Добірка наукової літератури з теми "Optimal temperature control"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optimal temperature control".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optimal temperature control"
Tian-Yu, Liu, Cao Jia-Hui, Liu Yan-Yan, Gao Tian-Fu, and Zheng Zhi-Gang. "Optimal control of temperature feedback control ratchets." Acta Physica Sinica 70, no. 19 (2021): 190501. http://dx.doi.org/10.7498/aps.70.20210517.
Повний текст джерелаSchwalbe, Karsten, and Karl Heinz Hoffmann. "Optimal Control of an Endoreversible Solar Power Plant." Journal of Non-Equilibrium Thermodynamics 43, no. 3 (July 26, 2018): 255–71. http://dx.doi.org/10.1515/jnet-2018-0021.
Повний текст джерелаAgusto, Folashade B. "Optimal Control and Temperature Variations of Malaria Transmission Dynamics." Complexity 2020 (November 28, 2020): 1–32. http://dx.doi.org/10.1155/2020/5056432.
Повний текст джерелаKull, Tuule Mall, Martin Thalfeldt, and Jarek Kurnitski. "Optimal PI control parameters for accurate underfloor heating temperature control." E3S Web of Conferences 111 (2019): 01081. http://dx.doi.org/10.1051/e3sconf/201911101081.
Повний текст джерелаPark, Young-shin, and Dongju Lee. "Optimal PID Control for Temperature Control of Chiller Equipment." Journal of Society of Korea Industrial and Systems Engineering 45, no. 3 (September 30, 2022): 131–38. http://dx.doi.org/10.11627/jksie.2022.45.3.131.
Повний текст джерелаVeldman, D. W. M., S. A. N. Nouwens, R. H. B. Fey, H. J. Zwart, M. M. J. van de Wal, J. D. B. J. van den Boom, and H. Nijmeijer. "Optimal thermal actuation for mirror temperature control." Computer Methods in Applied Mechanics and Engineering 398 (August 2022): 115212. http://dx.doi.org/10.1016/j.cma.2022.115212.
Повний текст джерелаYang, Xing Hua, Ting Rui Liu, and Jing Sun. "Optimal PID Control of Heat Exchanger Temperature." Advanced Materials Research 204-210 (February 2011): 21–24. http://dx.doi.org/10.4028/www.scientific.net/amr.204-210.21.
Повний текст джерелаVan Henten, E. J., and J. Bontsema. "OPEN-LOOP OPTIMAL TEMPERATURE CONTROL IN GREENHOUSES." Acta Horticulturae, no. 801 (November 2008): 629–36. http://dx.doi.org/10.17660/actahortic.2008.801.72.
Повний текст джерелаSHarshenaliev, J. SH, T. P. Samochvalova, and IU M. Leschenko. "Optimal control by temperature of stacks polysilicon." IFAC Proceedings Volumes 37, no. 17 (September 2004): 276–79. http://dx.doi.org/10.1016/s1474-6670(17)30827-3.
Повний текст джерелаGee, Douglas A., and W. Fred Ramirez. "Optimal temperature control for batch beer fermentation." Biotechnology and Bioengineering 31, no. 3 (February 20, 1988): 224–34. http://dx.doi.org/10.1002/bit.260310308.
Повний текст джерелаДисертації з теми "Optimal temperature control"
Trapnes, Siri Hofstad. "Optimal Temperature Control of Rooms for Minimum Energy Cost." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22416.
Повний текст джерелаAmmouri, Kevin. "Deep Reinforcement Learning for Temperature Control in Buildings and Adversarial Attacks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301052.
Повний текст джерелаVentilationssystem i byggnader är energiförbrukande och traditionella metoder som används för byggnadskontroll resulterar i förlust av energisparande. Dessa metoder kan inte ta hänsyn till icke-linjära beroenden i termisk beteenden. Djup förstärkande inlärning (DRL) är en kraftfull metod för att uppnå optimal kontroll i många kontrollmiljöer. DRL använder sig av neurala nätverk för att approximera optimala val som kan tas givet att systemet befinner sig i en viss stadie. Därför är DRL en lovande metod för byggnadskontroll och detta faktumet är markerat av flera studier. Likväl, neurala nätverk i allmänhet är kända för att vara svaga mot adversarial attacker, vilket är små ändringar i inmatningen, som gör att neurala nätverket väljer en åtgärd som är suboptimal. Syftet med denna anvhandling är att undersöka olika strategier för att lösa byggnadskontroll-problemet med DRL genom att använda sig av byggnadssimulatorn IDA ICE. Denna avhandling kommer också att använda konceptet av adversarial machine learning för att attackera agenterna som kontrollerar temperaturen i byggnaden. Det finns två olika sätt att attackera neurala nätverk: (1) Fast Gradient Sign Method, som använder gradienterna av kontrollagentens nätverk för att utföra sin attack; (2) träna en inlärningsagent med DRL med målet att minimera kontrollagenternas prestanda. Först byggde vi en DRL-arkitektur som lärde sig kontrollera temperaturen i en byggad. Experimenten visar att utforskning av agenten är en grundläggande faktor för träningen av kontrollagenten och man måste finjustera utforskningen av agenten för att nå tillfredsställande prestanda. Slutligen testade vi känsligheten av de tränade DRL-agenterna till adversarial attacker. Dessa test visade att i genomsnitt har det större påverkan på kontrollagenterna att använda DRL metoder än att använda sig av FGSM medans att attackera helt slumpmässigt har nästan ingen påverkan.
Petersson, Victor. "Exhaust Temperature Modeling and Optimal Control of Catalytic Converter Heating." Thesis, Linköpings universitet, Fordonssystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157606.
Повний текст джерелаYevseienko, Oleg, Anatoliy Gapon, and Dmytro Salnikov. "Searching for Optimal Control Parameters of Thermal Object Using Pulse-Width Modulation (PWM) Control with Predictive Filter." Thesis, Lviv Polytechnic Publishing House, 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/41116.
Повний текст джерелаMartins, Ricardo Alves. "Termorregulação e depressão metabólica em endotermos." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13102009-154825/.
Повний текст джерелаMetabolic depression of mammals and birds, animals of high metabolic demands, normally emerges as a response to food shortage and low ambient temperature. The main goal of this research is to explore, in a theoretical perspective, how the thermoregulatory system could extend the energy reserves of these endotherms decreasing metabolic costs under those environmental conditions. To approach the problem, we propose the use of control engineering theories to analyze the way the this minimization could occur, in other words, how the nervous system would act establishing a control (hypothalamic set-point) to minimize those costs during the thermoregulatory process. In this context, we propose a basic thermoregulation model that takes into account body temperature, metabolic rate and environmental temperature, and in which the set-point acts as a control. We show how this model can significantly reduce disturbances generated by ambient temperature. Using optimal control theory, we show how the hypothalamic set-point can emerge as a result of a minimization process of a functional related to thermoregulation costs. Also, how ambient temperature can define different metabolic profiles is explored, in terms of metabolic depression and the necessary return to euthermic conditions. To quantify this analysis we propose an index, based on the ratio between a constant metabolic cost and the metabolic cost defined by the controller. After a period in metabolic depression individuals should return to their euthermic condition, and, in situations of low environmental temperature, it is shown that the cost to return can be larger than the advantages. In this way, analyzing body mass influences we observed increased metabolic depression cost in larger individuals. This cost is even higher under lower environmental temperature. Finally, the cost related to the time elapsed, until the euthermic state is reached again, is considered. These last results are in accordance with current conception about the flexibility in hibernation process.
Andersson, Fredrik, and Hampus Andersson. "Numerical Optimal Control of Hybrid Electric Trucks : Exhaust Temperature, NOx Emission and Fuel Consumption." Thesis, Linköpings universitet, Fordonssystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-148680.
Повний текст джерелаDunbabin, Matthew D. "The influence of temperature on PZT sensors & actuators for active vibration control of flexible structures." Thesis, Queensland University of Technology, 2002. https://eprints.qut.edu.au/36162/7/36162_Digitised%20Thesis-4_Redacted.pdf.
Повний текст джерелаKaymaz, I. Ali. "Control strategies for exothermic batch and fed-batch processes : a sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin : design procedures are described and results compared with conventional control." Thesis, University of Bradford, 1989. http://hdl.handle.net/10454/4217.
Повний текст джерелаYin, Liangzhen. "Intelligent control for performance optimization of proton exchange membrane fuel cell system." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCA013.
Повний текст джерелаProton exchange membrane fuel cell (PEMFC) system has been considered as the new power generation technology as it has the advantage of high power density, zero emission, high efficiency, and fast start-up characteristics. Therefore, this thesis is devoted to researching system integration, system parameter trcking control, and system performance optimization for open-cathode and closed-cathode PEMFC systems. For open-cathode PEMFC system, the stack temperature is the key factor sffecting the output performance of the system. In order to improve the dynamic temperature tracking performance under load changing conditions, adaptive inverse control and grey prediction based model free adaptive control is proposed for optimal temperature control of system. Further, in order to enhance the system efficiency of system, a maximum efficiency control strategy based on maximum efficiency optimization and constraint generalized predictive control is proposed in this thesis. For closed-cathode PEMFC system, considering the existed nonlinearity and strong coupling between operating parameters such as stack temperature and oxygen excess ratio (OER), a dual loop multivariable control strategy based on MIMO model free adaptive sliding mode control is proposed for stack temperature and air flow rate regulation of closed-cathode PEMFC system. Moreover, a 300 W open-cathode PEMFC system test bench and a 5-kW closed-cathode PEMFC system tests bench are established. All the control strategies and the performance optimization strategies are verified on the established test bench of open-cathode and closed-cathode PEMFC systems
Costa, Filho Pedro Turibe. "Plataforma de Testes de Algoritmos de Controle para Sistemas em Tempo Real." Universidade Federal do Maranhão, 2006. http://tedebc.ufma.br:8080/jspui/handle/tede/446.
Повний текст джерелаThe conception, design and synthesis of a platform to evaluate the performance of the in real time control algorithms is the main focuses of this Master Thesis. For conception purpose, the platform is classi¯ed in structural and functional parts, the structural one is composed of the hardware that are sensors, actuators, controllers and related devices. The functional part is formed by algorithms to manager the platform resources and real time control strategies. The platform is dedicated to the speed control of a direct current motor and the temperature control of an electric furnace. These plants are used to develop methods for real time control, parameter estimation and controller tuning. The parameter estima- tion of the motor and furnace is performed in the platform, the obtained models are used to design the PID controller optimal gains.
Apresenta-se uma metodologia para o projeto de uma plataforma para avaliar o desempenho de algoritmos de controle em tempo real. O sistema é organizado em partes estrutural e funcional; a estrutural é constituída pelos elementos de hardware que são as plantas, sensores, atuadores e controladores; a parte funcional é constituída pelos algoritmos para o gerenciamento dos recursos da plataforma e para controle de sistemas dinâmicos. A plataforma é dedicada ao controle de velocidade de um motor de corrente continua e controle de temperatura de um forno elétrico, estas plantas são utilizadas para o desenvolvimento de métodos e verificação de aplicações de controle em tempo real, estimação de parâmetros e sintonia de ganhos dos controladores. A plataforma é utilizada para o levantamento dos parâmetros do motor e forno. Os modelos das plantas são utilizados para o projeto de controladores do tipo PID que são sintonizados por métodos de otimização.
Книги з теми "Optimal temperature control"
L, Tuma Margaret, and United States. National Aeronautics and Space Administration., eds. Fabry-Perot fiber-optic temperature sensor system. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаMichael, Bremer, and SpringerLink (Online service), eds. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Знайти повний текст джерелаCanfield, Donald Eugene. What Is It about Planet Earth? Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691145020.003.0001.
Повний текст джерелаNguyen, Kim-Phuong, and Chris D. Glover. Anesthetic Considerations for Scoliosis Repair. Edited by Erin S. Williams, Olutoyin A. Olutoye, Catherine P. Seipel, and Titilopemi A. O. Aina. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190678333.003.0032.
Повний текст джерелаRees, David. Insects of Stored Grain. CSIRO Publishing, 2007. http://dx.doi.org/10.1071/9780643094673.
Повний текст джерелаBremer, Michael, and Albert Greve. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures. Springer, 2012.
Знайти повний текст джерелаЧастини книг з теми "Optimal temperature control"
Hinsberger, H., S. Miesbach, and H. J. Pesch. "Optimal Temperature Control of Semibatch Polymerization Reactors." In Scientific Computing in Chemical Engineering, 75–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80149-5_9.
Повний текст джерелаSuzuki, Seiichi, Akira Anju, and Mutsuto Kawahara. "Parameter Identification and Optimal Control of Underground Temperature." In Computational Methods in Water Resources X, 807–14. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-010-9204-3_98.
Повний текст джерелаHerrero, H., and F. Pla. "Optimal Control of Buoyant Flows with Temperature-Dependent Viscosity." In Progress in Industrial Mathematics at ECMI 2008, 881–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12110-4_141.
Повний текст джерелаLiu, Derong, Qinglai Wei, Ding Wang, Xiong Yang, and Hongliang Li. "Data-Based Neuro-Optimal Temperature Control of Water Gas Shift Reaction." In Adaptive Dynamic Programming with Applications in Optimal Control, 571–90. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50815-3_14.
Повний текст джерелаCui, Guimei, and Guibao Ding. "Research on the Optimal Control of Tube Billet Temperature for Rotary Reheating Furnace." In Advanced Electrical and Electronics Engineering, 471–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19712-3_60.
Повний текст джерелаSingh, Sanjay Kumar, D. Boolchandani, S. G. Modani, and Nitish Katal. "Optimal Tuning of PID Controller for Centrifugal Temperature Control System in Sugar Industry Using Genetic Algorithm." In Advances in Intelligent Systems and Computing, 183–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0451-3_18.
Повний текст джерелаGeldhof, Joost J., Agata M. Malinowska, Gijs J. L. Wuite, Erwin J. G. Peterman, and Iddo Heller. "Temperature Quantification and Temperature Control in Optical Tweezers." In Optical Tweezers, 123–40. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2229-2_7.
Повний текст джерелаYu, H. P., Y. K. Sui, J. Wang, X. L. Dai, and G. P. An. "Optimal Control of Temperature Gradient in a Large Size Magnetic Czochralski Silicon Crystal Growth by Response Surface Methodology." In Computational Methods in Engineering & Science, 330. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-48260-4_176.
Повний текст джерелаXu, Zhe, Xulong Che, Bishi He, Yaguang Kong, and Anke Xue. "Research on Temperature Optimal Control for the Continuous Casting Billet in Induction Heating Process Based on ARX Model." In Lecture Notes in Electrical Engineering, 777–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38460-8_86.
Повний текст джерелаZhang, Yihan, Zhenfei Xiao, and Jinna Li. "Optimal Control for Cracking Outlet Temperature (COT) of SC-1 Ethylene Cracking Furnace by Off-Policy Q-Learning Approach." In Communications in Computer and Information Science, 342–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4932-2_25.
Повний текст джерелаТези доповідей конференцій з теми "Optimal temperature control"
Wyman, Douglas R., Carrie-Lynne Swift, Rosemarie A. Siwek, and Brian C. Wilson. "Optimal temperature control in laser hyperthermia." In OE/LASE '90, 14-19 Jan., Los Angeles, CA, edited by Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.17601.
Повний текст джерелаAstashova, I. V., A. V. Filinovskiy, and D. A. Lashin. "On optimal temperature control in hothouses." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992311.
Повний текст джерелаYang, Zhichao, Bo Sun, Fan Li, and Liang Zhang. "A Temperature Optimal Control Method of Temperature Control System Considering Thermal Inertia." In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865163.
Повний текст джерелаRiascos, Luis A. M., and David D. Pereira. "Optimal temperature control in PEM fuel cells." In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415416.
Повний текст джерелаYadav, Vivek, Radhakant Padhi, and S. N. Balakrishnan. "Robust/optimal temperature profile control using neural networks." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4777145.
Повний текст джерелаJiliang, Shang, Yu Wei, and Gao Dexin. "Study of Compound Optimal Control for Beer Saccharification Temperature." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4346790.
Повний текст джерелаZenghuan, Liu, Wang Lizhen, and He Guangxiang. "Study on Optimal Control of Furnace Temperature Uniformity." In 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2011. http://dx.doi.org/10.1109/icicta.2011.141.
Повний текст джерелаYadav, Vivek, Radhakant Padhi, and S. Balakrishnan. "Robust/Optimal Temperature Profile Control Using Neural Networks." In 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286115.
Повний текст джерелаZhou, Su, Xuelei Zhi, and Linjiong Yu. "Temperature Control of PEMFC Based on Optimal Power Consumption." In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8865220.
Повний текст джерелаDongsuk Kum, Huei Peng, and Norman K. Bucknor. "Optimal catalyst temperature management of Plug-in Hybrid Electric Vehicles." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5991499.
Повний текст джерелаЗвіти організацій з теми "Optimal temperature control"
Meza, J. C., and T. D. Plantenga. Optimal control of a CVD reactor for prescribed temperature behavior. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/61183.
Повний текст джерелаMartinez, Melissa. Visual Patching and Imaging Chambers. ConductScience, July 2022. http://dx.doi.org/10.55157/cs20220507.
Повний текст джерелаLieth, J. Heiner, Michael Raviv, and David W. Burger. Effects of root zone temperature, oxygen concentration, and moisture content on actual vs. potential growth of greenhouse crops. United States Department of Agriculture, January 2006. http://dx.doi.org/10.32747/2006.7586547.bard.
Повний текст джерелаFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell, and Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Повний текст джерелаBenedict, Katherine, Michael Moosmuller, Kyle Gorkowski, and Manvendra Dubey. Improved temperature control for measuring the humidity dependence of aerosol optical properties. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1813816.
Повний текст джерелаYahav, Shlomo, John Brake, and Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Повний текст джерелаMoosmuller, Michael, Kyle Gorkowski, Katherine Benedict, and Manvendra Dubey. Improved Temperature Control for Measuring the Humidity Dependence of Aerosol Optical Properties [Slides]. Office of Scientific and Technical Information (OSTI), July 2021. http://dx.doi.org/10.2172/1811850.
Повний текст джерелаOlsen. PR-179-07200-R01 Evaluation of NOx Sensors for Control of Aftertreatment Devices. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 2008. http://dx.doi.org/10.55274/r0010985.
Повний текст джерелаYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Повний текст джерелаHuang, Cihang, Yen-Fang Su, and Na Lu. Self-Healing Cementitious Composites (SHCC) with Ultrahigh Ductility for Pavement and Bridge Construction. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317403.
Повний текст джерела