Добірка наукової літератури з теми "Optical wave synthesis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical wave synthesis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optical wave synthesis"
Mills, D. W., and L. S. Tamil. "Synthesis of guided wave optical interconnects." IEEE Journal of Quantum Electronics 29, no. 11 (1993): 2825–34. http://dx.doi.org/10.1109/3.248942.
Повний текст джерелаSmokal, Vitaliy, Oksana Krupka, Aleksey Kolendo, Beata Derkowska, Robert Czaplicki, and Bouchta Sahraoui. "Synthesis, polymerization ability, nonlinear optical properties of methacrylic monomers and polymers with benzylidene moiety." Chemistry & Chemical Technology 1, no. 3 (September 15, 2007): 131–35. http://dx.doi.org/10.23939/chcht01.03.131.
Повний текст джерелаKhaefi, Sara, Alireza Mallahzadeh, and Mohammad Hossein Amini. "Flat-topped pattern synthesis of optical leaky-wave antennas." Optics Communications 485 (April 2021): 126737. http://dx.doi.org/10.1016/j.optcom.2020.126737.
Повний текст джерелаJiang, Zhi Hao, Jeremy P. Turpin, Kennith Morgan, Bingqian Lu, and Douglas H. Werner. "Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2049 (August 28, 2015): 20140363. http://dx.doi.org/10.1098/rsta.2014.0363.
Повний текст джерелаKrishnamurthi, Vijay, Brent Bailey, and Frederick Lanni. "3-D optical transfer in excitation field synthesis microscopes." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 64–65. http://dx.doi.org/10.1017/s0424820100136696.
Повний текст джерелаShaker, Reyhane, Alireza Mallahzadeh, and Mohammad Hossein Amini. "Low side-lobe level pattern synthesis of optical leaky-wave antennas." Optik 242 (September 2021): 167192. http://dx.doi.org/10.1016/j.ijleo.2021.167192.
Повний текст джерелаSENTHILKUMARAN, PARAMASIVAM, and FRANK WYROWSKI. "Phase synthesis in wave-optical engineering: mapping- and diffuser-type approaches." Journal of Modern Optics 49, no. 11 (September 2002): 1831–50. http://dx.doi.org/10.1080/09500340210140533.
Повний текст джерелаFoord, A. P., P. A. Davies, and P. A. Greenhalgh. "Synthesis of microwave and millimetre-wave filters using optical spectrum-slicing." Electronics Letters 32, no. 4 (1996): 390. http://dx.doi.org/10.1049/el:19960243.
Повний текст джерелаInaba, H., T. Ikegami, Feng-Lei Hong, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, et al. "Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis." IEEE Journal of Quantum Electronics 40, no. 7 (July 2004): 929–36. http://dx.doi.org/10.1109/jqe.2004.830211.
Повний текст джерелаWang, Jing-Sheng. "Newly Installed Radio and Optical Telescopes in China." Publications of the Astronomical Society of Australia 9, no. 1 (1991): 60–61. http://dx.doi.org/10.1017/s1323358000024899.
Повний текст джерелаДисертації з теми "Optical wave synthesis"
Taylor, Christopher Trevor. "Enhancement of imagery from passive millimetre-wave systems for security scanning." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/enhancement-of-imagery-from-passive-millimetrewave-systems-for-security-scanning(7011ec7c-86ee-4770-b637-7ffe4909b241).html.
Повний текст джерелаNova, Lavado Enrique. "Millimeter-wave and terahertz imaging techniques." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/129466.
Повний текст джерелаNebel, Paul. "Synthesis of optimal control of a wave energy converter." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/12708.
Повний текст джерелаIgnacchiti, Jim. "Contrôle et caractérisation de la cohérence Raman induite par bruit quantique dans des fibres creuses remplies de gaz". Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0056.
Повний текст джерелаThis thesis addresses the design, implementation, and use of an experimental and numerical simulation platform aimed at exciting and amplifying Raman coherence in a controlled manner from quantum noise. The long term objective is to explore stimulated Raman scattering in hollow-core fiber as a means to generate coherent optical frequency combs with a multi-octave spectral width, thus creating a tool for generating arbitrary optical wave functions, such as attosecond pulses, or mode-locked lasers. The principle is based on the excitation of a gas contained in a hollow-core photonic crystal fiber (HCPCF) by ultrashort laser pulses, in such a way that only one of the coherent and independent spatiotemporal modes of the spontaneous Stokes radiation is excited and amplified. This innovative approach ensures phase modulation of the excitation laser field at very high frequencies without phase noise. It differs from existing techniques, such as molecular modulation, by eliminating the need for a second laser. However, this method requires a single-mode optical guide and exceptionally high Raman gain. In this context, this work focuses then on the generation and measurement of the intra and inter-pulse coherence of the Raman comb to evaluate its potential for the aforementioned applications. To this end, a theoretical model of stimulated Raman scattering in the impulsive regime was developed, highlighting the interest of the transient regime, which amplifies the Stokes field in a single temporal mode. Numerical simulations then detailed the dynamics of the Stokes field through the Raman medium, taking into account factors such as laser depletion. Furthermore, a specific hybrid hollow-core optical fiber was developed, offering low linear losses (a few dB/km at 1030 nm) and exceptional single-mode guidance (MPI up to −47 dB), thus ensuring the spatial coherence of the Raman comb. Two experimental setups were then realized to examine the comb’s coherence, starting with the intra-pulse aspect. An infrared laser adjustable in pulse duration, energy, and repetition rate was coupled into the hydrogen-filled fiber to generate the comb, then analyzed at the output with a Mach-Zehnder interferometer with high temporal resolution (∼ fs) and wide dynamic range (approximately 50 ps). The results showed that working in the range of 3 − 10 ps and 1 − 10 µJ minimizes parasitic effects such as the Kerr effect, and the mutual coherence is close to unity for all first-order Stokes and anti-Stokes lines, as confirmed by numerical calculations. The study of inter-pulse coherence revealed a complex behavior for pulses spaced less than 1 ns apart and a decrease in coherence corresponding to the coherence relaxation time (∼ 2 ns) for longer delays between pulses. These results highlight the importance of controlling the energy and delay of pulses to maintain high coherence and suggest that excitation lasers with repetition rates around 400 MHz or more can generate mode-locked lasers based on our approach. In conclusion, the advances made during this thesis on the coherence properties of frequency combs demonstrate the potential of stimulated Raman scattering in HCPCFs for optical wave synthesis and pave the way for other applications such as frequency conversion for quantum optics, optical trapping, and molecular cooling
Caba, Wilson Ariel. "Application of antenna synthesis and digital signal processing techniques for active millimeter-wave imaging systems." Doctoral diss., University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4532.
Повний текст джерелаID: 029050356; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2010.; Includes bibliographical references (p. 125-129).
Ph.D.
Doctorate
Optics and Photonics
North, Jan Arthur. "Fourier image synthesis and slope spectrum analysis of deepwater, wind-wave scenes viewed at Brewster's angle /." Online version of thesis, 1989. http://hdl.handle.net/1850/11520.
Повний текст джерелаBhatambrekar, Nishant. "Realizing a fractional volt half-wave voltage in Mach-Zehnder modulators using a DC biased push-pull method and synthesis and characterization of indole based NLO chromophores for improving electro-optic activity /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/11606.
Повний текст джерелаPhruksahiran, Narathep. "Polarimetrische Streuungseigenschaften und Fokussierungsmethoden zur quantitativen Auswertung der polarimetrischen SAR-Daten." Doctoral thesis, Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-107764.
Повний текст джерелаKilicaslan, Amaury. "Etude spectroscopique d’un plasma micro-onde à la pression atmosphérique et son application à la synthèse de nanostructures." Thèse, 2014. http://hdl.handle.net/1866/10600.
Повний текст джерелаThe purpose of this master thesis is to characterize the axial distribution of tubular discharges at atmospheric pressure sustained by electromagnetic surface wave and to explore their potential for materials and nanomaterials synthesis. A previous doctoral thesis, aimed at determining the mechanisms driving radial plasma contraction in rare gas discharges shed light on a yet unknown phenomenon occurring in surface wave discharges (SWD). As a matter of fact, increasing the power injected into the system leads to a change of the axial distribution of the discharge, in sharp contrast with the behavior commonly observed in reduced-pressure plasmas. In this context, we have performed a parametric investigation of atmospheric pressure SWD sustained in Ar gas. Based on our axially-resolved measurements of the electron density, excitation temperature, and number density of Ar atoms in metastable state (Ar 3P2), we found that the peculiar change of the axial distribution of the light intensity with power is not linked to a modification in the discharge kinetics (linked to the electron temperature and metastable number density) but rather to an anomalous power deposition (linked to the electron density). More specifically, such anomalous power deposition can be attributed to a wave reflection in the high gradient of charged particle densities near the end of the plasma column; a behavior that is more apparent in short plasma columns. Then, we have realized a parametric investigation of the discharge with the addition of organic precursors. Particularly, we used HMDSO for organo-silicon material synthesis and TTIP for organo-titanium material synthesis. It is found that because SWD are characterized by high charged particle densities (>10^13 cm^-3), higher precursor dissociation rates can be achieved with respect to other cold, atmospheric-pressure plasmas such as low-density dielectric barrier discharges. In this case, powder-like nanomaterials with sizes below 100 nm are obtained. Moreover, the addition of small amounts of oxygen into the discharge leads to the formation of round-like silicon oxide or titanium oxide nanoparticles.
Jarvis, Thomas William. "Novel tools for ultrafast spectroscopy." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-12-4456.
Повний текст джерелаtext
Книги з теми "Optical wave synthesis"
Biagini, Carlo, ed. L'Ospedale degli Infermi di Faenza. Florence: Firenze University Press, 2007. http://dx.doi.org/10.36253/978-88-8453-591-7.
Повний текст джерелаCenter, Langley Research, ed. A conceptual thermal design study of an electronically scanned thinned array radiometer. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Знайти повний текст джерелаTowe, E., and D. Pal. Intersublevel quantum-dot infrared photodetectors. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.7.
Повний текст джерелаPhase-Locked Frequency Generation and Clocking: Architectures and Circuits for Modern Wireless and Wireline Systems. Institution of Engineering & Technology, 2020.
Знайти повний текст джерелаЧастини книг з теми "Optical wave synthesis"
Tamil, Lakshman S., and Arthur K. Jordan. "Synthesis of Optical Interconnects and Logic Gates." In Guided-Wave Optoelectronics, 177–86. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_23.
Повний текст джерелаShekhtman, V. N. "Synthesis of Interferograms by Lateral Shear to Measure Wave Front of a Light Beam." In Optical Resonators — Science and Engineering, 301–7. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2486-9_19.
Повний текст джерелаSaha, Swapan Kumar. "Introduction to Wave Optics." In Aperture Synthesis, 1–29. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5710-8_1.
Повний текст джерелаOhtsuki, Yukiyoshi, Yoshikazu Nishiyama, Tsuyoshi Kato, Hirohiko Kono, and Yuichi Fujimura. "Numerical Synthesis of Optimal Laser Pulses for Manipulating Dissociation Wave Packets of I2 − in Water." In Springer Series in Chemical Physics, 511–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_156.
Повний текст джерелаGorbunov, M. E. "Wave Optics Algorithms for Processing Radio Occultation Data in the Lower Troposphere: A Review and Synthesis." In Occultations for Probing Atmosphere and Climate, 11–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09041-1_2.
Повний текст джерелаRamya, Emusani. "Green Synthesis of Metal Nanostructures and Its Nonlinear Optical Properties." In Nonlinear Optics [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99449.
Повний текст джерелаBairy, Raghavendra, Vijeth H., Rajesh K., and Rohan S. Deshmukh. "Synthesis and Characterization of CdS and ZnS Nanostructured Thin Films for Opto-electronic Energy Applications." In Thin Film Nanomaterials: Synthesis, Properties and Innovative Energy Applications, 1–35. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815256086124010004.
Повний текст джерелаNarasimman, Subramaniyam, Lakshmi Narayanan Balakrishnan, Arunkumar Chandrasekhar, and Zachariah C. Alex. "A Study on Fiber Optic Temperature Sensor Using Al2O3 as High Index Overlay for Solar Cell Applications." In Nanogenerators and Self-Powered Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110496.
Повний текст джерелаXi, Xian, and Jiangqing Huang. "Seismic Scattering Wave Field Imaging Method Based on Convolution Neural Network and Equivalent Training Model." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220031.
Повний текст джерелаButt, Muhammad A. "Photonic Crystal Instruments." In Photonic Materials: Recent Advances and Emerging Applications, 1–20. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010004.
Повний текст джерелаТези доповідей конференцій з теми "Optical wave synthesis"
Morozov, Oleg G., rustam misbakhov, vadim artemiev, and Gennady Morozov. "Synthesis of symmetrical wave and phase address fiber Bragg structures." In Optical Technologies for Telecommunications 2023, edited by Oleg G. Morozov, Albert C. Sultanov, and Anton V. Bourdine, 58. SPIE, 2024. http://dx.doi.org/10.1117/12.3026648.
Повний текст джерелаCui, Shaozhe, Zhe Peng, Yuanrui Dong, Yingwei He, Guojin Feng, and Haiyong Gan. "Aircraft detection in high-resolution synthetic aperture radar images based on optical training dataset." In Infrared, Millimeter-Wave, and Terahertz Technologies XI, edited by Masahiko Tani and Cunlin Zhang, 27. SPIE, 2024. http://dx.doi.org/10.1117/12.3036454.
Повний текст джерелаKuś, Arkadiusz. "Dual-wavelength, near-infrared holographic tomography." In Digital Holography and Three-Dimensional Imaging, W4A.33. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.33.
Повний текст джерелаLohmann, Adolf W., David Mendlovic, and Gal Shabtay. "Coherence function as carrier of optical information." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/srs.1998.swb.4.
Повний текст джерелаHaaland, Peter, and James Targove. "Flowing Afterglow Synthesis of Polythiophene Films." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/nlgwp.1991.tue4.
Повний текст джерелаWeiner, A. M., and J. P. Heritage. "Spectral Shaping of Ultrashort Pulses and its Application to Pulse Compression and Dark Optical Solitons." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.thd6.
Повний текст джерелаIkeda, Osamu. "Proposal And Analysis Of Aberration-Free Array Imaging Using Phase Conjugation." In Signal Recovery and Synthesis. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/srs.1989.wb3.
Повний текст джерелаChen, L., W. Zhu, P. Huo, J. Song, H. J. Lezec, T. Xu, and A. Agrawal. "Arbitrary Space-time Wave Packet Synthesis." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth6c.9.
Повний текст джерелаChen, Lu, Wenqi Zhu, Pengcheng Huo, Junyeob Song, Ting Xu, and Amit Agrawal. "Synthesis of Arbitrary Spatiotemporal Wave Packets." In Flat Optics: Components to Systems. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/flatoptics.2023.ftu2g.4.
Повний текст джерелаHaner, M., and W. S. Warren. "Generation of Crafted Optical Pulses for Nonlinear Laser Spectroscopy and Propagation Experiments using Electrooptic Time Domain Filtering." In Integrated and Guided Wave Optics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/igwo.1989.mbb2.
Повний текст джерелаЗвіти організацій з теми "Optical wave synthesis"
Hart, Carl, Gregory Lyons, and Michael White. Spherical shock waveform reconstruction by heterodyne interferometry. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48471.
Повний текст джерела