Статті в журналах з теми "Optimization, Forecasting, Meta Learning, Model Selection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Optimization, Forecasting, Meta Learning, Model Selection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Thi Kieu Tran, Trang, Taesam Lee, Ju-Young Shin, Jong-Suk Kim, and Mohamad Kamruzzaman. "Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization." Atmosphere 11, no. 5 (May 10, 2020): 487. http://dx.doi.org/10.3390/atmos11050487.
Повний текст джерелаSamuel, Omaji, Fahad A. Alzahrani, Raja Jalees Ul Hussen Khan, Hassan Farooq, Muhammad Shafiq, Muhammad Khalil Afzal, and Nadeem Javaid. "Towards Modified Entropy Mutual Information Feature Selection to Forecast Medium-Term Load Using a Deep Learning Model in Smart Homes." Entropy 22, no. 1 (January 4, 2020): 68. http://dx.doi.org/10.3390/e22010068.
Повний текст джерелаAhmad, Waqas, Nasir Ayub, Tariq Ali, Muhammad Irfan, Muhammad Awais, Muhammad Shiraz, and Adam Glowacz. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine." Energies 13, no. 11 (June 5, 2020): 2907. http://dx.doi.org/10.3390/en13112907.
Повний текст джерелаAyub, Nasir, Muhammad Irfan, Muhammad Awais, Usman Ali, Tariq Ali, Mohammed Hamdi, Abdullah Alghamdi, and Fazal Muhammad. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler." Energies 13, no. 19 (October 5, 2020): 5193. http://dx.doi.org/10.3390/en13195193.
Повний текст джерелаLi, Yiyan, Si Zhang, Rongxing Hu, and Ning Lu. "A meta-learning based distribution system load forecasting model selection framework." Applied Energy 294 (July 2021): 116991. http://dx.doi.org/10.1016/j.apenergy.2021.116991.
Повний текст джерелаEl-kenawy, El-Sayed M., Seyedali Mirjalili, Nima Khodadadi, Abdelaziz A. Abdelhamid, Marwa M. Eid, M. El-Said, and Abdelhameed Ibrahim. "Feature selection in wind speed forecasting systems based on meta-heuristic optimization." PLOS ONE 18, no. 2 (February 7, 2023): e0278491. http://dx.doi.org/10.1371/journal.pone.0278491.
Повний текст джерелаYang, Yi, Wei Liu, Tingting Zeng, Linhan Guo, Yong Qin, and Xue Wang. "An Improved Stacking Model for Equipment Spare Parts Demand Forecasting Based on Scenario Analysis." Scientific Programming 2022 (June 14, 2022): 1–15. http://dx.doi.org/10.1155/2022/5415702.
Повний текст джерелаCawood, Pieter, and Terence Van Zyl. "Evaluating State-of-the-Art, Forecasting Ensembles and Meta-Learning Strategies for Model Fusion." Forecasting 4, no. 3 (August 18, 2022): 732–51. http://dx.doi.org/10.3390/forecast4030040.
Повний текст джерелаHafeez, Ghulam, Khurram Saleem Alimgeer, Zahid Wadud, Zeeshan Shafiq, Mohammad Usman Ali Khan, Imran Khan, Farrukh Aslam Khan, and Abdelouahid Derhab. "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid." Energies 13, no. 9 (May 3, 2020): 2244. http://dx.doi.org/10.3390/en13092244.
Повний текст джерелаDokur, Emrah, Cihan Karakuzu, Uğur Yüzgeç, and Mehmet Kurban. "Using optimal choice of parameters for meta-extreme learning machine method in wind energy application." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 40, no. 3 (February 8, 2021): 390–401. http://dx.doi.org/10.1108/compel-07-2020-0246.
Повний текст джерелаZhao, Yu Hong, Xue Cheng Zhao, and Wei Cheng. "The Application of Chaotic Particle Swarm Optimization Algorithm in Power System Load Forecasting." Advanced Materials Research 614-615 (December 2012): 866–69. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.866.
Повний текст джерелаChen, Jun, Chenyang Zhao, Kaikai Liu, Jingjing Liang, Huan Wu, and Shiyan Xu. "Exchange Rate Forecasting Based on Deep Learning and NSGA-II Models." Computational Intelligence and Neuroscience 2021 (September 22, 2021): 1–13. http://dx.doi.org/10.1155/2021/2993870.
Повний текст джерелаSun, Sizhou, Jingqi Fu, Feng Zhu, and Dajun Du. "A hybrid structure of an extreme learning machine combined with feature selection, signal decomposition and parameter optimization for short-term wind speed forecasting." Transactions of the Institute of Measurement and Control 42, no. 1 (May 23, 2018): 3–21. http://dx.doi.org/10.1177/0142331218771141.
Повний текст джерелаQuan, Jicheng, and Li Shang. "Short-Term Wind Speed Forecasting Based on Ensemble Online Sequential Extreme Learning Machine and Bayesian Optimization." Mathematical Problems in Engineering 2020 (November 27, 2020): 1–13. http://dx.doi.org/10.1155/2020/7212368.
Повний текст джерелаKim, Gi Yong, Doo Sol Han, and Zoonky Lee. "Solar Panel Tilt Angle Optimization Using Machine Learning Model: A Case Study of Daegu City, South Korea." Energies 13, no. 3 (January 21, 2020): 529. http://dx.doi.org/10.3390/en13030529.
Повний текст джерелаJasiński, Tomasz, and Agnieszka Ścianowska. "Security assessment and optimization of energy supply (neural networks approach)." Oeconomia Copernicana 6, no. 2 (June 30, 2015): 129. http://dx.doi.org/10.12775/oec.2015.016.
Повний текст джерелаGollagi, Shantappa G., Jeneetha Jebanazer J, and Sridevi Sakhamuri. "Software Defects Prediction Model with Self Improved Optimization." International Journal of Software Innovation 10, no. 1 (January 1, 2022): 1–21. http://dx.doi.org/10.4018/ijsi.309735.
Повний текст джерелаWu, Kaitong, Xiangang Peng, Zilu Li, Wenbo Cui, Haoliang Yuan, Chun Sing Lai, and Loi Lei Lai. "A Short-Term Photovoltaic Power Forecasting Method Combining a Deep Learning Model with Trend Feature Extraction and Feature Selection." Energies 15, no. 15 (July 27, 2022): 5410. http://dx.doi.org/10.3390/en15155410.
Повний текст джерелаDeepika, Nalabala, and Mundukur Nirupamabhat. "An Optimized Machine Learning Model for Stock Trend Anticipation." Ingénierie des systèmes d information 25, no. 6 (December 31, 2020): 783–92. http://dx.doi.org/10.18280/isi.250608.
Повний текст джерелаMassaoudi, Mohamed, Ines Chihi, Lilia Sidhom, Mohamed Trabelsi, Shady S. Refaat, and Fakhreddine S. Oueslati. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements." Energies 14, no. 13 (July 2, 2021): 3992. http://dx.doi.org/10.3390/en14133992.
Повний текст джерелаLeka, Habte Lejebo, Zhang Fengli, Ayantu Tesfaye Kenea, Negalign Wake Hundera, Tewodros Gizaw Tohye, and Abebe Tamrat Tegene. "PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction." Symmetry 15, no. 3 (February 28, 2023): 613. http://dx.doi.org/10.3390/sym15030613.
Повний текст джерелаMotwakel, Abdelwahed, Eatedal Alabdulkreem, Abdulbaset Gaddah, Radwa Marzouk, Nermin M. Salem, Abu Sarwar Zamani, Amgad Atta Abdelmageed, and Mohamed I. Eldesouki. "Wild Horse Optimization with Deep Learning-Driven Short-Term Load Forecasting Scheme for Smart Grids." Sustainability 15, no. 2 (January 12, 2023): 1524. http://dx.doi.org/10.3390/su15021524.
Повний текст джерелаKanavos, Andreas, Maria Trigka, Elias Dritsas, Gerasimos Vonitsanos, and Phivos Mylonas. "A Regularization-Based Big Data Framework for Winter Precipitation Forecasting on Streaming Data." Electronics 10, no. 16 (August 4, 2021): 1872. http://dx.doi.org/10.3390/electronics10161872.
Повний текст джерелаPadhi, Dushmanta Kumar, Neelamadhab Padhy, Akash Kumar Bhoi, Jana Shafi, and Seid Hassen Yesuf. "An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction." Computational Intelligence and Neuroscience 2022 (June 23, 2022): 1–18. http://dx.doi.org/10.1155/2022/7588303.
Повний текст джерелаCalvo-Pardo, Hector F., Tullio Mancini, and Jose Olmo. "Neural Network Models for Empirical Finance." Journal of Risk and Financial Management 13, no. 11 (October 30, 2020): 265. http://dx.doi.org/10.3390/jrfm13110265.
Повний текст джерелаLiu, Mingping, Xihao Sun, Qingnian Wang, and Suhui Deng. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model." Energies 15, no. 19 (September 29, 2022): 7170. http://dx.doi.org/10.3390/en15197170.
Повний текст джерелаMunsarif, Muhammad, Muhammad Sam’an, and Safuan Safuan. "Peer to peer lending risk analysis based on embedded technique and stacking ensemble learning." Bulletin of Electrical Engineering and Informatics 11, no. 6 (December 1, 2022): 3483–89. http://dx.doi.org/10.11591/eei.v11i6.3927.
Повний текст джерелаManliura Datilo, Philemon, Zuhaimy Ismail, and Jayeola Dare. "A Review of Epidemic Forecasting Using Artificial Neural Networks." International Journal of Epidemiologic Research 6, no. 3 (September 25, 2019): 132–43. http://dx.doi.org/10.15171/ijer.2019.24.
Повний текст джерелаWu, Yuan-Kang, Cheng-Liang Huang, Quoc-Thang Phan, and Yuan-Yao Li. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints." Energies 15, no. 9 (May 2, 2022): 3320. http://dx.doi.org/10.3390/en15093320.
Повний текст джерелаHu, Zhongyi, Yukun Bao, and Tao Xiong. "Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression." Applied Soft Computing 25 (December 2014): 15–25. http://dx.doi.org/10.1016/j.asoc.2014.09.007.
Повний текст джерелаYaprakdal, Fatma. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods." Energies 16, no. 1 (December 21, 2022): 57. http://dx.doi.org/10.3390/en16010057.
Повний текст джерелаMasrom, Suraya, Rahayu Abdul Rahman, Masurah Mohamad, Abdullah Sani Abd Rahman, and Norhayati Baharun. "Machine learning of tax avoidance detection based on hybrid metaheuristics algorithms." IAES International Journal of Artificial Intelligence (IJ-AI) 11, no. 3 (September 1, 2022): 1153. http://dx.doi.org/10.11591/ijai.v11.i3.pp1153-1163.
Повний текст джерелаMahdavian, Amirsaman, Alireza Shojaei, Milad Salem, Haluk Laman, Jiann-Shiun Yuan, and Amr Oloufa. "Automated Machine Learning Pipeline for Traffic Count Prediction." Modelling 2, no. 4 (October 12, 2021): 482–513. http://dx.doi.org/10.3390/modelling2040026.
Повний текст джерелаNguyen, P., M. Hilario, and A. Kalousis. "Using Meta-mining to Support Data Mining Workflow Planning and Optimization." Journal of Artificial Intelligence Research 51 (November 29, 2014): 605–44. http://dx.doi.org/10.1613/jair.4377.
Повний текст джерелаBouktif, Salah, Ali Fiaz, Ali Ouni, and Mohamed Adel Serhani. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting." Energies 13, no. 2 (January 13, 2020): 391. http://dx.doi.org/10.3390/en13020391.
Повний текст джерелаYan, Guangxi, Yu Bai, Chengqing Yu, and Chengming Yu. "A Multi-Factor Driven Model for Locomotive Axle Temperature Prediction Based on Multi-Stage Feature Engineering and Deep Learning Framework." Machines 10, no. 9 (September 1, 2022): 759. http://dx.doi.org/10.3390/machines10090759.
Повний текст джерелаLu, Feng Yi, Shuang Wang, Ge Ning Xu, and Qi Song Qi. "Research on Parameter Optimization Method of v-SVRM Forecasting Model for Crane Load Spectrum." Advanced Materials Research 1078 (December 2014): 191–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1078.191.
Повний текст джерелаAi, Ping, Yanhong Song, Chuansheng Xiong, Binbin Chen, and Zhaoxin Yue. "A novel medium- and long-term runoff combined forecasting model based on different lag periods." Journal of Hydroinformatics 24, no. 2 (February 21, 2022): 367–87. http://dx.doi.org/10.2166/hydro.2022.116.
Повний текст джерелаTuerxun, Wumaier, Chang Xu, Hongyu Guo, Lei Guo, Namei Zeng, and Yansong Gao. "A Wind Power Forecasting Model Using LSTM Optimized by the Modified Bald Eagle Search Algorithm." Energies 15, no. 6 (March 10, 2022): 2031. http://dx.doi.org/10.3390/en15062031.
Повний текст джерелаMogbojuri, A. O., and O. A. Olanrewaju. "Goal programming and genetic algorithm in multiple objective optimization model for project portfolio selection: a review." Nigerian Journal of Technology 41, no. 5 (November 9, 2022): 862–69. http://dx.doi.org/10.4314/njt.v41i5.6.
Повний текст джерелаAlmulihi, Ahmed, Hager Saleh, Ali Mohamed Hussien, Sherif Mostafa, Shaker El-Sappagh, Khaled Alnowaiser, Abdelmgeid A. Ali, and Moatamad Refaat Hassan. "Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction." Diagnostics 12, no. 12 (December 18, 2022): 3215. http://dx.doi.org/10.3390/diagnostics12123215.
Повний текст джерелаRath, Smita, Binod Kumar Sahu, and Manoj Ranjan Nayak. "Application of quasi-oppositional symbiotic organisms search based extreme learning machine for stock market prediction." International Journal of Intelligent Computing and Cybernetics 12, no. 2 (June 10, 2019): 175–93. http://dx.doi.org/10.1108/ijicc-10-2018-0145.
Повний текст джерелаAng, Yik Kang, Amin Talei, Izni Zahidi, and Ali Rashidi. "Past, Present, and Future of Using Neuro-Fuzzy Systems for Hydrological Modeling and Forecasting." Hydrology 10, no. 2 (January 26, 2023): 36. http://dx.doi.org/10.3390/hydrology10020036.
Повний текст джерелаKumar, Akash, Bing Yan, and Ace Bilton. "Machine Learning-Based Load Forecasting for Nanogrid Peak Load Cost Reduction." Energies 15, no. 18 (September 14, 2022): 6721. http://dx.doi.org/10.3390/en15186721.
Повний текст джерелаZirngibl, Christoph, Fabian Dworschak, Benjamin Schleich, and Sandro Wartzack. "Application of reinforcement learning for the optimization of clinch joint characteristics." Production Engineering 16, no. 2-3 (December 22, 2021): 315–25. http://dx.doi.org/10.1007/s11740-021-01098-4.
Повний текст джерелаIzidio, Diogo M. F., Paulo S. G. de Mattos Neto, Luciano Barbosa, João F. L. de Oliveira, Manoel Henrique da Nóbrega Marinho, and Guilherme Ferretti Rissi. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters." Energies 14, no. 7 (March 24, 2021): 1794. http://dx.doi.org/10.3390/en14071794.
Повний текст джерелаZamee, Muhammad Ahsan, and Dongjun Won. "Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction." Energies 13, no. 23 (December 3, 2020): 6405. http://dx.doi.org/10.3390/en13236405.
Повний текст джерелаAghelpour, Pouya, Babak Mohammadi, Seyed Mostafa Biazar, Ozgur Kisi, and Zohreh Sourmirinezhad. "A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods." ISPRS International Journal of Geo-Information 9, no. 12 (November 25, 2020): 701. http://dx.doi.org/10.3390/ijgi9120701.
Повний текст джерелаKumar, Akshi, Arunima Jaiswal, Shikhar Garg, Shobhit Verma, and Siddhant Kumar. "Sentiment Analysis Using Cuckoo Search for Optimized Feature Selection on Kaggle Tweets." International Journal of Information Retrieval Research 9, no. 1 (January 2019): 1–15. http://dx.doi.org/10.4018/ijirr.2019010101.
Повний текст джерелаBakurova, Anna, Olesia Yuskiv, Dima Shyrokorad, Anton Riabenko, and Elina Tereschenko. "NEURAL NETWORK FORECASTING OF ENERGY CONSUMPTION OF A METALLURGICAL ENTERPRISE." Innovative Technologies and Scientific Solutions for Industries, no. 1 (15) (March 31, 2021): 14–22. http://dx.doi.org/10.30837/itssi.2021.15.014.
Повний текст джерела