Статті в журналах з теми "Optical frequency stabilization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Optical frequency stabilization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Optical frequency stabilization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wang, Kai, Haochen Tian, Fei Meng, Baike Lin, Shiying Cao, Yihan Pi, Yan Han, Zhanjun Fang, Youjian Song, and Minglie Hu. "Fiber-delay-line-referenced optical frequency combs: three stabilization schemes." Chinese Optics Letters 20, no. 2 (2022): 021204. http://dx.doi.org/10.3788/col202220.021204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yan, Yeguang, Gang Liu, Haixiao Lin, Kaifeng Yin, Kun Wang, and Jixi Lu. "VCSEL frequency stabilization for optically pumped magnetometers." Chinese Optics Letters 19, no. 12 (2021): 121407. http://dx.doi.org/10.3788/col202119.121407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reynolds, F. C., and J. J. McFerran. "Optical frequency stabilization with a synchronous frequency-to-voltage converter." Applied Optics 58, no. 12 (April 15, 2019): 3128. http://dx.doi.org/10.1364/ao.58.003128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhadnov, N. O., and A. V. Masalov. "Temperature-compensated optical cavities for laser frequency stabilization." Laser Physics Letters 20, no. 3 (January 19, 2023): 030001. http://dx.doi.org/10.1088/1612-202x/acb1ad.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We propose a method for thermal expansion compensation of reference monolithic optical cavities for laser frequency stabilization. Two schemes of optical cavities are considered: a Fabry–Perot interferometer with a crimp ring and a whispering-gallery-mode cavity with a clamp. In each scheme, thermal expansion compensation is achieved due to the strained connection of the cavity with an element made of a material with a high coefficient of thermal expansion. The temperature range of the cavities’ optical length stabilization is estimated.
5

Shiguang Wang, Shiguang Wang, Jianwei Zhang Jianwei Zhang, Zhengbo Wang Zhengbo Wang, Bo Wang Bo Wang, Weixin Liu Weixin Liu, Yanying Zhao Yanying Zhao, and Lijun Wang Lijun Wang. "Frequency stabilization of a 214.5-nm ultraviolet laser." Chinese Optics Letters 11, no. 3 (2013): 031401–31403. http://dx.doi.org/10.3788/col201311.031401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lam, Timothy T. Y., Bram J. J. Slagmolen, Jong H. Chow, Ian C. M. Littler, David E. McClelland, and Daniel A. Shaddock. "Digital Laser Frequency Stabilization Using an Optical Cavity." IEEE Journal of Quantum Electronics 46, no. 8 (August 2010): 1178–83. http://dx.doi.org/10.1109/jqe.2010.2044867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhou, Pengpeng, Wei Sun, Shiyong Liang, Shaolong Chen, Zhiqiang Zhou, Yao Huang, Hua Guan, and Kelin Gao. "Digital long-term laser frequency stabilization with an optical frequency comb." Applied Optics 60, no. 21 (July 14, 2021): 6097. http://dx.doi.org/10.1364/ao.428587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kong Meng, 孔萌, 陆彦婷 Lu Yanting, 林栋 Lin Dong, 郑兆瑛 Zheng Zhaoying, 李常伟 Li Changwei, 朱小明 Zhu Xiaoming та 张思炯 Zhang Sijiong. "参考光学频率梳的数字激光稳频技术". Acta Optica Sinica 41, № 16 (2021): 1614001. http://dx.doi.org/10.3788/aos202141.1614001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jones, R. Jason, and Jean-Claude Diels. "Stabilization of Femtosecond Lasers for Optical Frequency Metrology and Direct Optical to Radio Frequency Synthesis." Physical Review Letters 86, no. 15 (April 9, 2001): 3288–91. http://dx.doi.org/10.1103/physrevlett.86.3288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Greiner, C., B. Boggs, T. Wang, and T. W. Mossberg. "Laser frequency stabilization by means of optical self-heterodyne beat-frequency control." Optics Letters 23, no. 16 (August 15, 1998): 1280. http://dx.doi.org/10.1364/ol.23.001280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dahmani, B., L. Hollberg, and R. Drullinger. "Frequency stabilization of semiconductor lasers by resonant optical feedback." Optics Letters 12, no. 11 (November 1, 1987): 876. http://dx.doi.org/10.1364/ol.12.000876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Humblet, P. A., and J. S. Young. "Performance of phase noisy optical systems with frequency stabilization." Journal of Lightwave Technology 10, no. 7 (July 1992): 938–46. http://dx.doi.org/10.1109/50.144917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Moret-Bailly, Jacques, and Michel Roche. "Electrostatic FEL frequency stabilization: optical design and amplifying medium." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 304, no. 1-3 (July 1991): 248–50. http://dx.doi.org/10.1016/0168-9002(91)90861-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Takahashi, K., M. Ando, and K. Tsubono. "Stabilization of laser intensity and frequency using optical fiber." Journal of Physics: Conference Series 122 (July 1, 2008): 012016. http://dx.doi.org/10.1088/1742-6596/122/1/012016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Stern, Liron, Jordan R. Stone, Songbai Kang, Daniel C. Cole, Myoung-Gyun Suh, Connor Fredrick, Zachary Newman, et al. "Direct Kerr frequency comb atomic spectroscopy and stabilization." Science Advances 6, no. 9 (February 2020): eaax6230. http://dx.doi.org/10.1126/sciadv.aax6230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.
16

Fancher, C. T., K. L. Nicolich, K. M. Backes, N. Malvania, K. Cox, D. H. Meyer, P. D. Kunz, J. C. Hill, W. Holland, and B. L. Schmittberger Marlow. "A self-locking Rydberg atom electric field sensor." Applied Physics Letters 122, no. 9 (February 27, 2023): 094001. http://dx.doi.org/10.1063/5.0137127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A crucial step toward enabling real-world applications for quantum sensing devices such as Rydberg atom electric field sensors is reducing their size, weight, power, and cost (SWaP-C) requirements without significantly reducing performance. Laser frequency stabilization is a key part of many quantum sensing devices and, when used for exciting non-ground state atomic transitions, is currently limited to techniques that require either large SWaP-C optical cavities and electronics or use significant optical power solely for frequency stabilization. Here, we describe a laser frequency stabilization technique for exciting non-ground state atomic transitions that solves these challenges and requires only a small amount of additional electronics. We describe the operation, capabilities, and limitations of this frequency stabilization technique and quantitatively characterize its performance. We show experimentally that Rydberg electric field sensors using this technique are capable of data collection while sacrificing only 0.1% of available bandwidth for frequency stabilization of noise up to 900 Hz.
17

Ohtsu, Motoichi. "Frequency stabilization in semiconductor lasers." Optical and Quantum Electronics 20, no. 4 (July 1988): 283–300. http://dx.doi.org/10.1007/bf00620246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Schuldt, Thilo, Klaus Döringshoff, Markus Oswald, Evgeny V. Kovalchuk, Achim Peters, and Claus Braxmaier. "Absolute laser frequency stabilization for LISA." International Journal of Modern Physics D 28, no. 12 (September 2019): 1845002. http://dx.doi.org/10.1142/s0218271818450025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The LISA space mission requires laser frequency pre-stabilization of the 1064[Formula: see text]nm laser sources. While cavity-based systems are the current baseline, laser frequencies stabilized to a hyperfine transition in molecular iodine near 532[Formula: see text]nm are a possible alternative. Several setups with respect to space applications were developed, putting special emphasis on compactness and mechanical and thermal stability of the optical setup. Vibration testing and thermal cycling were performed. These setups show frequency noise below 20[Formula: see text]Hz/[Formula: see text] for frequencies between 4[Formula: see text]mHz and 1[Formula: see text]Hz with an absolute frequency reproducibility better than 1[Formula: see text]kHz. They fulfil the LISA requirements and offer an absolute laser frequency simplifying the initial spacecraft acquisition procedure. We present the current status of iodine-based frequency references and their applicability in space missions, especially within the LISA mission.
19

Tian, Xueyang, Liang Hu, Guiling Wu, and Jianping Chen. "Hybrid Fiber-Optic Radio Frequency and Optical Frequency Dissemination With a Single Optical Actuator and Dual-Optical Phase Stabilization." Journal of Lightwave Technology 38, no. 16 (August 15, 2020): 4270–78. http://dx.doi.org/10.1109/jlt.2020.2989328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Morinaga, A., F. Riehle, J. Ishikawa, and J. Helmcke. "A Ca optical frequency standard: Frequency stabilization by means of nonlinear Ramsey resonances." Applied Physics B Photophysics and Laser Chemistry 48, no. 2 (February 1989): 165–71. http://dx.doi.org/10.1007/bf00692142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jornod, Nayara, Kutan Gürel, Valentin J. Wittwer, Pierre Brochard, Sargis Hakobyan, Stéphane Schilt, Dominik Waldburger, Ursula Keller, and Thomas Südmeyer. "Carrier-envelope offset frequency stabilization of a gigahertz semiconductor disk laser." Optica 4, no. 12 (November 29, 2017): 1482. http://dx.doi.org/10.1364/optica.4.001482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Liu, Chang, Ziqian Yue, Zitong Xu, Ming Ding, and Yueyang Zhai. "Far Off-Resonance Laser Frequency Stabilization Technology." Applied Sciences 10, no. 9 (May 7, 2020): 3255. http://dx.doi.org/10.3390/app10093255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In atomic physics experiments, a frequency-stabilized or ‘locked’ laser source is commonly required. Many established techniques are available for locking close to an atomic resonance. However, in many instances, such as atomic magnetometer and magic wavelength optical lattices in ultra-cold atoms, it is desirable to lock the frequency of the laser far away from the resonance. This review presents several far off-resonance laser frequency stabilization methods, by which the frequency of the probe beam can be locked on the detuning as far as several tens of gigahertz (GHz) away from atomic resonance line, and discusses existing challenges and possible future directions in this field.
23

Rossi, A., V. Biancalana, B. Mai, and L. Tomassetti. "Long-term drift laser frequency stabilization using purely optical reference." Review of Scientific Instruments 73, no. 7 (July 2002): 2544–48. http://dx.doi.org/10.1063/1.1487895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sterr, U., B. Lipphardt, A. Wolf, and H. R. Telle. "A novel stabilization method for an optical frequency comb generator." IEEE Transactions on Instrumentation and Measurement 48, no. 2 (April 1999): 574–77. http://dx.doi.org/10.1109/19.769661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Miyazaki, T., and S. Ryu. "Frequency stabilization of FDM optical signals using an electronic counter." IEEE Photonics Technology Letters 6, no. 6 (June 1994): 744–46. http://dx.doi.org/10.1109/68.300181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Maeda, M. W., and L. G. Kazovsky. "Novel relative frequency stabilization technique for multichannel optical communication systems." IEEE Photonics Technology Letters 1, no. 12 (December 1989): 455–57. http://dx.doi.org/10.1109/68.46048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Plusquellic, D. F., O. Votava, and D. J. Nesbitt. "Absolute frequency stabilization of an injection-seeded optical parametric oscillator." Applied Optics 35, no. 9 (March 20, 1996): 1464. http://dx.doi.org/10.1364/ao.35.001464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chebotayev, V. P., V. M. Klementyev, O. I. Pyltsin, and V. F. Zakhariash. "Optical-pulse frequency stabilization of self-mode-locked HeNe lasers." Applied Physics B Photophysics and Laser Chemistry 54, no. 1 (January 1992): 98–99. http://dx.doi.org/10.1007/bf00331741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

McRae, Terry G., Silvie Ngo, Daniel A. Shaddock, Magnus T. L. Hsu, and Malcolm B. Gray. "Frequency stabilization for space-based missions using optical fiber interferometry." Optics Letters 38, no. 3 (January 16, 2013): 278. http://dx.doi.org/10.1364/ol.38.000278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Akhmanov, S. A., I. V. Golovnin, and Anatolii S. Chirkin. "Range stabilization of the optical frequency in a doubly resonant optical parametric oscillator." Soviet Journal of Quantum Electronics 21, no. 7 (July 31, 1991): 709–10. http://dx.doi.org/10.1070/qe1991v021n07abeh003925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Filonov, A. A., S. A. Kuznetsov, V. S. Pivtsov, S. A. Farnosov, Y. G. Isaeva, S. V. Chepurov, and N. A. Koliada. "The effect of ambient temperature fluctuations on the output frequency instability of the fiber femtosecond frequency comb." Laser Physics Letters 20, no. 9 (July 12, 2023): 095101. http://dx.doi.org/10.1088/1612-202x/ace3bf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A study of the influence of temperature fluctuations of individual blocks of a fiber femtosecond frequency comb (FFC) generator and of the entire system as a whole on its output radio frequencies has been carried out. A two-circuit system for thermal stabilization of the air inside the FFC housing was implemented. An additional system for thermal stabilization of the transport fiber, which is included in the measurement scheme (outside the FFC), was implemented. A significant temperature effect on the measured output frequencies of the FFS is shown. Thanks to all the thermal stabilization systems, it has been shown that the instability of the developed fiber FFC introduced into its output microwave frequencies (in addition to the instability of the reference optical standard) is no worse than 2 × 10−16 per 1000 s.
32

Zhang, Yichi, and Hongyan Fan. "Laser frequency stabilization for continuous-wave laser enhanced direct frequency comb spectroscopy system." Laser Physics 34, no. 7 (May 28, 2024): 075701. http://dx.doi.org/10.1088/1555-6611/ad4bb1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We present the observation of high-precision direct frequency comb spectroscopy excited by an optical frequency comb and a diode laser when each of them drives one step of the two-photon transition in a rubidium vapor system. We demonstrate a stable and low noise system by directly locking the frequency of the continuous-wave laser to the rubidium two-photon transition. The frequency stability of a diode laser via the two-photon transition locking technique is 8 × 10−11 for a 1 s gate time and 3 × 10−12 for 1000 s. It proves to be a potential technique for locking the diode laser with high stability. We chose a suitable optical frequency comb pulse and the frequency of the diode laser to fulfill the double-resonance condition. These techniques eliminate spectrum line overlap and would benefit spectroscopy measurements.
33

Barcik, Peter, Jan Hrabina, Martin Cizek, Zdenek Kolka, Petr Skryja, Lenka Pravdova, Ondrej Cip, Lucie Hudcova, Ondrej Havlis, and Josef Vojtech. "Phase-Noise Characterization in Stable Optical Frequency Transfer over Free Space and Fiber Link Testbeds." Electronics 12, no. 23 (December 2, 2023): 4870. http://dx.doi.org/10.3390/electronics12234870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Time and frequency metrology depends on stable oscillators in both radio-frequency and optical domains. With the increased complexity of the highly precise oscillators also came the demand for delivering the oscillators’ harmonic signals between delocalized sites for comparison, aggregation, or other purposes. Besides the traditional optical fiber networks, free-space optical links present an alternative tool for disseminating stable sources’ output. We present a pilot experiment of phase-coherent optical frequency transfer using a free-space optical link testbed. The experiment performed on a 30 m long link demonstrates the phase-noise parameters in a free-space optical channel under atmospheric turbulence conditions, and it studies the impact of active MEMS mirror stabilization of the received optical wave positioning on the resulting transfer’s performance. Our results indicate that a well-configured MEMS mirror beam stabilization significantly enhances fractional frequency stability, achieving the−14th-order level for integration times over 30 s.
34

Kalbarczyk, Aleksandra, Noureddine Bennis, Jakub Herman, Leszek R. Jaroszewicz, and Przemysław Kula. "Electro-Optical and Photo Stabilization Study of Nematic Ternary Mixture." Materials 14, no. 9 (April 28, 2021): 2283. http://dx.doi.org/10.3390/ma14092283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Liquid crystal materials composed of mixed nematic compounds find broad use in liquid crystal displays and photonic applications. A ternary mixture formed from three different nematic compounds shows peculiar behavior such as tunable electro-optical properties dependent on the frequency of the driving voltage. The paper presents an analysis of the response time and phase retardation of a frequency tunable nematic liquid crystal mixture (under code name 5005). This material possesses high birefringence (Δn = 0.32 at 633 nm) as well as high dielectric anisotropy (Δε = 6.3 at 100 Hz). The unique property of the 5005 mixture is frequency-controlled phase modulation, as in a dual frequency liquid crystal, while dielectric anisotropy goes to zero instead of being negative at high frequencies. For each component of the mixture, details on mesomorphic properties and their role in the formulation of the mixture are reported. The 5005 mixture was characterized by multiple investigation techniques, such as temperature dependence dielectric anisotropy, transmittance measurements image polarizing microscopy, and UV stability.
35

Wood, Roger M. "Frequency stabilization of semiconductor laser diodes." Optics & Laser Technology 27, no. 6 (December 1995): xiii. http://dx.doi.org/10.1016/0030-3992(95)90064-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Huang, Shu-Wei, Jinghui Yang, Mingbin Yu, Bart H. McGuyer, Dim-Lee Kwong, Tanya Zelevinsky, and Chee Wei Wong. "A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty." Science Advances 2, no. 4 (April 2016): e1501489. http://dx.doi.org/10.1126/sciadv.1501489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical frequency combs—coherent light sources that connect optical frequencies with microwave oscillations—have become the enabling tool for precision spectroscopy, optical clockwork, and attosecond physics over the past decades. Current benchmark systems are self-referenced femtosecond mode-locked lasers, but Kerr nonlinear dynamics in high-Q solid-state microresonators has recently demonstrated promising features as alternative platforms. The advance not only fosters studies of chip-scale frequency metrology but also extends the realm of optical frequency combs. We report the full stabilization of chip-scale optical frequency combs. The microcomb’s two degrees of freedom, one of the comb lines and the native 18-GHz comb spacing, are simultaneously phase-locked to known optical and microwave references. Active comb spacing stabilization improves long-term stability by six orders of magnitude, reaching a record instrument-limited residual instability of 3.6mHz/τ. Comparing 46 nitride frequency comb lines with a fiber laser frequency comb, we demonstrate the unprecedented microcomb tooth-to-tooth relative frequency uncertainty down to 50 mHz and 2.7 × 10−16, heralding novel solid-state applications in precision spectroscopy, coherent communications, and astronomical spectrography.
37

Wang, Bowen, Xiang Peng, Haidong Wang, Yang Liu, and Hong Guo. "Laser-frequency stabilization with differential single-beam saturated absorption spectroscopy of 4He atoms." Review of Scientific Instruments 93, no. 4 (April 1, 2022): 043001. http://dx.doi.org/10.1063/5.0084605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Differential single-beam saturated-absorption spectroscopy (DSSAS) is proposed to stabilize lasing frequency and suppress Doppler-broadened background and common-mode optical noise. The spectral first-derivative demodulated signal of metastable [Formula: see text] atoms is used as an error signal to stabilize a fiber laser around 1083 nm. Experimental results show that, compared with existing non-DSSAS frequency stabilization, DSSAS stabilization produces better stability and lower fluctuations, especially for frequency-noise-corrupted lasers. In DSSAS stabilization, for data acquired over 7000 s, the root mean square frequency fluctuation of the fiber laser is 16.4 kHz, and the frequency stability described by the modified Allan deviation is 4.1 × 10−12 at 100 s. Even for a defective laser with poor frequency stability, the proposed scheme demonstrates experimentally high capability of noise suppression and reduces the frequency fluctuations by two orders of magnitude. Given its simplicity and compact design, frequency stabilization by DSSAS is promising for quantum-sensor applications, such as atomic magnetometers, atomic gyroscopes, and atomic clocks.
38

Droste, Stefan, Gabriel Ycas, Brian R. Washburn, Ian Coddington, and Nathan R. Newbury. "Optical Frequency Comb Generation based on Erbium Fiber Lasers." Nanophotonics 5, no. 2 (June 1, 2016): 196–213. http://dx.doi.org/10.1515/nanoph-2016-0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractOptical frequency combs have revolutionized optical frequency metrology and are being actively investigated in a number of applications outside of pure optical frequency metrology. For reasons of cost, robustness, performance, and flexibility, the erbium fiber laser frequency comb has emerged as the most commonly used frequency comb system and many different designs of erbium fiber frequency combs have been demonstrated. We review the different approaches taken in the design of erbium fiber frequency combs, including the major building blocks of the underlying mode-locked laser, amplifier, supercontinuum generation and actuators for stabilization of the frequency comb.
39

Ye Li, Ye Li, Yige Lin Yige Lin, Qiang Wang Qiang Wang, Tao Yang Tao Yang, Zhen Sun Zhen Sun, Erjun Zang Erjun Zang, and Zhanjun Fang Zhanjun Fang. "An improved strontium lattice clock with 10?16 level laser frequency stabilization." Chinese Optics Letters 16, no. 5 (2018): 051402. http://dx.doi.org/10.3788/col201816.051402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Taubman, Matthew S., Tanya L. Myers, Bret D. Cannon, Richard M. Williams, Federico Capasso, Claire Gmachl, Deborah L. Sivco, and Alfred Y. Cho. "Frequency stabilization of quantum-cascade lasers by use of optical cavities." Optics Letters 27, no. 24 (December 15, 2002): 2164. http://dx.doi.org/10.1364/ol.27.002164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Jiang, Q. "A novel IF frequency stabilization scheme for coherent optical FDM systems." IEEE Photonics Technology Letters 3, no. 11 (November 1991): 1024–26. http://dx.doi.org/10.1109/68.97849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Vainio, Markku, and Lauri Halonen. "Stabilization of femtosecond optical parametric oscillators for infrared frequency comb generation." Optics Letters 42, no. 14 (July 7, 2017): 2722. http://dx.doi.org/10.1364/ol.42.002722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Noe, R., and K. Drogemuller. "Accurate and simple optical frequency stabilization for a coherent multichannel system." IEEE Photonics Technology Letters 4, no. 5 (May 1992): 505–6. http://dx.doi.org/10.1109/68.136502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Stern, Liron, Wei Zhang, Lin Chang, Joel Guo, Chao Xiang, Minh A. Tran, Duanni Huang, et al. "Ultra-precise optical-frequency stabilization with heterogeneous III–V/Si lasers." Optics Letters 45, no. 18 (September 15, 2020): 5275. http://dx.doi.org/10.1364/ol.398845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhou, Yueting, Jianxin Liu, Songjie Guo, Gang Zhao, Weiguang Ma, Zhensong Cao, Lei Dong, et al. "Laser frequency stabilization based on a universal sub-Doppler NICE-OHMS instrumentation for the potential application in atmospheric lidar." Atmospheric Measurement Techniques 12, no. 3 (March 19, 2019): 1807–14. http://dx.doi.org/10.5194/amt-12-1807-2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Lidar is an effective tool for high-altitude atmospheric measurement in which a weak absorption line for the target gas is selected to ensure a large optical depth. The laser frequency stabilization to the line center is required, and a sub-Doppler (sD) spectroscopy of the target line is preferred as a frequency reference. In this paper, a novel universal sD noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) instrumentation based on a fiber-coupled optical single-sideband electro-optic modulator (f-SSM) for the potential application in atmospheric lidar for different target gases with different types of lasers is reported. The f-SSM can replace all frequency actuators in the system, so as to eliminate the individual design of feedback servos that often are tailored for each laser. The universality of the instrumentation was demonstrated by the alternative use of either an Er-doped fiber laser or a whispering-gallery-mode laser. Then the instruments based on both lasers were used to produce the sD signals of acetylene, which worked as a frequency reference to stabilize the laser. By performing the lockings, relative frequency stabilizations of 8.3×10-13 and 7.5×10-13 at an integration time of 240 s were demonstrated.
46

Koliada, N. A., V. S. Pivtsov, S. A. Kuznetsov, A. A. Filonov, S. A. Farnosov, I. M. Kolyada, D. Yu Primakov, A. S. Dychkov, D. S. Kharenko, and I. S. Zhdanov. "Er:fiber-based femtosecond frequency comb stabilized to an Yb+ single-ion optical frequency standard." Laser Physics Letters 19, no. 1 (December 2, 2021): 015102. http://dx.doi.org/10.1088/1612-202x/19/1/015102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract An erbium fiber-based femtosecond optical frequency comb stabilized to an Yb+ single-ion optical frequency standard was created. For the first time, a combination of an extra-cavity acousto-optic frequency modulator with fiber outputs and an intracavity electro-optic phase modulator based on a KTP crystal were used to stabilize offset frequency and one of the optical components of the Er:fiber femtosecond comb. As a result a locking bandwidth of 30 kHz for the optical comb offset frequency has been obtained. It is shown that the relative instability introduced by the stabilization and measurement systems into the output radio frequencies (in addition to the instability of the reference optical signal) is no worse than 5 × 10−14 for averaging times of 1 s and 2 × 10−16 for averaging times of 400 s.
47

Nakamura, K., S. Nagase, T. Nakashita, T. Hayamizu, T. Aoki, H. Nagahama, N. Ozawa, et al. "Development of a Laser Frequency Stabilization and an Optical Transmission System for the Francium Electric Dipole Moment Search." Journal of Physics: Conference Series 2249, no. 1 (April 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2249/1/012010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We developed a laser frequency stabilization and an optical fiber transmission system for the the francium electric dipole moment search. The absolute accuracy of a laser frequency stabilization scheme using a state-of-the-art commercial wavelength meter was 0.48 MHz at ±2 nm and -1.33 MHz at ±200 nm from calibration wavelength, respectively, and the frequency instability is below 10-9 with a standard deviation of 0.56 MHz over 60 hours. We also demonstrated that a 400 m long fiber laid between laboratories can transmit 30 mW of trapping laser light, which is sufficient for a magneto-optical trapping of francium. The polarization crosstalk in the fiber was stable at -25 dB over 12 hours of measurement.
48

Toda, Yasunori, Takashi Enami, and Motoichi Outsu. "Frequency Stabilization of 1.5 µm Diode Laser Using Nonlinear Optical Frequency Conversion in Organic Fiber." Japanese Journal of Applied Physics 32, Part 2, No. 9A (September 1, 1993): L1233—L1235. http://dx.doi.org/10.1143/jjap.32.l1233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ibrahim, Amalina Athira, Bo Li, Shenghong Ye, Takashi Shiramizu, Hanwei Chen, Yuya Mikami, and Kazutoshi Kato. "Phase Stabilization of a Terahertz Wave Using Mach–Zehnder Interference Detection." Electronics 12, no. 15 (August 7, 2023): 3366. http://dx.doi.org/10.3390/electronics12153366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As a high-frequency carrier, the terahertz (THz) wave is essential for achieving high-data-rate wireless transmission due to its ultra-wide bandwidth. Phase stabilization becomes crucial to enable phase-shift-based multilevel modulation for high-speed data transmission. We developed a Mach–Zehnder interferometric phase stabilization technique for photomixing, which has proved a promising method for phase-stable continuous THz-wave generation. However, this method faced inefficiencies in generating phase-modulated THz waves due to the impact of the phase modulator on the phase stabilization system. By photomixing, which is one of the promising methods for generating THz waves, the phase of the generated THz waves can be controlled in the optical domain so that the stability of the generated THz wave can be controlled by photonics technologies. Thus, we devised a new phase stabilization approach using backward-directional lightwave, which is overlapped with the THz wave generation system. This study presented a conceptual and experimental framework for stabilizing the phase differences of optical carrier signals. We compared the optical domain and transmission performances between forward-directional and backward-directional phase stabilization methods. Remarkably, our results demonstrated error-free transmission at a modulation frequency of 3 Gbit/s and higher.
50

Yang Jianqiang, 杨建强, and 廖丹 Liao Dan. "Preliminary Study of Dithering Frequency Stabilization for Four-Frequency Differential Laser Gyro." Acta Optica Sinica 29, no. 8 (2009): 2256–60. http://dx.doi.org/10.3788/aos20092908.2256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії