Добірка наукової літератури з теми "Optical readout"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical readout".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Optical readout"
Fraga, F. A. F., L. M. S. Margato, S. T. G. Fetal, M. M. F. R. Fraga, R. Ferreira Marques, and A. J. P. L. Policarpo. "Optical readout of GEMs." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471, no. 1-2 (September 2001): 125–30. http://dx.doi.org/10.1016/s0168-9002(01)00972-x.
Повний текст джерелаCheng Teng, 程腾, 张青川 Zhang Qingchuan, 高杰 Gao Jie, 毛亮 Mao Liang, 伍小平 Wu Xiaoping, and 陈大鹏 Chen Dapeng. "Analysis of Optical Readout Sensitivity for Uncooled Infrared Imaging Based on Optical Readout." Acta Optica Sinica 32, no. 2 (2012): 0204002. http://dx.doi.org/10.3788/aos201232.0204002.
Повний текст джерелаGallo, G., D. L. Bonanno, D. G. Bongiovanni, F. Cappuzzello, M. Cortesi, F. Longhitano, D. Lo Presti, L. Pandola, and S. Reito. "Focal plane detector optical readout." Journal of Physics: Conference Series 1056 (July 2018): 012023. http://dx.doi.org/10.1088/1742-6596/1056/1/012023.
Повний текст джерелаd’Errico, Francesco, Angela Di Fulvio, Marek Maryañski, Simone Selici, and Manuela Torrigiani. "Optical readout of superheated emulsions." Radiation Measurements 43, no. 2-6 (February 2008): 432–36. http://dx.doi.org/10.1016/j.radmeas.2008.02.011.
Повний текст джерелаGrogan, Catherine, Faolan Radford McGovern, Rory Staines, George Amarandei, and Izabela Naydenova. "Cantilever-Based Sensor Utilizing a Diffractive Optical Element with High Sensitivity to Relative Humidity." Sensors 21, no. 5 (March 1, 2021): 1673. http://dx.doi.org/10.3390/s21051673.
Повний текст джерелаXie, Siwei, Zhiliang Zhu, Xi Zhang, Qiangqiang Xie, Hongsen Yu, Yibin Zhang, Jianfeng Xu, and Qiyu Peng. "Optical Simulation and Experimental Assessment with Time–Walk Correction of TOF–PET Detectors with Multi-Ended Readouts." Sensors 21, no. 14 (July 8, 2021): 4681. http://dx.doi.org/10.3390/s21144681.
Повний текст джерелаZhou, Weidong, and Lilong Cai. "Optical readout for optical storage with phase jump." Applied Optics 38, no. 23 (August 10, 1999): 5058. http://dx.doi.org/10.1364/ao.38.005058.
Повний текст джерелаWuchrer, Roland, Sabrina Amrehn, Luhao Liu, Thorsten Wagner, and Thomas Härtling. "A compact readout platform for spectral-optical sensors." Journal of Sensors and Sensor Systems 5, no. 1 (May 10, 2016): 157–63. http://dx.doi.org/10.5194/jsss-5-157-2016.
Повний текст джерелаDeisting, A. "Commissioning of a hybrid readout TPC test set-up and gas gain simulations." Journal of Physics: Conference Series 2374, no. 1 (November 1, 2022): 012145. http://dx.doi.org/10.1088/1742-6596/2374/1/012145.
Повний текст джерелаKranz, Michael, Tracy Hudson, Brian Grantham, and Michael Whitley. "Optical Cavity Interrogation for MEMS Accelerometers." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, DPC (January 1, 2015): 001649–70. http://dx.doi.org/10.4071/2015dpc-wp34.
Повний текст джерелаДисертації з теми "Optical readout"
Rahman, Rizvi. "Fullerene based systems for optical spin readout." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:e604f0ed-7d3c-44a6-9d97-7c03e7a90580.
Повний текст джерелаMontagner, Elison. "Optical readout system for bi-material terahertz sensors." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5478.
Повний текст джерелаThe objective of this work is to design, assemble, and characterize an optical readout for bi-material MEMs sensor arrays that can be integrated into a THz imaging system. All this effort is a contribution to the goals of the research conducted by the Naval Postgraduate School Sensor Research Laboratory on designing and fabricating THz-optimized bi-material MEMs sensor arrays for THz imaging. Basic concepts of THz radiation and detection are presented. Several aspects of THz imaging, and sensor's array readout possibilities, are discussed in terms of the principle of operation for this type of sensor. An experimental optical readout was assembled during this research, and its configuration is shown, as well as all of its component details. The experimental setup was characterized following a method described in this work, and the obtained results are analyzed. Finally, one possibility of optical readout integration with a THz imaging system is suggested.
Buseck, David Allan 1963. "High-density CD-ROM readout using direct phase measurement." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276545.
Повний текст джерелаLee, Wook. "Diffraction-based integrated optical readout for micromachined optomechanical sensors." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09292006-115918/.
Повний текст джерелаF. Levent Degertekin, Committee Chair ; David S. Citrin, Committee Member ; Paul E. Hasler, Committee Member ; Peter J. Hesketh, Committee Member ; Zhiping Zhou, Committee Member.
Schuldt, Thilo. "An optical readout for the LISA gravitational reference sensor." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16241.
Повний текст джерелаThe space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) consists of three identical satellites. Each satellite accommodates two free-flying proof masses whose distance and tilt with respect to its corresponding optical bench must be measured with at least 1 pm/sqrt(Hz) sensitivity in translation and at least 10 nrad/sqrt(Hz) sensitivity in tilt measurement. In this thesis, a compact optical readout system is presented, which serves as a prototype for the LISA proof mass attitude metrology. We developed a polarizing heterodyne interferometer with spatially separated frequencies. For optimum common mode rejection, it is based on a highly symmetric design, where measurement and reference beam have the same frequency and polarization, and similar optical pathlengths. The method of differential wavefront sensing (DWS) is utilized for the tilt measurement. In a first prototype setup noise levels below 100 pm/sqrt(Hz) in translation and below 100 nrad/sqrt(Hz) in tilt measurement (both for frequencies above 0.1 Hz) are achieved. A second prototype was developed with additional intensity stabilization and phaselock of the two heterodyne frequencies. The analog phase measurement is replaced by a digital one, based on a Field Programmable Gate Array (FPGA). With this setup, noise levels below 5 pm/sqrt(Hz) in translation measurement and below 10 nrad/sqrt(Hz) in tilt measurement, both for frequencies above 0.01Hz, are demonstrated. A noise analysis was carried out and the nonlinearities of the interferometer were measured. The interferometer was developed for the LISA mission, but it also finds its application in characterizing the dimensional stability of ultra-stable materials such as carbon-fiber reinforced plastic (CFRP) and in optical profilometry. The adaptation of the interferometer and first results in both applications are presented in this work.
Tripp, Everett. "Interferometric Optical Readout System for a MEMS Infrared Imaging Detector." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/222.
Повний текст джерелаCools, Antoine. "Beta and neutron imaging with an optical readout Micromegas detector." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP090.
Повний текст джерелаGaseous detectors have demonstrated, over the past decades, their high performance for imaging radioactive particles, achieving spatial resolutions below 100 µm. The scintillating properties of certain gas mixtures, combined with the significant gain of gaseous detectors and the use of a low-noise camera, have enabled the use of scintillation light for imaging. This approach allows for a large detection surface and high spatial resolution while achieving real-time imaging at a low cost per pixel, with low data analysis complexity. The main objectives of this thesis are to optimize the spatial resolution and sensitivity of the detector, either by an "event-by-event" acquisition method with short image acquisition times or by "integration" with long acquisition times.An innovative glass Micromegas detector for optical readout has been developed, taking advantage of the inherently high spatial resolution of the Micromegas detector. The adaptability of the Micromegas detector's gain, due to the avalanche amplification mechanism, allows it to cover a wide range of particle fluxes and energies. During this thesis, imaging measurements were performed using sources with radioactivity levels below one Becquerel and energies of a few keV, up to fluxes characteristic of a synchrotron and a spallation source, with energies exceeding one MeV.The light yield of the detector was studied for different gas mixtures and various gain values under X-ray irradiation to optimize the detector's sensitivity. The homogeneity and precision of the detector's response were characterized by X-ray radiography. The Point Spread Function (PSF) of the optical readout Micromegas was measured using a parallel X-ray beam a few microns thick, generated by synchrotron radiation. This measurement allowed us to determine the detector's spatial resolution for different configurations and to identify and quantify the effects involved. The impact of the micro-mesh and pillars on the detector's scintillation response was also observed and quantified.Two applications were chosen to illustrate the potential of the optical readout Micromegas: autoradiography, for the quantification of very low-activity tritiated samples and high-resolution neutron radiography in highly radioactive environments.Autoradiography and radioactive counting of low-energy beta radiation were performed with tritiated glucose samples. Activities below one Becquerel were measured accurately and simultaneously on a large number of samples, while ensuring precise reconstruction of their position. This work validates the possibility of quantifying the concentration of anticancer drugs at the scale of single tumor cells.Finally, the use of the optical readout Micromegas for neutron imaging was demonstrated using a spallation source which produces thermal neutrons with a flux of approximately 10⁸ n. s⁻¹cm⁻ ² mA⁻¹. The uniformity of the detector's response was studied, and the effects of the diffusion and the mean free path of particles in the gas on image sharpness were measured and compared to a simulation. A spatial resolution on the order of 400 µm was achieved using double-stage amplification within the Micromegas detector
Gunnarsson, Gunnar Hans 1962. "A NEW READOUT TECHNIQUE FOR CD-ROM MULTILEVEL OPTICAL DATA STORAGE." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276464.
Повний текст джерелаBekker, Scott Henry. "Continuous real-time recovery of optical spectral features distorted by fast-chirped readout." Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/bekker/BekkerS0506.pdf.
Повний текст джерелаToh, Edwin. "Implementation of an optical readout system for high-sensitivity terahertz microelectromechanical sensor array." Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44019.
Повний текст джерелаIn this thesis, an optical readout scheme was successfully developed based on the Fourier 4F optical configuration and integrated with a custom-fabricated microelectromechanical system (MEMS)-based, terahertz (THz), detector array. The MEMS THz detector array and 4F Fourier optics were able to transduce the THz scene into an optical signal that was captured by a commercial charged coupled device (CCD) camera for generating images. A quantum cascade laser (QCL) provided the THz illumination for generating images while post-image processing performed background subtraction in order to obtain the THz scene. The Fourier 4F optical readout system that was implemented was able to profile the general shape of the QCL beam pattern and displayed good linearity of response of about 23 gray level values per Kelvin. The concept of optical readout from a micromechanical sensor array was also validated.
Книги з теми "Optical readout"
Webster, Kenneth Andrew. Investigation of the use of optical modulators for analogue data readout from particle physics detectors. Birmingham: University of Birmingham, 1995.
Знайти повний текст джерелаFacility, Dryden Flight Research, ed. Spectral contents readout of birefringent sensor. Edwards, Calif: National Aeronautics and Space Administration, Ames Research Center, Dryden Flight Research Facility, 1990.
Знайти повний текст джерелаGlazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.
Повний текст джерелаЧастини книг з теми "Optical readout"
Tokuda, Takashi, and Jun Ohta. "DNA Optical Readout Methods." In Handbook of Biochips, 1–12. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6623-9_10-1.
Повний текст джерелаTokuda, Takashi, and Jun Ohta. "DNA Optical Readout Methods." In Handbook of Biochips, 589–600. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-4614-3447-4_10.
Повний текст джерелаSchmidt, Ricardo E. "On the Optimization of CCD Readout Noise." In Optical Detectors for Astronomy, 245–50. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5262-4_38.
Повний текст джерелаTeubert, Jörg, Sumit Paul, Andreas Helwig, Gerhard Müller, and Martin Eickhoff. "Group III-Nitride Chemical Nanosensors with Optical Readout." In Springer Series on Chemical Sensors and Biosensors, 311–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/5346_2014_58.
Повний текст джерелаWasley, Nicholas Andrew. "Direct In-plane Readout of QD Spin." In Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits, 69–84. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01514-9_5.
Повний текст джерелаSmith, Roger M. "Readout Speed Optimization for Conventional CCDs Employing Dual Slope Integration for Double Correlated Sampling." In Optical Detectors for Astronomy, 165–84. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5262-4_27.
Повний текст джерелаChakrabarti, Supriya, Oswald H. W. Siegmund, and Charles Hailey. "Development of Visible Light Sensitive Imaging Tubes with Microchannel Plate Intensifiers and Wedge and Strip Readout." In Instrumentation for Ground-Based Optical Astronomy, 574–81. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3880-5_56.
Повний текст джерелаJian, Jiqi, Cheng Ma, and Huibo Jia. "Improved-FCM-Based Readout Segmentation and PRML Detection for Photochromic Optical Disks." In Fuzzy Systems and Knowledge Discovery, 514–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539506_65.
Повний текст джерелаZanetto, Francesco. "Low-Noise Mixed-Signal Electronics for Closed-Loop Control of Complex Photonic Circuits." In Special Topics in Information Technology, 55–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85918-3_5.
Повний текст джерелаUjiie, Norihiko, Hirokazu Ikeda, and Yoshinobu Unno. "A New Concept of Multiplexed Optical Transmission Readout Scheme for a Silicon Strip Detector." In Supercollider 4, 583–90. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3454-9_72.
Повний текст джерелаТези доповідей конференцій з теми "Optical readout"
Loo, Jacky, Roman Calpe, Xuan-Hung Pham, Minh-Kha Nguyen, Yike Huang, Susanna Hällsten, Kalle Oskari Mikkola, et al. "Colorimetric Sensing with Reconfigurable Chiral Plasmonic Metamolecules." In Optical Sensors, SM1H.5. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/sensors.2024.sm1h.5.
Повний текст джерелаCampbell, David K., and David K. Towner. "A Magneto-optic Polarization Readout Model." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ods.1985.tubb2.
Повний текст джерелаPsaltis, Demetri, Alan A. Yamamura, Mark A. Neifeld, and Seiji Kobayashi. "Parallel Readout of Optical Disks." In Optical Computing. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/optcomp.1989.me3.
Повний текст джерелаTanabe, Takaya, Norio Amano, and Ryoichi Arai. "Super-Resolving Readout System using Optical Apodization and Electrical Equalization." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/ods.1994.wc4.
Повний текст джерелаIwanaga, Toshiaki, Satoshi Sugaya, Hiroshi Inada, and Tadashi Nomura. "Magneto-optical Recording Readout Performance Evaluation." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/ods.1987.wa2.
Повний текст джерелаLee, Tuzo-Chang, Wai W. Wang, Kerry Rhea, and Jim Lauffenburger. "Thermal interference in high density magneto-optical recording and a method of compensation." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/ods.1994.tud9.
Повний текст джерелаFujita, T., M. Kondo, K. Kime, N. Tomikawa, and N. Takeshita. "Optical Head for Magneto-optical Disk Evaluation." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/ods.1985.thaa2.
Повний текст джерелаAndrews, Jeffrey P., and Joseph A. McClintock. "Interferometric optical sensor readout system." In 1993 North American Conference on Smart Structures and Materials, edited by Richard O. Claus. SPIE, 1993. http://dx.doi.org/10.1117/12.147975.
Повний текст джерелаCastera, J. P., and J. C. Lehureau. "Optical Readout Of Magnetic Tapes." In International Topical Meeting on Image Detection and Quality, edited by Lucien F. Guyot. SPIE, 1987. http://dx.doi.org/10.1117/12.966785.
Повний текст джерелаRilum, John H., and Armand R. Tanguay. "Differential interferometric readout optical disk spatial light modulators." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.turr8.
Повний текст джерелаЗвіти організацій з теми "Optical readout"
Psaltis, Demetri. Parallel Readout of Optical Disks. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada256625.
Повний текст джерелаWang, Feiling. High Density Optical Readout Nonvolatile RAMs. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada300416.
Повний текст джерелаVergara Limon, M. C. Sergio. Design and Performance Characteristics of the Optical Readout and Control Interface for the BTeV Pixel Vertex Detector. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/1421427.
Повний текст джерелаRaghavan, Ajay. TRANSENSOR: Transformer Real-time Assessment INtelligent System with Embedded Network of Sensors and Optical Readout. Final Report. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1615666.
Повний текст джерелаHaritonidis, Joseph H. The Development of a Fiber-Optic Readout Pressure Transducer. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada238393.
Повний текст джерелаMcConaghy, C. Evaluation of White Light Sources For an Absolute Fiber Optic Sensor Readout System. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/15009728.
Повний текст джерела