart Homes." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32071.

Повний текст джерела
Анотація:
Smart home automation is the dwelling bridge of smart grid technology, as it integrates the modern home appliances power consumption information over communication networks in the smart grid system. Among all the appliances, Heating, Ventilation and Cooling (HVAC) systems is one of the most primary concerns. Since a great amount of power consumption is contributed by these HVAC systems. Traditionally, HVAC systems run at a fixed schedule without automatic monitoring and control systems, which causes load variation, fluctuations in the electricity demand and inefficient utility operation. In this thesis, we propose a Finite State Machine (FSM) system to model the air condition working status to acquire the relationship between temperature changing and cooling/heating duration. Finally, we introduce the Zigbee communciation protocol into the model, the performance analysis of the impact of end-to-end delay over HVAC systems is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sun, Zhifeng. "Energy Consumption Optimization of Electric Vehicles." Thesis, KTH, Fordonsdynamik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302774.

Повний текст джерела
Анотація:
This master thesis report has studied several methods to improve the energy consumption of an electric vehicle equipped with two permanent magnet synchronous motors. Two driving torque distribution maps are developed based on efficiency map and load transfer, respectively. The drive torque distribution map based on the efficiency map shows up to 8.94% energy saving. Two regenerative braking strategies are designed and compared. Both strategies have pure regenerative brake at low decelerations and it is controlled by a modified acceleration pedal map. Strategy 1 does not add more regenerative braking when the brake pedal is pressed thus it is simpler while strategy 2 can blend in more motor torque. Rear axle steering is also studied in terms of contribution to energy consumption and an LQR controller is developed to control the vehicle with rear axle steering.<br>Denna rapport avhandlar ett examensarbete där flera metoder har studerats för att förbättra energikonsumptionen för ett elektriskt fordon med två permanentmagnetsynkrona motorer. Två fördelningskartor för drivande moment är framtagna baserat på effektivitetskartor och lastöverföring. Fördelningskartorna för drivande moment som är baserat på effektivitet visar upp till 8,94% energiminskning. Två olika regenerativa bromsstrategier är framtagna och jämförda. Båda strategierna har ren regeneration vid låga decelerationer och är reglerat genom modifierat gaspedalsmappning. Strategi 1 ger inte mer regeneration när bromspedalen trycks ned och är då enklare medans strategi 2 kan blanda in mer vridmoment från elmotorn. Bakaxelstyrning är också studerat i termer av dess bidrag till energikonsumption samt en LQR regulator är utvecklad för reglering av fordonets bakaxelstyrning.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sui, Di. "Characterization of HVAC operation uncertainty in EnergyPlus AHU modules." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51911.

Повний текст джерела
Анотація:
This study addresses 5 uncertainties that exist in the operation of HVAC systems, which will presumably affect the actual energy consumption of the HVAC system in comparison to the consumption under idealized bahavior. We consequently add these parameters and their uncertainty range into the source code, eventually resulting in an EnergyPlus program in which the HVAC operation uncertainty is embedded as so-called model form uncertainty. The upgraded EnergyPlus is tested for each parameter uncertainty separately, and to show the impact of each uncertainty albeit for hypothetical uncertainty ranges of the parameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tang, Fan. "HVAC system modeling and optimization: a data-mining approach." Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/895.

Повний текст джерела
Анотація:
Heating, ventilating and air-conditioning (HVAC) system is complex non-linear system with multi-variables simultaneously contributing to the system process. It poses challenges for both system modeling and performance optimization. Traditional modeling methods based on statistical or mathematical functions limit the characteristics of system operation and management. Data-driven models have shown powerful strength in non-linear system modeling and complex pattern recognition. Sufficient successful applications of data mining have proved its capability in extracting models accurately describing the relation of inner system. The heuristic techniques such as neural networks, support vector machine, and boosting tree have largely expanded to the modeling process of HVAC system. Evolutionary computation has rapidly merged to the center stage of solving the multi-objective optimization problem. Inspired from the biology behavior, it has shown the tremendous power in finding the optimal solution of complex problem. Different applications of evolutionary computation can be found in business, marketing, medical and manufacturing domains. The focus of this thesis is to apply the evolutionary computation approach in optimizing the performance of HVAC system. The energy saving can be achieved by implementing the optimal control setpoints with IAQ maintained at an acceptable level. A trade-off between energy saving and indoor air quality maintenance is also investigated by assigning different weights to the corresponding objective function. The major contribution of this research is to provide the optimal settings for the existing system to improve its efficiency and different preference-based operation methods to optimally utilize the resources.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Mingyang. "Application of computational intelligence in modeling and optimization of HVAC systems." Thesis, University of Iowa, 2009. https://ir.uiowa.edu/etd/397.

Повний текст джерела
Анотація:
HVAC (Heating Ventilating and Air-Conditioning) system is multivariate, nonlinear, and shares time-varying characteristics. It poses challenges for both system modeling and performance optimization. Traditional modeling approaches based on mathematical equations limit the nature of the optimization models and solution approaches. Computational intelligence is an emerging area of study which provides powerful tools for modeling and analyzing complex systems. Computational intelligence is concerned with discovery of structures in data and recognition of patterns. It encompasses techniques such as neural networks, fuzzy logic, and so on. These techniques derive rules, patterns, and develop complex mappings from the data. The recent advances in information technology have enabled collection of large volumes of data. Computational intelligence embraces biology-inspired paradigms like evolutionary computation and particle swarm intelligence in solving complex optimization problems. Successful applications of computational intelligence have been found in business, marketing, medical and manufacturing domains. The focus of this thesis is to apply computational intelligence approach in modeling and optimization of HVAC systems. In this research, four HVAC sub-systems are investigated: the AHU (Air Handling Unit), VAV (Variable Air Volume), ventilation system, and thermal zone. Various computational intelligence approaches are used to identify parameters or problem solving. Energy savings are accomplished by minimizing the cooling output, reheating output or fan running time as well as on-line monitoring. One contribution of the research reported in the thesis is the use of computational intelligence algorithms to establish nonlinear mappings among different parameters. Another major contribution is in using heuristics algorithms to solve multi-objective optimization problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pietruschka, Dirk. "Model based control optimisation of renewable energy based HVAC Systems." Thesis, De Montfort University, 2010. http://hdl.handle.net/2086/4022.

Повний текст джерела
Анотація:
During the last 10 years solar cooling systems attracted more and more interest not only in the research area but also on a private and commercial level. Several demonstration plants have been installed in different European countries and first companies started to commercialise also small scale absorption cooling machines. However, not all of the installed systems operate efficiently and some are, from the primary energy point of view, even worse than conventional systems with a compression chiller. The main reason for this is a poor system design combined with suboptimal control. Often several non optimised components, each separately controlled, are put together to form a ‘cooling system’. To overcome these drawbacks several attempts are made within IEA task 38 (International Energy Agency Solar Heating and Cooling Programme) to improve the system design through optimised design guidelines which are supported by simulation based design tools. Furthermore, guidelines for an optimised control of different systems are developed. In parallel several companies like the SolarNext AG in Rimsting, Germany started the development of solar cooling kits with optimised components and optimised system controllers. To support this process the following contributions are made within the present work: - For the design and dimensioning of solar driven absorption cooling systems a detailed and structured simulation based analysis highlights the main influencing factors on the required solar system size to reach a defined solar fraction on the overall heating energy demand of the chiller. These results offer useful guidelines for an energy and cost efficient system design. - Detailed system simulations of an installed solar cooling system focus on the influence of the system configuration, control strategy and system component control on the overall primary energy efficiency. From the results found a detailed set of clear recommendations for highly energy efficient system configurations and control of solar driven absorption cooling systems is provided. - For optimised control of open desiccant evaporative cooling systems (DEC) an innovative model based system controller is developed and presented. This controller consists of an electricity optimised sequence controller which is assisted by a primary energy optimisation tool. The optimisation tool is based on simplified simulation models and is intended to be operated as an online tool which evaluates continuously the optimum operation mode of the DEC system to ensure high primary energy efficiency of the system. Tests of the controller in the simulation environment showed that compared to a system with energy optimised standard control the innovative model based system controller can further improve the primary energy efficiency by 19 %.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xue, Li. "Process Optimization of Dryers/Tenters in the Textile Industry." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5066.

Повний текст джерела
Анотація:
Textile dyeing and finishing industry uses dryers/tenters for drying and heat-setting fabrics. A very large fraction of the heating value of the fuel consumed in the burner ends up as waste in the dryer exhaust. An initial calculation showed that up to 90% of the energy consumed in the tenter is wasted. Therefore, quantifying the energy waste and determining drying characteristics are vitally important to optimizing the tenter and dryer operations. This research developed a portable off-line gas chromatography-based characterization system to assess the excess energy consumption. For low-demanding heat-setting situations, energy savings can be realized quickly. On the other hand, there are demanding situations where fabric drying represents the production bottleneck. The drying rate may be governed either by the rate of heat transport or by the rate of moisture transport. A mathematical model is being developed that incorporates both these processes. The model parameters are being obtained from bench-scale dryer studies in the laboratories. The model will be validated using production scale data. This will enable one to predict optimization dryer operation strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gupta, Deepak Prakash. "Energy sensitive machining parameter optimization model." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4406.

Повний текст джерела
Анотація:
Thesis (M.S.)--West Virginia University, 2005.<br>Title from document title page. Document formatted into pages; contains ix, 71 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 67-71).
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!