Добірка наукової літератури з теми "Optical Properties - Nanocomposites"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Optical Properties - Nanocomposites".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Optical Properties - Nanocomposites"

1

Sangawar, Vijaya S., and Manisha C. Golchha. "Optical Properties of ZnO/Low Density Polyethylene Nanocomposites." International Journal of Scientific Research 2, no. 7 (June 1, 2012): 490–92. http://dx.doi.org/10.15373/22778179/july2013/169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ramazanov, MA, FV Hajiyeva, YA Babayev, GV Valadova, SG Nuriyeva, and HA Shirinova. "Synthesis and optical properties of PVC-CdS-based nanocomposites." Journal of Elastomers & Plastics 52, no. 2 (February 14, 2019): 159–66. http://dx.doi.org/10.1177/0095244319827989.

Повний текст джерела
Анотація:
Poly(vinyl chloride) (PVC)–cadmium sulfide (CdS) nanocomposite films were successfully synthesized by ex situ solution casting method. Scanning electron microscopy showed that CdS nanoparticles are well monodispersed in the PVC matrix. From the ultraviolet (UV) spectra of nanocomposites, the width of the forbidden band for polymer nanocomposites was determined by extrapolation method. UV-visible optical spectra revealed that the optical band of nanocomposites is increased with increasing concentration of CdS nanoparticles in the PVC matrix. It was found that the band gap is 3.8 eV for PVC-3% CdS nanocomposites, 2.7 eV for PVC-5% CdS, and 2.35 eV for PVC-10% CdS nanocomposites. Photoluminescence spectrum of PVC-CdS-based nanocomposites shows two luminescent peaks at the wavelengths of 436 nm and 472 nm at the luminescence spectrum which belongs to CdS nanoparticles. Photoluminescence study shows that PVC-CdS nanocomposites exhibit a great blue shift (approximately 100 nm) compared with bulk CdS nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Musbah, Salah, Vesna Radojevic, Nadezda Borna, Dusica Stojanovic, Miroslav Dramicanin, Aleksandar Marinkovic, and Radoslav Aleksic. "PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties." Journal of the Serbian Chemical Society 76, no. 8 (2011): 1153–61. http://dx.doi.org/10.2298/jsc100330094m.

Повний текст джерела
Анотація:
The results of a study related to the processing and characterization of PMMA-Y2O3 (Eu3+) nanocomposites are presented herein. The nanocomposite samples were prepared using a laboratory mixing molder with different contents of Eu-ion doped Y2O3 nanophosphor powder. The influence of particle content on the optical and dynamic mechanical properties of the nanocomposites was investigated. The intensity of the luminescence emission spectra increased as the nanophosphor content in the composite increased. The results of dynamic mechanical analysis revealed that the storage modulus, loss modulus and glass transition temperature (Tg) of the polymer composites increased with increasing content of the nanophosphor powder. The microhardness data also confirmed that the hardness number increased with nanoparticles concentration in the PMMA nanocomposites. The obtained results revealed a relatively linear relationship between Tg and the Vickers hardness.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Anitha, R., E. Kumar, and S. C. Vella Durai. "Synthesis and Investigations of Structural, Optical and AC Conductivity Properties of PANI/CeO2 Nanocomposites." Asian Journal of Chemistry 31, no. 5 (March 28, 2019): 1158–62. http://dx.doi.org/10.14233/ajchem.2019.21910.

Повний текст джерела
Анотація:
This paper explains the details on the preparation of polyaniline/CeO2 (10 wt %) nanocomposites using the method of in situ polymerization. The formation of PANI/CeO2 nanocomposites were proposed via oxidation of aniline and reduction of CeO2, respectively. The effect of CeO2 concentration on AC conductivity, morphological, optical and structural properties of the prepared PANI/CeO2 nanocomposites material were examined. The structural studies show the presence of CeO2 nanoparticles were occurred in PANI of nanocomposites. The average grain size of PANI/CeO2 nanocomposites varied with increasing and decreasing concentration due to the process of nucleation during the polymerization. The average particle grain sizes were measured from HRTEM. The morphology analysis was carried out from SEM. The UV absorption spectrum showed that the absorption peak of CeO2 nanoparticle at 341 nm, shifted to lower wavelength side, the nanocomposite absorption peaks at about 324, 368 and 858 nm was confirmed by the formation of PANI/CeO2 nanocomposites. The electronic structure of the band gap of the nanocomposite materials were calculated using ultraviolet visible absorption spectrum. The band gap energy of nanocomposite is 3.36 eV. The FTIR spectrum clearly showed the strong presence of CeO2 nanoparticles in PANI chain. The AC conductivity varied with varying the temperature and depends on the concentration due to the formation of PANI/CeO2 nanocomposite.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jawad, Yaqoob M., Mahasin F. Hadi Al-Kadhemy, and Jehan Abdul Sattar Salman. "Synthesis Structural and Optical Properties of CMC/MgO Nanocomposites." Materials Science Forum 1039 (July 20, 2021): 104–14. http://dx.doi.org/10.4028/www.scientific.net/msf.1039.104.

Повний текст джерела
Анотація:
Nanocomposites were prepared by the method of solution casting with different proportions of magnesium oxide nanoparticles (0, 1, 3, 5, 7 and 9) wt%. The structural and optical properties of nanocomposites of CMC/MgO have been studied. It was well known that the increased content of MgONPs in the method contributes to the peaks of MgONPs being completely integrated and/or disappearing within the CMC diffraction halos in the experimental results of XRD study. The differences in the XRD spectrum indicate that doping with nanoparticles induced a disparity in the microstructure of the polymer. Nanocomposite film scanning electron microscopy (SEM) reveals that MgONPs appear to form aggregates and scatter well in (CMC/MgO) nanocomposite films and at apply 9 wt. It forms a continuous network within the polymer for the percentage of MgONPs to (CMC) polymer. FTIR spectrum revealed the MgONPs has no destructive influence on the polymer structure as no covalent bonds formed between CMC and MgONPs. The optical properties of CMC/MgO nanocomposites were measured in wavelength range (200–900) nm. Experimental studies have shown that the absorbance, absorption coefficient, extinction coefficient, refractive index, actual and imaginary dielectric constant of CMC polymer is improved with an increase in concentrations of MgONPs in nanocomposites. The transmittance and energy gap of CMC polymer are decreased with the increase in the concentrations of MgONPs.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alam, Rabeya Binta, Md Hasive Ahmad, S. M. Nazmus Sakib Pias, Eashika Mahmud, and Muhammad Rakibul Islam. "Improved optical, electrical, and thermal properties of bio-inspired gelatin/SWCNT composite." AIP Advances 12, no. 4 (April 1, 2022): 045317. http://dx.doi.org/10.1063/5.0089118.

Повний текст джерела
Анотація:
In this study, we report a facile route to synthesize gelatin-based Single-Walled Carbon Nanotube (gelatin/SWCNT) nanocomposites using a simple solution casting process and investigate the impact of SWCNT filler on the structural, surface morphological, optical, electrical, and thermal features. According to the Fourier transform infrared spectroscopy study, the addition of SWCNTs improves the interaction between gelatin and SWCNTs. The field emission scanning electron microscope images showed the presence of the fillers increased with the increment of SWCNT. The roughness of the samples increased caused by high interfacial interactions between Gel and SWCNTs. The nanocomposite’s optical bandgap was observed to be reduced from 2.1 to 1.9 eV as the SWCNT was varied from 0% to 0.5 vol. %. The addition of SWCNTs significantly boosted the DC electrical conductivity of the prepared samples by four orders of magnitude. The incorporation of SWCNT into the gelatin matrix was also observed to improve the nanocomposite's melting enthalpy and degree of crystallinity up to 94.5%. The gelatin/SWCNT nanocomposites were found to be decomposed completely in 4 days in the soil in an open environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sharma, Deepali, B. S. Kaith, and Jaspreet Rajput. "Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites." Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/904513.

Повний текст джерела
Анотація:
Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

AHMED, S. M., A. A. A. DARWISH, E. A. EL-SABAGH, N. A. MANSOUR, D. E. ABULYAZIED, and E. S. ALI. "PHYSICOCHEMICAL PROPERTIES OF PREPARED ZnO/ POLYSTYRENE NANOCOMPOSITES: STRUCTURE, MECHANICAL AND OPTICAL." Journal of Ovonic Research 16, no. 1 (January 2020): 71–81. http://dx.doi.org/10.15251/jor.2020.161.71.

Повний текст джерела
Анотація:
Nanocomposites of polystyrene nano sphere (PS) with different loading of nano zinc oxide (ZnO) were prepared by two different methods, blend and in situ method. The prepared films of the synthesized nanocomposites materials were characterized by energy dispersive investigation (EDX), X-ray diffraction (XRD) and the morphology of ZnO/PS nanocomposite were investigated by transmission electron microscope (TEM). Phase composition and microstructure analysis shows that ZnO nanoparticles content has an influence on the crystal structure and morphology of ZnO/PS nanocomposite. The effect of ZnO nanoparticles on linear optical properties was studied in the PS lattice. The obtained results indicate that, the refractive index has been increased while the energy gap decreased with increasing ZnO nanoparticles contents. The improving of mechanical properties of ZnO/PS nanocomposite is verified due to the addition of ZnO nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sudhakaran, Allwin, Ashwin Sudhakaran, and E. Siva Senthil. "Study of Bandgap Energy of Novel Nanocomposite." International Journal of Recent Technology and Engineering (IJRTE) 10, no. 4 (November 30, 2021): 171–76. http://dx.doi.org/10.35940/ijrte.d6607.1110421.

Повний текст джерела
Анотація:
In this novel work, we have studied the optical properties of CuBaM-CZFO nanocomposites. (Cu0.5Ba0.5Fe12O19)1-x/ (Co0.6Zn0.4 Fe2O4) x [where x=0.1,0.2] nanocomposites were synthesized individually by sol-gel citrate method and then made into nanocomposites by physical mixing technique. Further characterization over their structural, morphological and optical properties were carried out in detail. With the help of UV analysis, the optical properties such as, the band gap energy was discovered which is found using Tauc’s plot. The bandgap energy is 2.6503eV for CuBaM-CZFO 90-10 which is lesser than CuBaM-CZFO 80-20 (2.8456eV). The structural, morphological and optical properties of novel CuBaM-CZFO nanocomposite are reported and compared with, both among themselves and from the literature review.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Murugadoss, G., M. Rajesh Kumar, R. Jothi Ramalingam, Hamad Al-Lohedan, A. Ramesh Babu, A. Kathalingam, and Ahmed M. Tawfeek. "Synthesis and study on optical properties of CeO2-Mg(OH)2 and inverted Mg(OH)2-CeO2 nanocomposites." Digest Journal of Nanomaterials and Biostructures 16, no. 4 (December 2021): 1427–32. http://dx.doi.org/10.15251/djnb.2021.164.1427.

Повний текст джерела
Анотація:
Well-crystalline CeO2-Mg(OH)2 and inverted Mg(OH)2-CeO2 nanocomposites were successfully synthesized by a facile ‘one-pot’ chemical precipitation method at low temperature. The crystal structure, morphology and optical properties of the CeO2- Mg(OH)2 and inverted Mg(OH)2-CeO2 nanocomposites were investigated using X-ray diffraction, TEM, FTIR, UV-vis absorption and PL spectrometer. The photoluminescence study revealed visible light emission for the nanocomposite. Interestingly, significant red shift observed for Mg(OH)2-CeO2 nanocomposites. The optical tuning nanocomposites can be used for the optoelectronic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Optical Properties - Nanocomposites"

1

Van, Sickle Austin Reed. "Temperature Dependent Optical Properties of Silicon Quantum Dot/Polymer Nanocomposites." Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26619.

Повний текст джерела
Анотація:
The photoluminescent properties of silicon quantum dots embedded in a stabilizing polymer matrix are relevant to a number of potential applications of these unique nanomaterials such as drug delivery, temperature sensing, and photovoltaics. Aspects of how these photoluminescent properties change with respect to variations in such parameters as excitation intensity, polymer interactions, particle size and particle polydispersity are investigated here. Improving the photostability and understanding the nature of how this is achieved will be critical for realizing the potential of silicon quantum dots in a number of applications. Improvements in photoluminescent stability related to fluorescence intermittency, radiative lifetime, emitted intensity, and wavelength shifts are shown to be due to decreased exposure to oxygen, increased particle packing, decreased temperature, and increased monodispersity of the quantum dots.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

COLOMBO, ANNALISA. "Synthesis and characterization of TiO2 polymeric nanocomposites with tailorable optical properties." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28632.

Повний текст джерела
Анотація:
Main aim of this work was the fabrication and characterization of polymeric TiO2 hybrid nanocomposites. When dispersed at the nanoscale level, TiO2 can tune the optical properties of the polymeric matrix, such as the UV absorption and the increase of refractive index, preserving the transparency in the visible and the flexibility of the polymer. TiO2 nanopaticles were modified on the surface with different molecules; they were then dispersed in MMA and polymerized in bulk, in order to obtain optically transparent TiO2/Poly-methylmethacrylate (PMMA) sheets. The application of these objects was in the solid-state lighting field, where the nanoparticles play the role of light diffusers according to Rayleigh Scattering. Films based on poly 2-ethyl-2-oxazoline (PEOX) and TiO2 nanoparticles with concentrations up to 44 % in weight were also prepared by casting from water solutions. Nanocomposites films remained highly transparent in the visible, and absorbed UV radiation up to the proximity of the visible range. The refractive indices of the films raised from about 1.52 to 1.65 with increasing of TiO2 concentration. The good optical properties and the solubility in water of these materials could allow their application in the paint and coating industry, and in the field of conservation of cultural heritage as consolidants or varnishes of paintings.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

MINNAI, CHLOE'. "OPTICAL AND ELECTRICAL PROPERTIES OF METAL POLYMER NANOCOMPOSITES FABRICATED WITH SUPERSONIC CLUSTER BEAM IMPLANTATION." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/637068.

Повний текст джерела
Анотація:
Clusters are aggregates composed of a countable number of atoms or molecules, starting with the dimer and reaching, with a vaguely defined upper bound of several hundred thousand atoms, into that interesting size range. Clusters have properties that are different from both atoms and bulk materials as in these small aggregates the surface-to-volume ratio is very large and hence the surface atoms, play a dominant role compared to the bulk ones. By assembling preformed clusters, one can build nanostructured materials. These can be divided in two main categories: cluster assembled films and nanocomposites. In the former case nanoparticles are deposited on a substrate in the latter they are incorporated in a matrix, a polymer for instance. Nanostructured materials offer exciting pathway for the construction of macroscopic materials with designer-specified optical, electrical, and catalytic properties which reflect the ones of their building blocks. The object of this thesis is the study of the optical and electrical properties of metal-polymer nanocomposites (MPNs) in response to mechanical deformation. Reflectance of MPNs is also exploited to develop reflective and bendable diffracting gratings which can be adapted to concave surfaces in order to add focusing power to the diffracting one. A further study regards the evolution of the electrical resistance during the growing of the nanostructured materials on different substrates. Then, the electrical properties of the systems in response to a voltage applied are explored, to find if peculiar phenomena such as resistance switching could occur. Recipes to fabricate robust and reproducible devices which exhibit controllable resistance switching were developed, both for cluster-assembled thin films and MPNs; in this latter case the possibility of controlling the switching activity with mechanical bending is demonstrated as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Takele, Haile [Verfasser]. "Optical and electrical properties of metal-polymer nanocomposites prepared by vapor-phase co-evaporation / Haile Takele." Kiel : Universitätsbibliothek Kiel, 2009. http://d-nb.info/1019810459/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arlindo, Elen Poliani da Silva [UNESP]. "Estudo das propriedades elétricas e ópticas de nanocompósitos transparentes e condutores." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/91968.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:25:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-18Bitstream added on 2014-06-13T18:53:39Z : No. of bitstreams: 1 arlindo_eps_me_ilha.pdf: 3403830 bytes, checksum: 35e9bb51a7710370f78852b7519f78ec (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nanocompósitos são materiais que combinam duas (ou mais) fases sólidas, uma das quais deve possuir dimensões nanométricas, que pode reunir em um único material várias propriedades melhoradas para uma dada aplicação e, portanto, podem permitir a coexistência de propriedades tradicionalmente antagônicas como, transparência e condutividade. O presente trabalho teve como objetivo a obtenção de um nanocompósito polimérico transparente e condutor de polimetilmetacrilato – PMMA com nanofitas do sistema Indium Tin Oxide – ITO. Para isto primeiramente estudou-se a influência da temperatura na síntese das nanoestruturas de ITO e depois de obtida a temperatura de síntese que proporcionou o crescimento de nanofitas de ITO com maior condutividade e maior transparência no espectro visível, estudou-se a influência da inserção destas nanofitas nas propriedades ópticas e elétricas de filmes nanocompósitos de PMMA. Como as nanofitas obtidas são emaranhadas, para a obtenção do nanocompósito foi realizada uma separação prévia das mesmas utilizando duas dispersões distintas: sendo a primeira em um ultrasom convencional e a segunda em uma ponta ultrasônica. Depois de dispersas, as nanofitas foram misturadas ao PMMA comercial dissolvido em concentrações mássicas de 1%, 2%, 5% e 10% de nanofitas. As soluções foram então depositadas sobre substrato de vidro e, depois de secos, os filmes foram destacados. As caracterizações ópticas mostraram que a transmitância no espectro visível dos filmes diminui em função do aumento da quantidade de nanofitas no compósito. Neste estudo, as caracterizações elétricas mostraram que ocorreu percolação das nanofitas no polímero após a inserção de 5% em massa de nanofitas. As imagens de MET para os filmes corroboraram os resultados previstos pelas caracterizações elétricas. Os filmes...
Nanocomposites are materials which have two or more solid phases, and one of these phases should be in nano-sized scale range. These materials can have several properties increased for special application and it is possible to obtain composites with traditionally antagonistic combinations of properties, such as transparence in the visible range of light and good conductivity. The main goal of this work is obtain a transparent and conductive polymer-based nanocomposite using polymethylmethacrylate – PMMA and ITO (Indium Tin Oxide) nanobelts. To reach this goal it was first studied the influence of temperature on the synthesis of nanostructured ITO. Once the temperature of synthesis was optimized to ensure the growth of ITO nanobelts with both good conductivity and good transparency in the visible spectrum, we studied the influence of ITO nanobelts on the electrical and optical properties of nanocomposites of PMMA. Because the synthesized nanobelts are entangled each other, to obtain the composite it was realized a separation of them using two different ways; first using a conventional ultrasound and after an ultrasonic tip. Then, nanobelts were mixed with commercial PMMA dissolved in THF 10% in mass concentrations of 1%, 2%, 5% and 10%. So, the solution was deposited over a glass substrate by casting. The results showed that films transmittance in visible range decreases by increasing the amount of nanobelts. The electrical characterization showed that percolation occurred after 5%wt of filler. TEM images of composites corroborate the results provided by the electrical measures. The films prepared using both dispersions had the same transmittance in the visible spectrum, despite of the films obtained by dispersing the nanobelts in ultrasonic tip had a lower electrical resistance. Thus it can be concluded that the dispersion by ultrasonic... (Summary complete electronic access click below)
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kochergin, Vladimir [Verfasser]. "Optical properties of metamaterials based on porous semiconductors and nanocomposites : theoretical considerations and experiments / Vladimir Yevgenyevich Kochergin." Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1020005343/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Arlindo, Elen Poliani da Silva. "Estudo das propriedades elétricas e ópticas de nanocompósitos transparentes e condutores /." Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/91968.

Повний текст джерела
Анотація:
Orientador: Marcelo Ornaghi Orlandi
Banca: Walter Katsumi Sakamoto
Banca: Emerson Rodrigues de Camargo
Resumo: Nanocompósitos são materiais que combinam duas (ou mais) fases sólidas, uma das quais deve possuir dimensões nanométricas, que pode reunir em um único material várias propriedades melhoradas para uma dada aplicação e, portanto, podem permitir a coexistência de propriedades tradicionalmente antagônicas como, transparência e condutividade. O presente trabalho teve como objetivo a obtenção de um nanocompósito polimérico transparente e condutor de polimetilmetacrilato - PMMA com nanofitas do sistema Indium Tin Oxide - ITO. Para isto primeiramente estudou-se a influência da temperatura na síntese das nanoestruturas de ITO e depois de obtida a temperatura de síntese que proporcionou o crescimento de nanofitas de ITO com maior condutividade e maior transparência no espectro visível, estudou-se a influência da inserção destas nanofitas nas propriedades ópticas e elétricas de filmes nanocompósitos de PMMA. Como as nanofitas obtidas são emaranhadas, para a obtenção do nanocompósito foi realizada uma separação prévia das mesmas utilizando duas dispersões distintas: sendo a primeira em um ultrasom convencional e a segunda em uma ponta ultrasônica. Depois de dispersas, as nanofitas foram misturadas ao PMMA comercial dissolvido em concentrações mássicas de 1%, 2%, 5% e 10% de nanofitas. As soluções foram então depositadas sobre substrato de vidro e, depois de secos, os filmes foram destacados. As caracterizações ópticas mostraram que a transmitância no espectro visível dos filmes diminui em função do aumento da quantidade de nanofitas no compósito. Neste estudo, as caracterizações elétricas mostraram que ocorreu percolação das nanofitas no polímero após a inserção de 5% em massa de nanofitas. As imagens de MET para os filmes corroboraram os resultados previstos pelas caracterizações elétricas. Os filmes... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Nanocomposites are materials which have two or more solid phases, and one of these phases should be in nano-sized scale range. These materials can have several properties increased for special application and it is possible to obtain composites with traditionally antagonistic combinations of properties, such as transparence in the visible range of light and good conductivity. The main goal of this work is obtain a transparent and conductive polymer-based nanocomposite using polymethylmethacrylate - PMMA and ITO (Indium Tin Oxide) nanobelts. To reach this goal it was first studied the influence of temperature on the synthesis of nanostructured ITO. Once the temperature of synthesis was optimized to ensure the growth of ITO nanobelts with both good conductivity and good transparency in the visible spectrum, we studied the influence of ITO nanobelts on the electrical and optical properties of nanocomposites of PMMA. Because the synthesized nanobelts are entangled each other, to obtain the composite it was realized a separation of them using two different ways; first using a conventional ultrasound and after an ultrasonic tip. Then, nanobelts were mixed with commercial PMMA dissolved in THF 10% in mass concentrations of 1%, 2%, 5% and 10%. So, the solution was deposited over a glass substrate by casting. The results showed that films transmittance in visible range decreases by increasing the amount of nanobelts. The electrical characterization showed that percolation occurred after 5%wt of filler. TEM images of composites corroborate the results provided by the electrical measures. The films prepared using both dispersions had the same transmittance in the visible spectrum, despite of the films obtained by dispersing the nanobelts in ultrasonic tip had a lower electrical resistance. Thus it can be concluded that the dispersion by ultrasonic... (Summary complete electronic access click below)
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matsumura, Masashi. "Synthesis, electrical properties, and optical characterization of hybrid zinc oxide/polymer thin films and nanostructures." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2009r/matsumura.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007.
Title from PDF t.p. (viewed Feb. 3, 2010). Additional advisors: Derrick R. Dean, Sergey B. Mirov, Sergey Vyazovkin, Mary Ellen Zvanut. Includes bibliographical references (p. 122-145).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chamorro, Coral William. "Microstructure, chemistry and optical properties in ZnO and ZnO-Au nanocomposite thin films grown by DC-reactive magnetron co-sputtering." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0253/document.

Повний текст джерела
Анотація:
Les matériaux composites peuvent présenter des propriétés qu'aucun des composants individuels ne présente. En outre, à l'échelle du nanomètre les nanocomposites peuvent présenter de nouvelles propriétés par rapport à l'état massif ou à des macrocomposites des mêmes composants en raison d’effets de confinement et d’effets quantiques liés à la taille. Les nanocomposites semi-conducteur/métal sont très intéressants en raison de leurs uniques propriétés catalytiques et opto-électroniques et la possibilité de les ajuster facilement. Ce travail de thèse étudie les interactions spécifiques et les propriétés physiques qui se manifestent dans les films minces de ZnO et nanocomposites ZnO-Au synthétisés par pulvérisation magnétron réactive continue. Premièrement, il est observé qu’il est possible d'ajuster les propriétés microstructurales et optiques des couches de ZnO en réglant les paramètres expérimentaux. La croissance épitaxiale de ZnO sur saphir a été réalisée pour la première fois dans des conditions riches en oxygène sans assistance thermique. En outre, une étude des propriétés optiques met en évidence la relation étroite entre les propriétés optiques et de la chimie des défauts dans les couches minces de ZnO. Un modèle a été proposé pour expliquer la grande dispersion des valeurs de gap rencontrées dans la littérature. Deuxièmement, il a été possible de révéler l'influence profonde de l'incorporation de l'or dans la matrice de ZnO sur des propriétés importantes dans des films nanocomposites. En outre, la présence de défauts donneurs (accepteurs) au sein de la matrice ZnO se permet de réduire (oxyder) les nanoparticules d’or. Ce travail de recherche contribue à une meilleure compréhension des nanocomposites semi-conducteurs/métal et révèle le rôle important de l'état de la matrice semi-conductrice et de la surface des particules pour les propriétés finales du matériau
Composite materials can exhibit properties that none of the individual components show. Moreover, composites at the nanoscale can present new properties compared to the bulk state or to macro-composites due to confinement and quantum size effects. The semiconductor/metal nanocomposites are highly interesting due to their unique catalytic and optoelectronic properties and the possibility to tune them easily. This PhD work gives insight into the specific interactions and resulting physical properties occurring in ZnO and ZnO-Au nanocomposite films grown by reactive DC magnetron sputtering. The results can be summarized in two points: First, it was possible to tune the microstructural and optical properties of ZnO. Epitaxial growth of ZnO onto sapphire was achieved for the first time in O2-rich conditions without thermal assistance. Also, a study of the optical properties highlights the close relationship between the bandgap energy (E_g ) and the defect chemistry in ZnO films. A model was proposed to explain the large scatter of the E_g values reported in the literature. Second, the deep influence of the incorporation of gold into the ZnO matrix on important material properties was revealed. Moreover, the presence of donor (acceptor) defects in the matrix is found to give rise to the reduction (oxidation) of the Au nanoparticles. This research work contributes to a better understanding of semiconductor/metal nanocomposites revealing the key role of the state of the semiconductor matrix
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Esteves, Ana Catarina de Carvalho. "Nanocompósitos de matriz polimérica do tipo SIO2/ polímero e Cds/ Polímero." Master's thesis, Universidade de Aveiro, 2002. http://hdl.handle.net/10773/21907.

Повний текст джерела
Анотація:
Mestrado em Ciência e Engenharia de Materiais
O principal objectivo desta dissertação foi estudar novas perspectivas na preparação de nanocompósitos de matriz polimérica, através da síntese e caracterização de nanomateriais do tipo SiO2/ polímero e CdS/ polímero. O primeiro capítulo consiste numa revisão bibliográfica, com destaque para os principais tópicos discutidos ao longo da tese. São efectuadas algumas considerações sobre a utilização de nanopartículas inorgânicas como cargas, e sobre os aspectos mais relevantes da aplicação de polímeros como matrizes. São ainda descritas, algumas estratégias utilizadas para compatibilizar estes componentes. A revisão é concluída com uma breve descrição das metodologias aplicadas na preparação de nanocompósitos de matriz polimérica. No segundo capítulo apresenta-se a síntese e caracterização das cargas inorgânicas. Seguindo métodos descritos na literatura, foram preparadas nanopartículas de SiO2, esféricas e sob a forma de fibras ocas, nanocristais de CdS e compósitos inorgânicos do tipo SiO2@CdS. Estes últimos, foram sujeitos a um tratamento superficial orgânico com TOPO e ainda com SiO2. Para os materiais tratados com TOPO verificou-se uma melhoria das suas propriedades ópticas, nomeadamente ao nível da fotoluminescência à temperatura ambiente. No terceiro e quarto capítulos, são apresentados os nanocompósitos do tipo SiO2/ polímero, que foram sintetizados por polimerização in situ de matrizes semicristalinas (poliamidas e poliuretanos), e amorfas (poli(estireno)). A sua caracterização foi efectuada por espectroscopia de IV, SEM, TEM, TGA e DSC. Os nanocompósitos de matriz semicristalina foram preparados por polimerização por etapas. No caso das poliamidas, foi investigada a influência das cargas de SiO2 com diferentes morfologias e tratamentos de superfície, no processos de fusão e cristalização da matriz. Os materiais de matriz amorfa foram preparados por polimerização radicalar em emulsão e dispersão. Neste caso o estudo incidiu sobre a morfologia das partículas dos nanocompósitos, nas possíveis condições experimentais que a determinam e na influência destas sobre as propriedades térmicas do nanocompósito. Por fim descreve-se no quinto capítulo a síntese e caracterização dos nanocompósitos do tipo CdS/ polímero. Estes materiais foram preparados por polimerização radicalar em solução, na presença de nanocristais de CdS, e compósitos inorgânicos do tipo SiO2@CdS. A inserção das cargas na matriz promoveu as suas propriedades de fotoluminescência à temperatura ambiente. Foram ainda avaliadas as propriedades térmicas de algumas amostras representativas. Neste trabalho foram preparados uma série de novos nanocompósitos de matriz polimérica, que fazem antever futuras aplicações tecnológicas. Foram ainda estabelecidos novos caminhos para a compreensão dos mecanismos de formação de materiais híbridos, e das interacções que ocorrem ao nível das interfaces de natureza orgânica/ inorgânica.
The aim of this thesis was to study new methods for the preparation of polymer based nanocomposites, through the synthesis and characterisation of SiO2/polymer and CdS/ polymer nanomaterials. The first chapter consists in an introduction to the aim topics that are discussed in the thesis as well as a literature review. Some considerations are made regarding the use of inorganic nanoparticles as fillers, and to the methods used to modify the inorganic materials surface in order to make them more compatible with the organic nature of polymeric matrices. In this introduction some relevant aspects of the use of polymers as matrices are reported, and a brief review of the polymerisation methods to be used in the nanocomposites preparation is given. The second chapter is devoted to the preparation and characterisation of the fillers. Following methods previously described on the literature, SiO2 nanoparticles with spherical and hollow fibres morphologies, CdS nanocristalites and SiO2@CdS inorganic composites were prepared. The last were organically treated with TOPO and also with SiO2. It was concluded that the TOPO capping results in improved room temperature photoluminescence properties. In the third and fourth chapters, the synthesis and characterisation of SiO2/ polymer nanocomposites is discussed. Using several in situ polymerisation techniques semi-crystalline (polyurethanes and polyamides) and amorphous (poly(styrene)) matrices were prepared. The materials were characterised by FTIR spectroscopy, TEM and SEM, TGA and DSC analysis. The semicrystalline polymeric matrix nanocomposites were prepared by steppolymerisation. In the case of the polyamide based nanocomposites the influence of the SIO2 nanoparticles on the melting and crystallization behaviour of the matrices is discussed. As regards the amorphous matrix nanocomposites these were prepared by radical emulsion and dispersion polymerisation. The morphology of the nanocomposite particles is discussed in light of changes in experimental conditions, and its possible influence on thermal properties. Finally, the chapter five is concerned with CdS/ polymer nanocomposites prepared by in situ polymerisation in the presence of CdS nanocrystals, and SiO2@CdS inorganic composites. TOPO capping results in higher affinity of the fillers to the matrix, and its insertion on the matrices promotes their optical properties, namely room temperature photoluminescence. The thermal properties of some representative samples were also studied. In this work a wide range of novel polymer based nanocomposites were prepared. This study showed that nanomaterials have unique properties that can anticipate potential technologic applications. Furthermore, new routes have been opened to the understanding of the mechanisms of nanocomposites formation, as well as the nature of interactions between organic/ inorganic interfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Optical Properties - Nanocomposites"

1

N, Cartwright Alexander, Materials Research Society, Materials Research Society Meeting, and Symposium on Organic and Nanocomposite Optical Materials (2004 : Boston, Mass.), eds. Organic and nanocomposite optical materials: Symposium held November 28-December 3, 2004, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Novel Nanocomposites: Optical, Electrical, Mechanical and Surface Related Properties. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-2248-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ayyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications [Volume 2]. Elsevier Science & Technology, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ayyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications, Volume 2. Elsevier Science & Technology, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nikl, Martin. Nanocomposite, Ceramic, and Thin Film Scintillators. Jenny Stanford Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nikl, Martin. Nanocomposite, Ceramic, and Thin Film Scintillators. Jenny Stanford Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nanocomposite, Ceramic and Thin Film Scintillators. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Society, Materials Research. Organic and Nanocomposite Optical Materials: Symposium Held November 28-December 3, 2004, Boston, Massachusetts, U.S.A. Materials Research Society, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Prakash Rai, Dibya, ed. Advanced Materials and Nano Systems: Theory and Experiment (Part-1). BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150507451220101.

Повний текст джерела
Анотація:
The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind. Advanced Materials and Nanosystems: Theory and Experiment cover several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry, and applied areas of science like materials science, chemical engineering, and electronics. This part covers 12 topics in these areas: - Carbon and boron nitride nanostructures for hydrogen storage applications - Nanomaterials for retinal implants - Materials for rechargeable battery electrodes - Cost-effective catalysts for ammonia production - The role of nanocomposites in environmental remediation - Optical analysis of organic and inorganic components - Metal-oxide nanoparticles - Mechanical analysis of orthopedic implants - Advanced materials and nanosystems for catalysis, sensing, and wastewater treatment - Topological Nanostructures - Hollow nanostructures
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Optical Properties - Nanocomposites"

1

Tomar, Richa, N. B. Singh, and N. P. Singh. "Optical Properties of Nanocomposite Materials." In Nanocomposites, 155–85. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003314479-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O’Connor, Timothy, and Mikhail Zamkov. "Optical Properties of Nanocomposites." In UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization, 485–529. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27594-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roppolo, Ignazio, Marco Sangermano, and Alessandro Chiolerio. "Optical Properties of Polymer Nanocomposites." In Functional and Physical Properties of Polymer Nanocomposites, 139–57. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118542316.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Das, Poushali, Syed Rahin Ahmed, Seshasai Srinivasan, and Amin Reza Rajabzadeh. "Optical Properties of Quantum Dots." In Quantum Dots and Polymer Nanocomposites, 69–85. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003266518-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Arulmurugan, B., G. Kausalya Sasikumar, and L. Rajeshkumar. "Nanostructured Metals: Optical, Electrical, and Mechanical Properties." In Mechanics of Nanomaterials and Polymer Nanocomposites, 69–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2352-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, T. Sujin Jeba, and Muthu Arumugam. "Optical Properties of Magnetic Nanoalloys and Nanocomposites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 547–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stalmashonak, Andrei, Gerhard Seifert, and Amin Abdolvand. "Optical Properties of Nanocomposites Containing Metal Nanoparticles." In SpringerBriefs in Physics, 5–15. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00437-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kumar, T. Sujin Jeba, and Muthu Arumugam. "Optical Properties of Magnetic Nanoalloys and Nanocomposites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_18-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sanchez, Clément, Bénédicte Lebeau, Frédéric Chaput, and Jean-Pierre Boilot. "Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites." In Functional Hybrid Materials, 122–71. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hore, Michael J. A. "Predicting the Optical and Electrical Properties of Polymer Nanocomposites." In Theory and Modeling of Polymer Nanocomposites, 259–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60443-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Optical Properties - Nanocomposites"

1

Popov, Ivan D., Yulia V. Kuznetsova, Alexander A. Sergeev, Svetlana V. Rempel, and Andrey A. Rempel. "Optical properties of CdS-glass nanocomposites." In ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING: FROM THEORY TO APPLICATIONS: Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bloemer, Mark J., and Joseph W. Haus. "Polarizing properties of silver/glass nanocomposites." In Optical Science, Engineering and Instrumentation '97. SPIE, 1997. http://dx.doi.org/10.1117/12.278985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Patel, Mitesh H., Tapas K. Chaudhuri, Vaibhav K. Patel, T. Shripathi, and U. Deshpande. "Optical properties of PbS/PVP nanocomposites films." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Colombo, Annalisa, and Roberto Simonutti. "Polymer based nanocomposites with tailorable optical properties." In SPIE NanoScience + Engineering, edited by Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg, and Taleb Mokari. SPIE, 2014. http://dx.doi.org/10.1117/12.2062388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gan'shina, E. A., M. Yu Kochneva, P. N. Scherbak, K. Aimuta, and M. Inoue. "Magneto-optical properties of Co-based nanocomposites." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Du, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso, and K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.

Повний текст джерела
Анотація:
The combination of organic and inorganic materials forms unique composites with properties that neither of the two components provides. Such functional materials are considered innovative advanced materials that enable applications in many fields, including optics, electronics, separation membranes, protective coatings, catalysis, sensors, biotechnology, and others. The challenge of incorporating inorganic particles into an organic matrix still remains today, especially for nanoparticles, due to the difficulties in their dispersion, de-agglomeration and surface modification. NanoGram has pioneered a nanomaterials synthesis technology based on laser pyrolysis process to produce a wide range of crystalline nanomaterials including complex metal oxides, nitrides and sulfides and with precisely controlled compositions, crystal structure, particle size and size distributions. In this paper we will present some examples of nanocomposites prepared using different polymer host materials and phase-pure rutile TiO2. The inorganic component can be dispersed at higher 50 weight percent into the polymer matrix. We have demonstrated a 0.2–0.3 increase of refractive index in the composite over that of host polymer while maintaining high optical transparency. These nanocomposites can be used in a range of applications or optical devices, such as planar waveguides, flat panel displays, optical sensors, high-brightness LEDs, diffraction gratings and optical data storage. Experimental data on TiO2 nanoparticle characterization, dispersion technique, surface modification and will be presented and nanocomposite properties discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Enomoto, Hiroyuki, Masayuki Kawaguchi, Nipaka Sukpirom, and Michael M. Lerner. "Electrical properties of polymer/ MX 2 nanocomposites." In International Symposium on Optical Science and Technology, edited by Naomi J. Halas. SPIE, 2002. http://dx.doi.org/10.1117/12.450467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tseng, Justine Y., Chia-Yen Li, T. Takada, C. L. Lechner, and John D. Mackenzie. "Optical properties of metal-cluster-doped ORMOSIL nanocomposites." In San Diego '92, edited by John D. Mackenzie. SPIE, 1992. http://dx.doi.org/10.1117/12.132054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Manhas, Sandeep Singh, Priyanka Rehan, Akashdeep Kaur, Aman Deep Acharya, and Bhawna Sarwan. "Evaluation of optical properties of polypyrrole: Polystyrene nanocomposites." In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098591.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abd, Mohammed T., Zaid T. Khodair, J. Al-Zanganawee, Hadeel N. Mekhdad, and Asaad A. Kamil. "Improvement of optical properties of ZnO/ PVA nanocomposites." In 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0103415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Optical Properties - Nanocomposites"

1

Hubert, C. A., J. A. Lubin, W. H. Yang, and T. E. Huber. Synthesis and Optical Properties of Dense Semiconductor-Dielectric Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ramos, Nuno M. M., Joana Maia, Rita Carvalho Veloso, Andrea Resende Souza, Catarina Dias, and João Ventura. Envelope systems with high solar reflectance by the inclusion of nanoparticles – an overview of the EnReflect Project. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541621982.

Повний текст джерела
Анотація:
High reflectance materials constitute an attractive idea to reduce cooling loads, which is crucial for attaining the Nearly Zero Energy Buildings goal, also presenting the benefit of broadening the range of colours applicable in building facades. The EnReflect project intended to re-design envelope systems by increasing their solar reflectance through nanotechnology. The main idea was to produce novel nanomaterial-based coatings with high near-infrared (NIR) reflectance by tuning their optical properties and testing their compatibility with typical insulation technologies such as ETICS. As such, this project focused on the synthesis of nanoparticles with improved NIR reflectance, the evaluation of the hygrothermal-mechanical behaviour of thermal insulation systems with the application of the improved coating solutions, the characterization of the more relevant material properties and the durability assessment. One of the main achievements was the development of a facile synthesis of a nanocomposite with improved performance in the NIR region that allowed the reflectance improvement of a dark-finishing coating. Also, the incorporation of such nanoparticles had a positive effect on keeping their optical properties after accelerated ageing cycles. The development of numerical simulations allowed the estimation of the maximum surface temperature in Mediterranean climates under different optical parameters. The study of the hygrothermal behaviour of thermal enhanced façades led to the development of a new durability assessment methodology which contributed to closing a standardization gap.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії