Добірка наукової літератури з теми "Optimal dividend control problem"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optimal dividend control problem".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Optimal dividend control problem"

1

Prezioso, Luca. "Financial risk sources and optimal strategies in jump-diffusion frameworks." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/254880.

Повний текст джерела
Анотація:
An optimal dividend problem with investment opportunities, taking into consideration a source of strategic risk is being considered, as well as the effect of market frictions on the decision process of the financial entities. It concerns the problem of determining an optimal control of the dividend under debt constraints and investment opportunities in an economy with business cycles. It is assumed that the company is to be allowed to accept or reject investment opportunities arriving at random times with random sizes, by changing its outstanding indebtedness, which would impact its capital
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Furtado, Guilherme Phillips. "Formulation of impedance control strategy as an optimal control problem." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05022019-153033/.

Повний текст джерела
Анотація:
A formulation of impedance control for redundant manipulators is developed as a particular case of an optimal control problem. This formulation allows the planning and design of an impedance controller that benets from the stability and eficiency of an optimal controller. Moreover, to circumvent the high computational costs of computing an optimal controller, a sub-optimal feedback controller based on the state-dependent Ricatti equation (SDRE) approach is developed. This approach is then compared with the quadratic programming (QP) control formulation, commonly used to resolve redundancy of r
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Losse, Philip. "The H_infinity Optimal Control Problem for Descriptor Systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83628.

Повний текст джерела
Анотація:
The H_infinity control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions as well as controller formulas are derived in terms of deflating subspaces of even matrix pencils for problems of arbitrary index. A structure preserving method for computing these subspaces is introduced. In combination these results allow the derivation of a numerical algorithm with advantages over the classical methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tadi, Mohsen. "An optimal control problem for a Timoshenko beam." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39868.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bondarenko, Oleksandr. "Optimal Control for an Impedance Boundary Value Problem." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/36136.

Повний текст джерела
Анотація:
We consider the analysis of the scattering problem. Assume that an incoming time harmonic wave is scattered by a surface of an impenetrable obstacle. The reflected wave is determined by the surface impedance of the obstacle. In this paper we will investigate the problem of choosing the surface impedance so that a desired scattering amplitude is achieved. We formulate this control problem within the framework of the minimization of a Tikhonov functional. In particular, questions of the existence of an optimal solution and the derivation of the optimality conditions will be addressed.<br>Master
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mukonoweshuro, Rumbidzai Ushendibaba. "The dividend behaviour of NYSE-listed banks within an optimal control theory framework." Thesis, University of Plymouth, 2008. http://hdl.handle.net/10026.1/382.

Повний текст джерела
Анотація:
Within the dividend policy literature there is no universally accepted model to explain dividend behaviour. The theoretical dividend policy literature contains a promising dynamic mathematical model based on optimal control theory formulated by Davidson (1980), in the spirit of the Modigliani-Brumberg-Yaari types of lifecyle hypothesis, but despite being published some time ago the model has not been tested empirically, possibly due to its complexity. It is the main purpose of this research study to investigate the dividend behaviour patterns of banks listed on the NYSE within this optimal con
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jaimoukha, Imad Mahmoud. "The two-block super-optimal distance problem in control." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

李澤康 and Chak-hong Lee. "Nonlinear time-delay optimal control problem: optimality conditions and duality." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31212475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Chak-hong. "Nonlinear time-delay optimal control problem : optimality conditions and duality /." [Hong Kong] : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B16391640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chai, Qinqin. "Computational methods for solving optimal industrial process control problems." Thesis, Curtin University, 2013. http://hdl.handle.net/20.500.11937/1227.

Повний текст джерела
Анотація:
In this thesis, we develop new computational methods for three classes of dynamic optimization problems: (i) A parameter identification problem for a general nonlinear time-delay system; (ii) an optimal control problem involving systems with both input and output delays, and subject to continuous inequality state constraints; and (iii) a max-min optimal control problem arising in gradient elution chromatography.In the first problem, we consider a parameter identification problem involving a general nonlinear time-delay system, where the unknown time delays and system parameters are to be ident
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!