Добірка наукової літератури з теми "Optimisation par gradient"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optimisation par gradient".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optimisation par gradient"
Pibouleau, L., P. Floquet, and S. Domenech. "Optimisation de procédés chimiques par une méthode de gradient réduit partie I. Présentation de l'algorithme." RAIRO - Operations Research 19, no. 3 (1985): 247–74. http://dx.doi.org/10.1051/ro/1985190302471.
Повний текст джерелаPibouleau, L., P. Floquet, and S. Domenech. "Optimisation de procédés chimiques par une méthode de gradient réduit. Partie II. Exemples d'illustration. Comparaison avec d'autres méthodes." RAIRO - Operations Research 19, no. 4 (1985): 321–50. http://dx.doi.org/10.1051/ro/1985190403211.
Повний текст джерелаMiháltz, P., Zs Csikor, P. Chatellier, and B. Siklódi. "Optimisation de la concentration de biomasse dans un réacteur à lit fluidisé." Revue des sciences de l'eau 14, no. 2 (April 12, 2005): 131–45. http://dx.doi.org/10.7202/705413ar.
Повний текст джерелаBellel, Nadir, and Abla Chaker. "Etude et Optimisation du Réseau de Circulation du Fluide Caloporteur d’un Convertisseur Thermique." Journal of Renewable Energies 7, no. 2 (December 31, 2004): 85–94. http://dx.doi.org/10.54966/jreen.v7i2.869.
Повний текст джерелаBertolo, Virgínia, Quanxin Jiang, Sebastian Scholl, Roumen H. Petrov, Ude Hangen, Carey Walters, Jilt Sietsma, and Vera Popovich. "A comprehensive quantitative characterisation of the multiphase microstructure of a thick-section high strength steel." Journal of Materials Science 57, no. 13 (March 30, 2022): 7101–26. http://dx.doi.org/10.1007/s10853-022-07121-y.
Повний текст джерелаMajka, Mateusz B., Marc Sabate-Vidales, and Łukasz Szpruch. "Multi-index antithetic stochastic gradient algorithm." Statistics and Computing 33, no. 2 (March 3, 2023). http://dx.doi.org/10.1007/s11222-023-10220-8.
Повний текст джерелаKumar, N., S. Saderla, and Y. Kim. "Aerodynamic characterisation of delta wing unmanned aerial vehicle using non-gradient-based estimator." Aeronautical Journal, February 23, 2023, 1–17. http://dx.doi.org/10.1017/aer.2023.2.
Повний текст джерелаAdda, Asma, Wahib Mohamed Naceur, and Mohamed Abbas. "Modélisation et optimisation de la consommation d’énergie d’une station de dessalement par procédé d’osmose inverse en Algérie." Journal of Renewable Energies 19, no. 2 (January 9, 2024). http://dx.doi.org/10.54966/jreen.v19i2.557.
Повний текст джерелаAnggreni, Luh Dewi, Ni Made Ritha Krisna Dewi, I. Gusti Ngurah Kade Mahardika, and I. Gusti Ngurah Narendra Putra. "OPTIMISATION OF PRIMER CONCENTRATION AND ANNEALING TEMPERATURE IN PCR TEST METHOD FOR AFRICAN SWINE FEVER VIRUS DETECTION." Buletin Veteriner Udayana, February 1, 2024, 218–24. http://dx.doi.org/10.24843/bvu.v16i1.88.
Повний текст джерелаДисертації з теми "Optimisation par gradient"
Genest, Laurent. "Optimisation de forme par gradient en dynamique rapide." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC022/document.
Повний текст джерелаIn order to face their new industrial challenges, automotive constructors wish to apply optimization methods in every step of the design process. By including shape parameters in the design space, increasing their number and their variation range, new problematics appeared. It is the case of crashworthiness. With the high computational time, the nonlinearity, the instability and the numerical dispersion of this rapid dynamics problem, metamodeling techniques become to heavy for the standardization of those optimization methods. We face this problematic: ”How can we carry out shape optimization in rapid dynamics with a high number of parameters ?”. Gradient methods are the most likely to solve this problematic. Because the number of parameters has a reduced effect on the optimization cost, they allow optimization with a high number of parameters. However, conventional methods used to calculate gradients are ineffective: the computation cost and the numerical noise prevent the use of finite differences and the calculation of a gradient by deriving the rapid dynamics equations is not currently available and would be really intrusive towards the software. Instead of determining the real gradient, we decided to estimate it. The Equivalent Static Loads Method is an optimization method based on the construction of a linear static problem equivalent to the rapid dynamic problem. By using the sensitivity of the equivalent problem as the estimated gradient, we have optimized rapid dynamic problems with thickness parameters. It is also possible to approximate the derivative with respect to the position of the nodes of the CAE model. But it is more common to use CAD parameters in shape optimization studies. So it is needed to have the sensitivity of the nodes position with these CAD parameters. It is possible to obtain it analytically by using parametric surface for the shape and its poles as parameters. With this link between nodes and CAD parameters, we can do shape optimization studies with a large number of parameters and this with a low optimization cost. The method has been developed for two kinds of crashworthiness objective functions. The first family of criterions is linked to a nodal displacement. This category contains objectives like the minimization of the intrusion inside the passenger compartment. The second one is linked to the absorbed energy. It is used to ensure a good behavior of the structure during the crash
De, Gournay Frédéric. "Optimisation de formes par la méthode des courbes de niveaux." Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00446039.
Повний текст джерелаZhao, Zhidong. "Optimisation d'antennes et de réseaux d'antennes planaires par gradient de forme et ensembles de niveaux (Level Sets)." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4097.
Повний текст джерелаThe objective of this thesis work is to find the optimal shape of planar antenna elements and arrays from imposed constraints (e.g. desired or imposed radiation patterns, gain or directivity) or to reconstruct the shape from experimental measurements. The optimization algorithm is based on the gradient-type method and an active contour reconstruction by means of the Level Set method. The forward problem is solved using an integral formulation of the EM problem with finite element discretization. The shape gradient is computed using two different methods: one is finite differential method based on nodal point mesh derivation with an infinitesimal modification of the triangular elements on the contour along the outward normal direction, another the topological shape gradient, which is computed based on a topological deformation on a contour. A narrow band level set method has been developed to evolve the contour of antennas and arrays using the deformation velocity computed from the shape gradient. Different configurations of antennas and antenna arrays are studied for investigating the performance of the optimization algorithm. Frequency hopping and multi-frequency techniques have been used for optimizing the shape within a frequency band. Shape optimization for planar antenna miniaturization has a large number of applications, particularly, for reflectarrays
Deschinkel, Karine. "Régulation du trafic aérien par optimisation dynamique des prix d'utilisation du réseau." École nationale supérieure de l'aéronautique et de l'espace (Toulouse ; 1972-2007), 2001. http://www.theses.fr/2001ESAE0009.
Повний текст джерелаLaurenceau, Julien. "SURFACES DE REPONSE PAR KRIGEAGE POUR L'OPTIMISATION DE FORMES AERODYNAMIQUES." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2008. http://tel.archives-ouvertes.fr/tel-00339863.
Повний текст джерелаUn nouvel optimiseur basé sur des surfaces de réponse construites par une méthode de Krigeage est proposé. A un surcout modéré, la solution obtenue est meilleure. De plus, cet optimiseur semble aussi capable de traiter des problèmes de grande dimension en interpolant le vecteur gradient aux points de construction du Krigeage.
En optimisation multidisciplinaire, les surfaces de réponse sont largement employées pour échanger facilement des données entre différentes disciplines. Ainsi, une approche d'optimisation bi-niveau avec couplage fluide/structure par surface de réponse est étudiée. L'application considérée traite de l'intégration d'une installation motrice (positionnement) sur un avion de transport civil.
Achard, Timothée. "Techniques de calcul de gradient aéro-structure haute-fidélité pour l'optimisation de voilures flexibles." Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1140/document.
Повний текст джерелаTo improve the structural design of flexible wings, gradient based Multidisciplinary Design Optimization (MDO) techniques are effective and widely used. However, gradients calculation is not trivial and can be costly when high-fidelity models are considered. Our objective is to study different suitable approaches to compute gradients of aeroelastic loads with respect to structural design parameters.To this end, two high-fidelity aero-structure gradient computation techniques for strongly coupled aeroelastic systems are proposed. The most intrusive technique includes the well-established direct and adjoint formulations that require substantial implementation effort. In contrast, we propose an alternative uncoupled non-intrusive approach easier to implement and yet capable of providing accurate gradients approximations. Both techniques have been implemented in the Onera elsA CFD software.Accuracy, efficiency and applicability of these methods are demonstrated on the civil transport aircraft Common Research Model (CRM) test-case. More specifically, an inverse design problem is set up with the objective of matching an in-flight target twist law distribution. These two methods prove to be comparable in terms of accuracy and cost. Thus they offer additional operational flexibility depending on the level of integration sought in the MDO process
Drullion, Frédérique. "Définition et étude de systèmes linéaires pour la simulation d'écoulements et l'optimisation de formes aérodynamiques par méthode de gradient." Bordeaux 1, 2004. http://www.theses.fr/2004BOR12898.
Повний текст джерелаL'Excellent, Jean-Yves. "Utilisation de préconditionneurs élément-par-élément pour la résolution de problèmes d'optimisation de grande taille." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT091H.
Повний текст джерелаDo, Thien Tho. "Optimisation de forme en forgeage 3D." Paris, ENMP, 2006. http://www.theses.fr/2006ENMP1366.
Повний текст джерелаThis study focuses on shape optimization for 3D forging process. The problems to be solved consist in searching the optimal shape of the initial work piece or of the preform tool in order to minimize an objective function F which represents a measure of non-quality defined by the designer. These are often multi optima problems in which the necessary time for a cost function evaluation is very long (about a day or more). This work aims at developping an optimization module that permits to localize the global optimum within a reasonable cost (less than 50 calculations of objective function per optimization). The process simulation is carried out using the FORGE3® finite element software. The axisymmetric initial shape of the workpiece or die is parameterized using quadratic segments or Bspline curves. Several objective functions are considered, like the forging energy, the forging force or a surface defect criterion. The gradient of these objective functions is obtained by the adjoint-state method and semi-analytical differentiation. In this work, this gradient calculation (initiated in M. Laroussi's thesis) has been extended to another type of parameter "the parameters that control the shape of tool preform". Different optimization algorithms are tested for 3D applications: a standard BFGS algorithm, a moving asymptote algorithm, an evolution strategies algorithm enhanced with a response surface method based on Kriging and two new hybrid evolutionary algorithms proposed during this work. This hybrid approach consists in coupling a genetic algorithm to a response surface method that uses gradient information to dramatically reduce the number of problem simulations. All studied algorithms are compared for two 3D industrial tests, using rather coarse meshes. They make it possible to improve the initial design and to decrease the total forming energy and/or a surface defect criterion. Numerical results show the feasibility of such approaches, i. E. The achieving of satisfactory solutions within a limited number of 3D simulations, less than fifty
Chaffanjon, Pierre. "Optimisation de l'attenuation et de la dispersion des fibres optiques polymeres par l'utilisation de materiaux deuteries et par la realisation de preformes a gradient d'indice." Université Louis Pasteur (Strasbourg) (1971-2008), 1990. http://www.theses.fr/1990STR13035.
Повний текст джерелаКниги з теми "Optimisation par gradient"
Pivokonský, Martin, Kateřina Novotná, Lenka Čermáková, and Radim Petříček, eds. Jar Tests for Water Treatment Optimisation. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781789062694.
Повний текст джерелаЧастини книг з теми "Optimisation par gradient"
Ogrodniczak, Pawel, Abdulnaser Sayma, and Martin T. White. "Pressure profile optimisation of a nozzle for wet-to-dry expansion." In Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 304–12. 2024th ed. Editorial Universidad de Sevilla, 2024. http://dx.doi.org/10.12795/9788447227457_48.
Повний текст джерелаТези доповідей конференцій з теми "Optimisation par gradient"
Morelle, Patrick, and Alain Remouchamps. "Comparison of Gradient and Non Gradient Based Methods for Crash Optimisation." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dac-34045.
Повний текст джерелаGabor, Oliviu Şugar, Antoine Simon, Andreea Koreanschi, and Ruxandra Botez. "Application of a Morphing Wing Technology on Hydra Technologies Unmanned Aerial System UAS-S4." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37619.
Повний текст джерелаGiagopulos, D., C. Salpistis, and S. Natsiavas. "On Some Peculiarities Encountered in the Identification of Nonlinear Gear-Pair Systems." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85006.
Повний текст джерелаAbeygunasekara, H. A., H. A. Kazama, and S. P. Chaminda. "Integration of machine learning with numerical modelling for landslide susceptibility assessment near Uma Oya catchment, Sri Lanka." In International Symposium on Earth Resources Management & Environment - ISERME 2023. Department of Earth Resources Engineering, 2023. http://dx.doi.org/10.31705/iserme.2023.3.
Повний текст джерелаVerstraete, Dries, and Gareth A. Vio. "Temperature Effects on Flutter of a Mach 5 Transport Aircraft Wing." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89308.
Повний текст джерелаThomas, Mitra, Benjamin Kirollos, Dougal Jackson, and Thomas Povey. "Experimental and CFD Studies of NGV Endwall Cooling." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95639.
Повний текст джерелаDe Angelis, Giuseppe, and Fernando Palomba. "The Reliability Improvement of a Conventional Cast Iron Exhaust Manifold for a Small Size Gasoline Engine." In ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/icef2004-0876.
Повний текст джерела