Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Optical orthogonal codes (OOC).

Статті в журналах з теми "Optical orthogonal codes (OOC)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Optical orthogonal codes (OOC)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kumar, Ankit, Manisha Bharti, and Tanya Kumar. "Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA." Journal of Optical Communications 40, no. 4 (October 25, 2019): 455–62. http://dx.doi.org/10.1515/joc-2017-0112.

Повний текст джерела
Анотація:
Abstract In this paper, comparative analysis of code performance of dissimilar optical 2-D codes from Optical Orthogonal code family has been studied. Optical 2-D codes considered from OOC family are (n,w,1,2) OOC, SPS/OOC, OCFHC/OOC, EPC/OCS and VWOOC. By utilizing hard limiting error probability (HEP) equations and combinatorial method, code performance of each considered code is evaluated in detail. On the basis of detailed comparative performance analysis, EPC/OCS is concluded as best performing codes among all other optical codes under consideration. EPC/OCS possesses much better correlation properties, along with lower hit probability values which are responsible for its supremacy in performance characteristics to the other OOCs considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, X. B., H. B. Huang, and L. C. Wang. "Discussion on Construction of OCDMA PON Address Code-(F,K,2) Optical Orthogonal Codes." Advanced Materials Research 216 (March 2011): 804–8. http://dx.doi.org/10.4028/www.scientific.net/amr.216.804.

Повний текст джерела
Анотація:
Optical code division multiple access (OCDMA) passive optical network (PON) can find wide applications in the next optical access network. One of its key techniques of is construction of address code. Aiming at the facts that(F,K,1) optical orthogonal code (OOC) possesses good performance but capacity is small, and number of users in OCDMA PON is not very big thereafter OOC auto-correlation or cross-correlation may not be very strict,(F,K,2) OOC can be used as address codes for OCDMA PON. In this paper, the method of constructingOOC based on block design is discussed. The algorithm of construction (F,K,2) of OOC from block design is presented and simulated; several groups of(F,K,2) OOC are gained. The results show that the algorithm has good astringency and simplicity. It can construct(F,K,2) OOC effectively. It is feasible.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Asif, Muhammad, Wuyang Zhou, Qingping Yu, Xingwang Li, and Nauman Ali Khan. "A Deterministic Construction for Jointly Designed Quasicyclic LDPC Coded-Relay Cooperation." Wireless Communications and Mobile Computing 2019 (September 26, 2019): 1–12. http://dx.doi.org/10.1155/2019/5249373.

Повний текст джерела
Анотація:
This correspondence presents a jointly designed quasicyclic (QC) low-density parity-check (LDPC) coded-relay cooperation with joint-iterative decoding in the destination node. Firstly, a design-theoretic construction of QC-LDPC codes based on a combinatoric design approach known as optical orthogonal codes (OOC) is presented. Proposed OOC-based construction gives three classes of binary QC-LDPC codes with no length-4 cycles by utilizing some known ingredients including binary matrix dispersion of elements of finite field, incidence matrices, and circulant decomposition. Secondly, the proposed OOC-based construction gives an effective method to jointly design length-4 cycles free QC-LDPC codes for coded-relay cooperation, where sum-product algorithm- (SPA-) based joint-iterative decoding is used to decode the corrupted sequences coming from the source or relay nodes in different time frames over constituent Rayleigh fading channels. Based on the theoretical analysis and simulation results, proposed QC-LDPC coded-relay cooperations outperform their competitors under same conditions over the Rayleigh fading channel with additive white Gaussian noise.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baicheva, Tsonka, and Svetlana Topalova. "Maximal (v, k, 2, 1) Optical Orthogonal Codes with k = 6 and 7 and Small Lengths." Mathematics 11, no. 11 (May 26, 2023): 2457. http://dx.doi.org/10.3390/math11112457.

Повний текст джерела
Анотація:
Optical orthogonal codes (OOCs) are used in optical code division multiple access systems to allow a large number of users to communicate simultaneously with a low error probability. The number of simultaneous users is at most as big as the number of codewords of such a code. We consider (v,k,2,1)-OOCs, namely OOCs with length v, weight k, auto-correlation 2, and cross-correlation 1. An upper bound B0(v,k,2,1) on the maximal number of codewords of such an OOC was derived in 1995. The number of codes that meet this bound, however, is very small. For k≤5, the (v,k,2,1)-OOCs have already been thoroughly studied by many authors, and new upper bounds were derived for (v,4,2,1) in 2011, and for (v,5,2,1) in 2012. In the present paper, we determine constructively the maximal size of (v,6,2,1)- and (v,7,2,1)-OOCs for v≤165 and v≤153, respectively. Using the types of the possible codewords, we calculate an upper bound B1(v,k,2,1)≤B0(v,k,2,1) on the code size of (v,6,2,1)- and (v,7,2,1)-OOCs for each length v≤720 and v≤340, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bouregaa, Mouweffeq, Mohammed El Kebir Chikh-Bled, Mohammed Debbal, Mohammed Chamse Eddine Ouadah, and Hicham Chikh-Bled. "Optical Code Division Multiple Access for FTTH system." Photonics Letters of Poland 10, no. 4 (December 31, 2018): 121. http://dx.doi.org/10.4302/plp.v10i4.861.

Повний текст джерела
Анотація:
Many multiple access techniques have been proposed and demonstrated to provide flexible solutions for FTTH network configurations. The performance of this system suffers because of the correlation properties that contribute to a high level of Multiple Access Interference (MAI), low system capacity (users), and lower transmission rate. In this paper, we have proposed Optical CDMA (OCDMA) as a configuration solution for FTTH networks to improve the performance of this type of network. Full Text: PDF References. Z. Mateusz, M. Mariusz, On cost of the uniformity in FTTH network design, Conference on Transparent Optical Networks (2017), 87-90 CrossRef CEDRIC F. LAM, Passive Optical Networks- Principles and Practice, first ed., British Library, USA, 2007. DirectLink M.K. Abdullah, W.T. P'ng, P.W. Lau, E.R. Tee, FTTH access network protection using a switch, Asia Pacific Conference on Communications (APCC), 3(2003) 1219–1222. CrossRef J. Ronnakorn, S. Napat, L. Somkiat, Design and implement of GPON-FTTH network for residential condominium, Conference on Computer Science and Software Engineering, (2017), 333-339. CrossRef M. BOUREGAA, M. CHIKH-BLED, Comparative Study of Optical Unipolar Codes for Incoherent DS-OCDMA system, International Journal of Hybrid Information Technology, 6 (2013) 225-236. CrossRef M. BOUREGAA, M. CHIKH-BLED, The performance of a DS-OCDMA system using Orthogonal Optical Codes (OOC), European Scientific Journal, 9 (2013), 322-335 CrossRef M. Iwase, Y. Ishikawa, T. Komatsu, J. Kasahara, N. Hattori, M. Miura, N. Nakamura, K. Odaka, Optical transceiver modules for gigabit Ethernet PON FTTH systems, Furukawa Review, 28 (2005) 8-10. DirectLink
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chee, Yeow Meng, Han Mao Kiah, San Ling, and Hengjia Wei. "Geometric Orthogonal Codes of Size Larger Than Optical Orthogonal Codes." IEEE Transactions on Information Theory 64, no. 4 (April 2018): 2883–95. http://dx.doi.org/10.1109/tit.2017.2788140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Murad, Mohsin, Imran A. Tasadduq, and Pablo Otero. "Coded-GFDM for Reliable Communication in Underwater Acoustic Channels." Sensors 22, no. 7 (March 30, 2022): 2639. http://dx.doi.org/10.3390/s22072639.

Повний текст джерела
Анотація:
The performance of the coded generalized frequency division multiplexing (GFDM) transceiver has been evaluated in a shallow underwater acoustic channel (UAC). Acoustic transmission is the scheme of choice for communication in UAC since radio waves suffer from absorption and light waves scatter. Although orthogonal frequency division multiplexing (OFDM) has found its ground for multicarrier acoustic underwater communication, it suffers from high peak to average power ratio (PAPR) and out of band (OOB) emissions. We propose a coded-GFDM based multicarrier system since GFDM has a higher spectral efficiency compared to a traditional OFDM system. In doing so, we assess two block codes, namely Bose, Chaudari, and Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, and several convolutional codes. We present the error performances of these codes when used with GFDM. Furthermore, we evaluate the performance of the proposed system using two equalizers: Matched Filter (MF) and Zero-Forcing (ZF). Simulation results show that among the various block coding schemes that we tested, BCH (31,6) and RS (15,3) give the best error performance. Among the convolutional codes that we tested, rate 1/4 convolutional codes give the best performance. However, the performance of BCH and RS codes is much better than the convolutional codes. Moreover, the performance of the ZF equalizer is marginally better than the MF equalizer. In conclusion, using the channel coding schemes with GFDM improves error performance manifolds thereby increasing the reliability of the GFDM system despite slightly higher complexity.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sheng Peng Wan and Yu Hu. "Two-dimensional optical CDMA differential system with prime/OOC codes." IEEE Photonics Technology Letters 13, no. 12 (December 2001): 1373–75. http://dx.doi.org/10.1109/68.969912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Argon, Cenk. "Semi-randomly constructed optical orthogonal codes." Optics Communications 282, no. 4 (February 2009): 500–503. http://dx.doi.org/10.1016/j.optcom.2008.10.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chang, Yanxun, and Ying Miao. "Constructions for optimal optical orthogonal codes." Discrete Mathematics 261, no. 1-3 (January 2003): 127–39. http://dx.doi.org/10.1016/s0012-365x(02)00464-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dai, Xuan, Lili Fang, Chuanfang Zhang, and Houjun Sun. "An Impedance-Loaded Orthogonal Frequency-Coded SAW Sensor for Passive Wireless Sensor Networks." Sensors 20, no. 7 (March 28, 2020): 1876. http://dx.doi.org/10.3390/s20071876.

Повний текст джерела
Анотація:
A passive wireless impedance-loaded orthogonal frequency-coded (OFC) surface acoustic wave (SAW) sensor for wireless sensor networks was proposed in this paper. One of the chips on OFC SAW tag is connected to an external sensor, which could cause a phase shift in the time response of the corresponding part on the SAW device. The phase shift corresponds to the sensed quantity, which could be temperature, strain, vibration, pressure, etc. The OFC SAW tag is isolated by a proper package from the direct effect of the measurand on the device’s response which could avoid the multiple measurands coupling. The simultaneous work of multiple sensors is guaranteed by orthogonal frequency coding. By processing the response based on an extended matched filter algorithm, sensing information of the specific coded OFC device can be extracted from the superimposed response of multiple independent encoded sensors. Compared to previous methods, the proposed method can produce a more flexible passive (battery-free) wireless sensor suitable for large-scale wireless sensor networks. Simulation and experimental results demonstrate the effectiveness of the sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

L. Alderson, T., and K. E. Mellinger. "Geometric constructions of optimal optical orthogonal codes." Advances in Mathematics of Communications 2, no. 4 (2008): 451–67. http://dx.doi.org/10.3934/amc.2008.2.451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Buratti, Marco. "On silver and golden optical orthogonal codes." Art of Discrete and Applied Mathematics 1, no. 2 (August 3, 2018): #P2.02. http://dx.doi.org/10.26493/2590-9770.1236.ce4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Chung, F. R. K., J. A. Salehi, and V. K. Wei. "Optical orthogonal codes: design, analysis and applications." IEEE Transactions on Information Theory 35, no. 3 (May 1989): 595–604. http://dx.doi.org/10.1109/18.30982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ji, Lijun, Baokun Ding, Xin Wang, and Gennian Ge. "Asymptotically Optimal Optical Orthogonal Signature Pattern Codes." IEEE Transactions on Information Theory 64, no. 7 (July 2018): 5419–31. http://dx.doi.org/10.1109/tit.2017.2787593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ssang-Soo Lee and Seung-Woo Seo. "New construction of multiwavelength optical orthogonal codes." IEEE Transactions on Communications 50, no. 12 (December 2002): 2003–8. http://dx.doi.org/10.1109/tcomm.2002.806504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ding, C., and C. Xing. "Cyclotomic Optical Orthogonal Codes of Composite Lengths." IEEE Transactions on Communications 52, no. 2 (February 2004): 263–68. http://dx.doi.org/10.1109/tcomm.2003.822724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yi Xian Yang, Xin Xin Niu, and Cheng Qian Xu. "Counterexample of truncated Costas optical orthogonal codes." IEEE Transactions on Communications 45, no. 6 (June 1997): 640–43. http://dx.doi.org/10.1109/26.592598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Chi-Shun Weng and Jingshown Wu. "Optical orthogonal codes with nonideal cross correlation." Journal of Lightwave Technology 19, no. 12 (2001): 1856–63. http://dx.doi.org/10.1109/50.971677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Yin, Jianxing. "Some combinatorial constructions for optical orthogonal codes." Discrete Mathematics 185, no. 1-3 (April 1998): 201–19. http://dx.doi.org/10.1016/s0012-365x(97)00172-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fuji-Hara, Ryoh, Ying Miao, and Jianxing Yin. "Optimal (9v, 4, 1) Optical Orthogonal Codes." SIAM Journal on Discrete Mathematics 14, no. 2 (January 2001): 256–66. http://dx.doi.org/10.1137/s0895480100377234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Chang, Yanxun, and L. Ji. "Optimal (4up, 5, 1) optical orthogonal codes." Journal of Combinatorial Designs 12, no. 5 (2004): 346–61. http://dx.doi.org/10.1002/jcd.20011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jazayerifar, M., and J. A. Salehi. "Atmospheric optical CDMA communication systems via optical orthogonal codes." IEEE Transactions on Communications 54, no. 9 (September 2006): 1614–23. http://dx.doi.org/10.1109/tcomm.2006.881245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Tarhuni, N. G., T. O. Korhonen, E. Mutafungwa, and M. S. Elmusrati. "Multiclass optical orthogonal codes for multiservice optical CDMA networks." Journal of Lightwave Technology 24, no. 2 (February 2006): 694–704. http://dx.doi.org/10.1109/jlt.2005.862439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lin, Yu-Chei, Guu-Chang Yang, Cheng-Yuan Chang, and Wing C. Kwong. "Construction of Optimal 2D Optical Codes Using (n,w,2,2) Optical Orthogonal Codes." IEEE Transactions on Communications 59, no. 1 (January 2011): 194–200. http://dx.doi.org/10.1109/tcomm.2010.102910.100035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Xu, Dandan, and Haitao Cao. "Family of Optimal Multiple-Weight Optical Orthogonal Codes for Fiber-Optic Networks." Computational Intelligence and Neuroscience 2022 (May 23, 2022): 1–11. http://dx.doi.org/10.1155/2022/2499606.

Повний текст джерела
Анотація:
Optical orthogonal codes (OOCs) were designed for multimedia optical CDMA systems with quality of service requirements in optical fiber networks. Two-dimensional (2-D) multiple-weight optical orthogonal codes have been invested as they can overcome the drawbacks of nonlinear effects in large spreading sequences. In this paper, we reveal the combinatorial properties of optimal 2-D OOCs and focus our attention on the constructions for a family of optimal 2-D multiple-weight optical orthogonal codes by combinatorial methods, such as incomplete difference matrix, h-perfect cyclic packing, and skew starter. In particular, an improved construction of skew starters with multiple weights is also proposed to solve the existence of optimal multiple-weight optical orthogonal codes. Our numerical examples demonstrate that the proposed construction is very helpful for optimizing the utilization of optical network effectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

SHEN, Lin-Zhi. "New Asymptotically Optimal Optical Orthogonal Signature Pattern Codes from Cyclic Codes." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E102.A, no. 10 (October 1, 2019): 1416–19. http://dx.doi.org/10.1587/transfun.e102.a.1416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fan, Cuiling, and Koji Momihara. "Unified combinatorial constructions of optimal optical orthogonal codes." Advances in Mathematics of Communications 8, no. 1 (January 2014): 53–66. http://dx.doi.org/10.3934/amc.2014.8.53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

SHEN, Lin-Zhi, and Xuan GUANG. "A Note on Two-Dimensional Optical Orthogonal Codes." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E98.A, no. 10 (2015): 2207–8. http://dx.doi.org/10.1587/transfun.e98.a.2207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wensong Chu and S. W. Golomb. "A new recursive construction for optical orthogonal codes." IEEE Transactions on Information Theory 49, no. 11 (November 2003): 3072–76. http://dx.doi.org/10.1109/tit.2003.818387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Rontani, D., A. Locquet, M. Sciamanna, D. S. Citrin, and A. Uchida. "Generation of orthogonal codes with chaotic optical systems." Optics Letters 36, no. 12 (June 13, 2011): 2287. http://dx.doi.org/10.1364/ol.36.002287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chung, Jin-Ho, and Kyeongcheol Yang. "Asymptotically Optimal Optical Orthogonal Codes With New Parameters." IEEE Transactions on Information Theory 59, no. 6 (June 2013): 3999–4005. http://dx.doi.org/10.1109/tit.2013.2247092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Alderson, T. L., and Keith E. Mellinger. "Constructions of Optical Orthogonal Codes from Finite Geometry." SIAM Journal on Discrete Mathematics 21, no. 3 (January 2007): 785–93. http://dx.doi.org/10.1137/050632257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhang, J. G. "Design of nonconstant-weight strict optical orthogonal codes." Electronics Letters 41, no. 22 (2005): 1238. http://dx.doi.org/10.1049/el:20051903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Charmchi, H., and J. A. Salehi. "Outer-Product Matrix Representation of Optical Orthogonal Codes." IEEE Transactions on Communications 54, no. 6 (June 2006): 983–89. http://dx.doi.org/10.1109/tcomm.2006.876839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Neto, A. D., and E. Moschim. "New optical orthogonal codes by using diophantine equations." IEEE Latin America Transactions 3, no. 3 (July 2005): 225–32. http://dx.doi.org/10.1109/tla.2005.1642412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Xian Yang, Yi. "New enumeration results about the optical orthogonal codes." Information Processing Letters 40, no. 2 (October 1991): 85–87. http://dx.doi.org/10.1016/0020-0190(91)90014-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Alderson, T. L., and Keith E. Mellinger. "2-dimensional optical orthogonal codes from singer groups." Discrete Applied Mathematics 157, no. 14 (July 2009): 3008–19. http://dx.doi.org/10.1016/j.dam.2009.06.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhao, Hengming, Dianhua Wu, and Pingzhi Fan. "Constructions of optimal variable-weight optical orthogonal codes." Journal of Combinatorial Designs 18, no. 4 (January 22, 2010): 274–91. http://dx.doi.org/10.1002/jcd.20246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Samanta, Supriti, Goutam K. Maity, and Subhadipta Mukhopadhyay. "Implementation of Orthogonal Codes Using MZI." Micro and Nanosystems 12, no. 3 (December 1, 2020): 159–67. http://dx.doi.org/10.2174/1876402912666200211121624.

Повний текст джерела
Анотація:
Background: In Code Division Multiple Access (CDMA)/Multi-Carrier CDMA (MCCDMA), Walsh-Hadamard codes are widely used for its orthogonal characteristics, and hence, it leads to good contextual connection property. These orthogonal codes are important because of their various significant applications. Objective: To use the Mach–Zehnder Interferometer (MZI) for all-optical Walsh-Hadamard codes is implemented in this present paper. Method: The Mach–Zehnder Interferometer (MZI) is considered for the Tree architecture of Semiconductor Optical Amplifier (SOA). The second-ordered Hadamard and the inverse Hadamard matrix are constructed using SOA-MZIs. Higher-order Hadamard matrix (H4) formed by the process of Kronecker product with lower-order Hadamard matrix (H2) is also analyzed and constructed. Results: To experimentally get the result from these schemes, some design issues e,g Time delay, nonlinear phase modulation, extinction ratio, and synchronization of signals are the important issues. Lasers of wavelength 1552 nm and 1534 nm can be used as input and control signals, respectively. As the whole system is digital, intensity losses due to couplers in the interconnecting stage may not create many problems in producing the desired optical bits at the output. The simulation results were obtained by Matlab-9. Here, Hadamard H2 (2×2) matrix output beam intensity (I ≈ 108 w.m-2) for different values of inputs. Conclusion: Implementation of Walsh-Hadamard codes using MZI is explored in this paper, and experimental results show the better performance of the proposed scheme compared to recently reported methods using electronic circuits regarding the issues of versatility, reconfigurability, and compactness. The design can be used and extended for diverse applications for which Walsh-Hadamard codes are required.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kwong, W. C., and Guu-Chang Yang. "Design of multilength optical orthogonal codes for optical CDMA multimedia networks." IEEE Transactions on Communications 50, no. 8 (August 2002): 1258–65. http://dx.doi.org/10.1109/tcomm.2002.801499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Argon, Cenk, and Rüyal Ergül. "Optical CDMA via shortened optical orthogonal codes based on extended sets." Optics Communications 116, no. 4-6 (May 1995): 326–30. http://dx.doi.org/10.1016/0030-4018(95)00067-i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wen, Y. G., Y. Zhang, and L. K. Chen. "On Architecture and Limitation of Optical Multiprotocol Label Switching (MPLS) Networks Using Optical-Orthogonal-Code (OOC)/Wavelength Label." Optical Fiber Technology 8, no. 1 (January 2002): 43–70. http://dx.doi.org/10.1006/ofte.2001.0371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Yu, Huangsheng, Dianhua Wu, and Jinhua Wang. "New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes." Advances in Mathematics of Communications 10, no. 4 (November 2016): 811–23. http://dx.doi.org/10.3934/amc.2016042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Miao, Y., and R. Fuji-Hara. "Optical orthogonal codes: their bounds and new optimal constructions." IEEE Transactions on Information Theory 46, no. 7 (2000): 2396–406. http://dx.doi.org/10.1109/18.887852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ge, G., та J. Yin. "Constructions for optimal (υ, 4, 1) optical orthogonal codes". IEEE Transactions on Information Theory 47, № 7 (2001): 2998–3004. http://dx.doi.org/10.1109/18.959278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chung, H., and P. V. Kumar. "Optical orthogonal codes-new bounds and an optimal construction." IEEE Transactions on Information Theory 36, no. 4 (July 1990): 866–73. http://dx.doi.org/10.1109/18.53748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lee, S. W., and D. H. Green. "Performance analysis of optical orthogonal codes in CDMA LANs." IEE Proceedings - Communications 145, no. 4 (1998): 265. http://dx.doi.org/10.1049/ip-com:19982134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, Lidong, and Yanxun Chang. "Combinatorial Constructions of Optimal Three-Dimensional Optical Orthogonal Codes." IEEE Transactions on Information Theory 61, no. 1 (January 2015): 671–87. http://dx.doi.org/10.1109/tit.2014.2368133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Cao, Haitao, and Ruizhong Wei. "Combinatorial Constructions for Optimal Two-Dimensional Optical Orthogonal Codes." IEEE Transactions on Information Theory 55, no. 3 (March 2009): 1387–94. http://dx.doi.org/10.1109/tit.2008.2011431.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії