Статті в журналах з теми "Optical lattice clocks"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Optical lattice clocks.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Optical lattice clocks".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Oates, Christopher W., and Andrew D. Ludlow. "Optical Lattice Clocks." Optics and Photonics News 26, no. 1 (January 1, 2015): 36. http://dx.doi.org/10.1364/opn.26.1.000036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lemonde, P. "Optical lattice clocks." European Physical Journal Special Topics 172, no. 1 (June 2009): 81–96. http://dx.doi.org/10.1140/epjst/e2009-01043-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ushijima, Ichiro, Masao Takamoto, Manoj Das, Takuya Ohkubo, and Hidetoshi Katori. "Cryogenic optical lattice clocks." Nature Photonics 9, no. 3 (February 9, 2015): 185–89. http://dx.doi.org/10.1038/nphoton.2015.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Horiuchi, Noriaki. "Ever-evolving optical lattice clocks." Nature Photonics 16, no. 1 (December 20, 2021): 4–5. http://dx.doi.org/10.1038/s41566-021-00935-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Sukhjit, Jyoti, Bindiya Arora, B. K. Sahoo, and Yan-mei Yu. "Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks." Atoms 8, no. 4 (November 10, 2020): 79. http://dx.doi.org/10.3390/atoms8040079.

Повний текст джерела
Анотація:
Active clocks could provide better stabilities during initial stages of measurements over passive clocks, in which stabilities become saturated only after long-term measurements. This unique feature of an active clock has led to search for suitable candidates to construct such clocks. The other challenging task of an atomic clock is to reduce its possible systematics. A major part of the optical lattice atomic clocks based on neutral atoms are reduced by trapping atoms at the magic wavelengths of the optical lattice lasers. Keeping this in mind, we find the magic wavelengths between all possible hyperfine levels of the transitions in Rb and Cs atoms that were earlier considered to be suitable for making optical active clocks. To validate the results, we give the static dipole polarizabilities of Rb and Cs atoms using the electric dipole transition amplitudes that are used to evaluate the dynamic dipole polarizabilities and compare them with the available literature values.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Xibo, and Jun Ye. "Precision measurement and frequency metrology with ultracold atoms." National Science Review 3, no. 2 (March 15, 2016): 189–200. http://dx.doi.org/10.1093/nsr/nww013.

Повний текст джерела
Анотація:
Abstract Precision measurement and frequency metrology have pushed many scientific and technological frontiers in the field of atomic, molecular and optical physics. In this article, we provide a brief review on the recent development of optical atomic clocks, with an emphasis placed on the important inter-dependence between measurement precision and systematic effects. After presenting a general discussion on the motivation and techniques behind the development of optical lattice clocks, where the use of many atoms greatly enhances the measurement precision, we present the JILA strontium optical lattice clock as the leading system of frequency metrology with the lowest total uncertainty, and we describe other related research activities. We discuss key ingredients that have enabled the optical lattice clocks with ultracold atoms to reach the 18th digit in both precision and accuracy. Furthermore, we discuss extending the power of precision clock spectroscopy to study quantum many-body physics and to provide control for atomic quantum materials. In addition, we explore future research directions that have the potential to achieve even greater precision.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tarallo, Marco G. "Toward a quantum-enhanced strontium optical lattice clock at INRIM." EPJ Web of Conferences 230 (2020): 00011. http://dx.doi.org/10.1051/epjconf/202023000011.

Повний текст джерела
Анотація:
The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 13, no. 5 (May 6, 2011): 059501. http://dx.doi.org/10.1088/1367-2630/13/5/059501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Derevianko, Andrei, and Hidetoshi Katori. "Colloquium: Physics of optical lattice clocks." Reviews of Modern Physics 83, no. 2 (May 3, 2011): 331–47. http://dx.doi.org/10.1103/revmodphys.83.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Katori, Hidetoshi, Tetsushi Takano, and Masao Takamoto. "Optical lattice clocks and frequency comparison." Journal of Physics: Conference Series 264 (January 10, 2011): 012011. http://dx.doi.org/10.1088/1742-6596/264/1/012011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Katori, Hidetoshi. "Optical lattice clocks and quantum metrology." Nature Photonics 5, no. 4 (March 31, 2011): 203–10. http://dx.doi.org/10.1038/nphoton.2011.45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hong, Feng-Lei, and Hidetoshi Katori. "Frequency Metrology with Optical Lattice Clocks." Japanese Journal of Applied Physics 49, no. 8 (August 20, 2010): 080001. http://dx.doi.org/10.1143/jjap.49.080001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 12, no. 6 (June 28, 2010): 065026. http://dx.doi.org/10.1088/1367-2630/12/6/065026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lu Xiaotong, 卢晓同, та 常宏 Chang Hong. "光晶格原子钟研究进展". Acta Optica Sinica 42, № 3 (2022): 0327004. http://dx.doi.org/10.3788/aos202242.0327004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Horiuchi, Noriaki. "Publisher Correction: Ever-evolving optical lattice clocks." Nature Photonics 16, no. 2 (January 10, 2022): 170. http://dx.doi.org/10.1038/s41566-022-00954-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

TAKAMOTO, Masao. "Optical Lattice Clocks for Precision Frequency Metrology." Review of Laser Engineering 39, no. 11 (2011): 825–30. http://dx.doi.org/10.2184/lsj.39.825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ebisuzaki, Toshikazu, Hidetoshi Katori, Jun’ichiro Makino, Atsushi Noda, Hisaaki Shinkai, and Toru Tamagawa. "INO: Interplanetary network of optical lattice clocks." International Journal of Modern Physics D 29, no. 04 (March 28, 2019): 1940002. http://dx.doi.org/10.1142/s0218271819400029.

Повний текст джерела
Анотація:
The new technique of measuring frequency by optical lattice clocks now approaches to the relative precision of [Formula: see text]. We propose to place such precise clocks in space and to use Doppler tracking method for detecting low-frequency gravitational wave below 1[Formula: see text]Hz. Our idea is to locate three spacecrafts at one A.U. distance (say at L1, L4 and L5 of the Sun–Earth orbit), and apply the Doppler tracking method by communicating “the time” each other. Applying the current available technologies, we obtain the sensitivity for gravitational wave with third- or fourth-order improvement ([Formula: see text] or [Formula: see text] level in [Formula: see text]–[Formula: see text][Formula: see text]Hz) than that of Cassini spacecraft in 2001. This sensitivity enables us to observe black hole (BH) mergers of their mass greater than [Formula: see text] in the cosmological scale. Based on the hierarchical growth model of BHs in galaxies, we estimate the event rate of detection will be 20–50 a year. We nickname “INO” (Interplanetary Network of Optical Lattice Clocks) for this system, named after Tadataka Ino (1745–1818), a Japanese astronomer, cartographer, and geodesist.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Margolis, Helen S. "Lattice clocks embrace ytterbium." Nature Photonics 3, no. 10 (October 2009): 557–58. http://dx.doi.org/10.1038/nphoton.2009.182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Campbell, S. L., R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, et al. "A Fermi-degenerate three-dimensional optical lattice clock." Science 358, no. 6359 (October 5, 2017): 90–94. http://dx.doi.org/10.1126/science.aam5538.

Повний текст джерела
Анотація:
Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 × 1017. Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 × 10–19 in 1 hour of averaging time.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Takamoto, M., Y. Tanaka, and H. Katori. "A perspective on the future of transportable optical lattice clocks." Applied Physics Letters 120, no. 14 (April 4, 2022): 140502. http://dx.doi.org/10.1063/5.0087894.

Повний текст джерела
Анотація:
The unprecedented stability and accuracy of optical atomic clocks extend their role not only in frequency metrology but also in fundamental physics and geodesy. In particular, excellent stability of optical lattice clocks accessing a fractional uncertainty of [Formula: see text] in less than an hour opens a new avenue for chronometric leveling, which resolves a height difference of one cm in a short averaging time. However, for field use of such clocks, there remains a challenge in developing a transportable system that can operate outside the laboratory. In this Perspective, we describe transportable optical lattice clocks and discuss their future applications to chronometric leveling.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Takano, Tetsushi, Masao Takamoto, Ichiro Ushijima, Noriaki Ohmae, Tomoya Akatsuka, Atsushi Yamaguchi, Yuki Kuroishi, Hiroshi Munekane, Basara Miyahara, and Hidetoshi Katori. "Geopotential measurements with synchronously linked optical lattice clocks." Nature Photonics 10, no. 10 (August 15, 2016): 662–66. http://dx.doi.org/10.1038/nphoton.2016.159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Krämer, S., L. Ostermann, and H. Ritsch. "Optimized geometries for future generation optical lattice clocks." EPL (Europhysics Letters) 114, no. 1 (April 1, 2016): 14003. http://dx.doi.org/10.1209/0295-5075/114/14003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Meiser, D., Jun Ye, and M. J. Holland. "Spin squeezing in optical lattice clocks via lattice-based QND measurements." New Journal of Physics 10, no. 7 (July 8, 2008): 073014. http://dx.doi.org/10.1088/1367-2630/10/7/073014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Zhang, Xiaogang, Shengnan Zhang, Duo Pan, Peipei Chen, Xiaobo Xue, Wei Zhuang, and Jingbiao Chen. "Hanle Detection for Optical Clocks." Scientific World Journal 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/614737.

Повний текст джерела
Анотація:
Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Gill, Patrick. "When should we change the definition of the second?" Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1953 (October 28, 2011): 4109–30. http://dx.doi.org/10.1098/rsta.2011.0237.

Повний текст джерела
Анотація:
The microwave caesium (Cs) atomic clock has formed an enduring basis for the second in the International System of Units (SI) over the last few decades. The advent of laser cooling has underpinned the development of cold Cs fountain clocks, which now achieve frequency uncertainties of approximately 5×10 −16 . Since 2000, optical atomic clock research has quickened considerably, and now challenges Cs fountain clock performance. This has been suitably shown by recent results for the aluminium Al + quantum logic clock, where a fractional frequency inaccuracy below 10 −17 has been reported. A number of optical clock systems now achieve or exceed the performance of the Cs fountain primary standards used to realize the SI second, raising the issues of whether, how and when to redefine it. Optical clocks comprise frequency-stabilized lasers probing very weak absorptions either in a single cold ion confined in an electromagnetic trap or in an ensemble of cold atoms trapped within an optical lattice. In both cases, different species are under consideration as possible redefinition candidates. In this paper, I consider options for redefinition, contrast the performance of various trapped ion and optical lattice systems, and point to potential limiting environmental factors, such as magnetic, electric and light fields, collisions and gravity, together with the challenge of making remote comparisons of optical frequencies between standards laboratories worldwide.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

KATORI, Hidetoshi, Masao TAKAMOTO, and Tomoya AKATSUKA. "Optical Lattice Clocks with Non-Interacting Bosons and Fermions." Review of Laser Engineering 36, APLS (2008): 1004–7. http://dx.doi.org/10.2184/lsj.36.1004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bregolin, F., G. Milani, M. Pizzocaro, B. Rauf, P. Thoumany, F. Levi, and D. Calonico. "Optical lattice clocks towards the redefinition of the second." Journal of Physics: Conference Series 841 (May 2017): 012015. http://dx.doi.org/10.1088/1742-6596/841/1/012015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Akatsuka, Tomoya, Masao Takamoto, and Hidetoshi Katori. "Optical lattice clocks with non-interacting bosons and fermions." Nature Physics 4, no. 12 (October 26, 2008): 954–59. http://dx.doi.org/10.1038/nphys1108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mackenzie, Dana. "Time Gets More Precise with Transportable Optical Lattice Clocks." Engineering 6, no. 11 (November 2020): 1210–11. http://dx.doi.org/10.1016/j.eng.2020.08.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lu, Xiaotong, Mojuan Yin, Ting Li, Yebing Wang, and Hong Chang. "An Evaluation of the Zeeman Shift of the 87Sr Optical Lattice Clock at the National Time Service Center." Applied Sciences 10, no. 4 (February 20, 2020): 1440. http://dx.doi.org/10.3390/app10041440.

Повний текст джерела
Анотація:
The Zeeman shift plays an important role in the evaluation of optical lattice clocks since a strong bias magnetic field is applied for departing Zeeman sublevels and defining a quantization axis. We demonstrated the frequency correction and uncertainty evaluation due to Zeeman shift in the 87Sr optical lattice clock at the National Time Service Center. The first-order Zeeman shift was almost completely removed by stabilizing the clock laser to the average frequency of the two Zeeman components of mF = ±9/2. The residual first-order Zeeman shift arose from the magnetic field drift between measurements of the two stretched-state center frequencies; the upper bound was inferred as 4(5) × 10−18. The quadratic Zeeman shift coefficient was experimentally determined as –23.0(4) MHz/T2 and the final Zeeman shift was evaluated as 9.20(7) × 10−17. The evaluation of the Zeeman shift is a foundation for overall evaluation of the uncertainty of an optical lattice clock. This measurement can provide more references for the determination of the quadratic coefficient of 87Sr.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Martin, M. J., M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von-Stecher, A. V. Gorshkov, A. M. Rey, and Jun Ye. "A Quantum Many-Body Spin System in an Optical Lattice Clock." Science 341, no. 6146 (August 8, 2013): 632–36. http://dx.doi.org/10.1126/science.1236929.

Повний текст джерела
Анотація:
Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in 87Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Akamatsu, Daisuke, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tanabe, Atsushi Onae, and Feng-Lei Hong. "Frequency ratio measurement of ^171Yb and ^87Sr optical lattice clocks." Optics Express 22, no. 7 (March 27, 2014): 7898. http://dx.doi.org/10.1364/oe.22.007898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Takamoto, Masao, Tetsushi Takano, and Hidetoshi Katori. "Frequency comparison of optical lattice clocks beyond the Dick limit." Nature Photonics 5, no. 5 (April 3, 2011): 288–92. http://dx.doi.org/10.1038/nphoton.2011.34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

HOSAKA, Kazumoto, Masami YASUDA, Takuya KOHNO, Hajime INABA, Yoshiaki NAKAJIMA, Atsushi ONAE, Daisuke AKAMATSU, and Feng-Lei HONG. "The Next Generation of Primary Frequency Standards : Optical Lattice Clocks." Journal of the Japan Society for Precision Engineering 76, no. 11 (2010): 1234–38. http://dx.doi.org/10.2493/jjspe.76.1234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KATORI, Hidetoshi. "Real Time Probing of Space-Time by Optical Lattice Clocks." Hyomen Kagaku 32, no. 12 (2011): 797–800. http://dx.doi.org/10.1380/jsssj.32.797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ohmae, Noriaki, Shunsuke Sakama, and Hidetoshi Katori. "High-stability Optical Frequency Transfer with All-Fiber Architecture for Optical Lattice Clocks." IEEJ Transactions on Electronics, Information and Systems 139, no. 2 (February 1, 2019): 126–30. http://dx.doi.org/10.1541/ieejeiss.139.126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ohmae, Noriaki, Shunsuke Sakama, and Hidetoshi Katori. "High‐stability optical frequency transfer with all‐fiber architecture for optical lattice clocks." Electronics and Communications in Japan 102, no. 5 (March 7, 2019): 43–48. http://dx.doi.org/10.1002/ecj.12167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhou, Chihua, Xiaotong Lu, Benquan Lu, Yebing Wang, and Hong Chang. "Demonstration of the Systematic Evaluation of an Optical Lattice Clock Using the Drift-Insensitive Self-Comparison Method." Applied Sciences 11, no. 3 (January 28, 2021): 1206. http://dx.doi.org/10.3390/app11031206.

Повний текст джерела
Анотація:
The self-comparison method is a powerful tool in the uncertainty evaluation of optical lattice clocks, but any drifts will cause a frequency offset between the two compared clock loops and thus lead to incorrect measurement result. We propose a drift-insensitive self-comparison method to remove this frequency offset by adjusting the clock detection sequence. We also experimentally demonstrate the validity of this method in a one-dimensional 87Sr optical lattice clock. As the clock laser frequency drift exists, the measured frequency difference between two identical clock loops is (240 ± 34) mHz using the traditional self-comparison method, while it is (−15 ± 16) mHz using the drift-insensitive self-comparison method, indicating that this frequency offset is cancelled within current measurement precision. We further use the drift-insensitive self-comparison technique to measure the collisional shift and the second-order Zeeman shift of our clock and the results show that the fractional collisional shift and the second-order Zeeman shift are 4.54(28) × 10−16 and 5.06(3) × 10−17, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Akamatsu, Daisuke, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tanabe, Atsushi Onae, and Feng-Lei Hong. "Errata: Frequency ratio measurement of ^171Yb and ^87Sr optical lattice clocks." Optics Express 22, no. 26 (December 19, 2014): 32199. http://dx.doi.org/10.1364/oe.22.032199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chen, Ning, and Xinye Xu. "Analysis of inhomogeneous-excitation frequency shifts of ytterbium optical lattice clocks." Laser Physics Letters 12, no. 1 (November 28, 2014): 015501. http://dx.doi.org/10.1088/1612-2011/12/1/015501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zhang, Xiao-Hang, and Xin-Ye Xu. "Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks." Chinese Physics B 26, no. 5 (May 2017): 053701. http://dx.doi.org/10.1088/1674-1056/26/5/053701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ido, Tetsuya. "Optical lattice clocks: Hz-level spectral width with sub-Hz reproducibility." Journal of Physics: Conference Series 397 (December 6, 2012): 012003. http://dx.doi.org/10.1088/1742-6596/397/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zhan, Ming-Sheng, Jin Wang, Wei-Tou Ni, Dong-Feng Gao, Gang Wang, Ling-Xiang He, Run-Bing Li, et al. "ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna." International Journal of Modern Physics D 29, no. 04 (July 2, 2019): 1940005. http://dx.doi.org/10.1142/s0218271819400054.

Повний текст джерела
Анотація:
The Zhaoshan long-baseline Atom Interferometer Gravitation Antenna (ZAIGA) is a new type of underground laser-linked interferometer facility, and is currently under construction. It is in the 200-m-on-average underground of a mountain named Zhaoshan which is about 80[Formula: see text]km southeast to Wuhan. ZAIGA will be equipped with long-baseline atom interferometers, high-precision atom clocks, and large-scale gyros. ZAIGA facility will take an equilateral triangle configuration with two 1-km-apart atom interferometers in each arm, a 300-m vertical tunnel with atom fountain and atom clocks mounted, and a tracking-and-ranging 1-km-arm-length prototype with lattice optical clocks linked by locked lasers. The ZAIGA facility will be used for experimental research on gravitation and related problems including gravitational wave detection, high-precision test of the equivalence principle of micro-particles, clock-based gravitational red-shift measurement, rotation measurement and gravitomagnetic effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Takamoto, Masao, Ichiro Ushijima, Noriaki Ohmae, Toshihiro Yahagi, Kensuke Kokado, Hisaaki Shinkai, and Hidetoshi Katori. "Test of general relativity by a pair of transportable optical lattice clocks." Nature Photonics 14, no. 7 (April 6, 2020): 411–15. http://dx.doi.org/10.1038/s41566-020-0619-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lee, Sangkyung, Chang Yong Park, Won-Kyu Lee, and Dai-Hyuk Yu. "Cancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopy." New Journal of Physics 18, no. 3 (March 18, 2016): 033030. http://dx.doi.org/10.1088/1367-2630/18/3/033030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Yamaguchi, Atsushi, Miho Fujieda, Motohiro Kumagai, Hidekazu Hachisu, Shigeo Nagano, Ying Li, Tetsuya Ido, Tetsushi Takano, Masao Takamoto, and Hidetoshi Katori. "Direct Comparison of Distant Optical Lattice Clocks at the $10^{-16}$ Uncertainty." Applied Physics Express 4, no. 8 (August 4, 2011): 082203. http://dx.doi.org/10.1143/apex.4.082203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Gurov, M., J. J. McFerran, B. Nagorny, R. Tyumenev, Z. Xu, Y. Le Coq, R. Le Targat, P. Lemonde, J. Lodewyck, and S. Bize. "Optical Lattice Clocks as Candidates for a Possible Redefinition of the SI Second." IEEE Transactions on Instrumentation and Measurement 62, no. 6 (June 2013): 1568–73. http://dx.doi.org/10.1109/tim.2013.2242638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Hisai, Yusuke, Daisuke Akamatsu, Takumi Kobayashi, Kazumoto Hosaka, Hajime Inaba, Feng-Lei Hong, and Masami Yasuda. "Improved frequency ratio measurement with 87Sr and 171Yb optical lattice clocks at NMIJ." Metrologia 58, no. 1 (January 8, 2021): 015008. http://dx.doi.org/10.1088/1681-7575/abc104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hachisu, H., M. Fujieda, S. Nagano, T. Gotoh, A. Nogami, T. Ido, St Falke, et al. "Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km." Optics Letters 39, no. 14 (July 2, 2014): 4072. http://dx.doi.org/10.1364/ol.39.004072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Park, Chang Yong, Won-Kyu Lee, Myoung-Sun Heo, Dai-Hyuk Yu, and Huidong Kim. "Ultra-high vacuum compatible full metal atom beam shutter for optical lattice clocks." Review of Scientific Instruments 94, no. 1 (January 1, 2023): 013201. http://dx.doi.org/10.1063/5.0123971.

Повний текст джерела
Анотація:
We developed a shutter driven by a solenoid to switch on/off the atomic beam of optical lattice clocks developed at KRISS [C. Y. Park et al., Metrologia 50, 119 (2013), S. Lee et al., New J. Phys. 18, 033030 (2016), H. Kim et al., Jpn. J. Appl. Phys. 56, 050302 (2017), and H. Kim et al., Metrologia 58, 055007 (2021)]. The shutter design was focused on long lifetime and compatibility with an ultra-high vacuum (UHV) environment. Thus, the solenoid was designed to be easily installed and removed from the air-side of a CF flange of the shutter. The flag in the vacuum-side moves only with the simple spring action of a sheet of a metal plate without any frictional movement of mechanical parts. All parts in the vacuum-side were made of metals (stainless steel and pure iron) to be baked over the temperature of 200 °C for UHV. The flag head of the shutter displaces up to 10 mm (5 mm) with a response time of 50 (30 ms) and 80 ms (10 ms) for the opening-action and the closing-action, respectively. The lifetime was tested up to 6 × 106 cycles with no performance degradation. We expect the actual lifetime to be much longer than this by virtue of its friction-free design.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії