Добірка наукової літератури з теми "Opérateurs de décalage"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Opérateurs de décalage".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Opérateurs de décalage"

1

Blanc-Brude, Véronique, and Christian Defélix. "Des puces et des hommes : quand le travail « 4.0 » se révèle plus humain que prévu." Annales des Mines - Gérer et comprendre N° 153, no. 3 (September 13, 2023): 49–59. http://dx.doi.org/10.3917/geco1.153.0049.

Повний текст джерела
Анотація:
Pour répondre aux enjeux d’efficacité et de qualité de fabrication, la forte automatisation et l’intégration de données qui caractérisent l’industrie 4.0 permettent de produire des séries personnalisées aux coûts de la production de masse, ce qui engendre la création de situations de travail dynamiques et complexes. Dans les industries « de flux » telles que celle de la microélectronique, le travail humain, bien réel, devient moins visible puisqu’il n’intervient qu’en cas d’interruption du flux ou de process . Mais quelles conséquences a exactement cette automatisation poussée à son maximum, sur le travail et les compétences requises pour les opérateurs ? Cet article s’appuie sur l’étude d’un cas industriel, où la quête de haute performance et les seuils successifs d’automatisation conduisent à intensifier la surveillance des anomalies. Le cadre théorique choisi est celui du travail invisible et de son expérience triple (Gomez, 2013), qui permet de lever le voile sur une mutation du travail peu prise en compte par l’organisation officielle. À partir d’une observation directe et d’entretiens semi directifs, cette recherche révèle que l’expérience du travail est d’abord marquée par une hypertrophie de la dimension objective, en décalage avec de nombreuses présentations flatteuses des usines 4.0. Elle est également caractérisée par une dimension collective, non formalisée mais nécessaire, basée sur de nombreuses interactions. Elle est enfin l’occasion d’une expérience subjective, où se concentrent et s’arbitrent de nombreuses tensions. Ainsi, le travail « 4.0 », bien que plus automatisé, se révèle plus humain que prévu.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Opérateurs de décalage"

1

Michard, Romain. "Opérateurs arithmétiques matériels optimisés." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2008. http://tel.archives-ouvertes.fr/tel-00301285.

Повний текст джерела
Анотація:
L'arithmétique des ordinateurs est une branche de l'informatique qui traite des systèmes de représentation des nombres, des algorithmes arithmétiques et de leurs implantations matérielles ou logicielles. Cette thèse porte sur l'étude et l'implantation matérielle d'opérateurs pour l'évaluation de fonctions en traitement du signal et des images. Sont présentés successivement un générateur d'opérateurs optimisés pour la division, des études portant sur un algorithme d'évaluation de fonctions au moyen d'approximations par fractions rationnelles, et des opérateurs d'évaluation de fonctions basés sur des approximations polynomiales qui demandent peu de matériel. Les différents opérateurs proposés dans cette thèse ont tous été validés sur des circuits FPGA.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Veyrat-Charvillon, Nicolas. "Opérateurs arithmétiques matériels pour des applications spécifiques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2007. http://tel.archives-ouvertes.fr/tel-00438603.

Повний текст джерела
Анотація:
L'arithmétique des ordinateurs est une branche de l'informatique qui traite des systèmes de représentation des nombres, des algorithmes arithmétiques et de leurs implantations matérielles ou logicielles. Cette thèse porte sur l'étude et l'implantation matérielle d'opérateurs pour l'évaluation de fonctions pour des applications spécifiques en traitement du signal et des images et en cryptographie. La première partie présente des opérateurs d'évaluation de fonctions basés sur des approximations polynomiales qui demandent peu de matériel. La seconde partie étudie la génération automatique d'opérateurs à base d'additions et décalages (type SRT) pour l'évaluation de certaines fonctions algébriques. Enfin, la dernière partie présente une implantation efficace et compacte des fonctions de hachage cryptographique de la famille SHA-2. Les différents opérateurs proposés dans cette thèse ont tous été validés sur des circuits FPGA.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khochman, Abdallah. "Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13689/document.

Повний текст джерела
Анотація:
Le sujet de cette thèse est l’étude de certaines équations de physique mathématique. Dans un premier temps, on étudie les résonances et la fonction de décalage spectral pour les opérateurs de Dirac semi-classique et de Schrödinger magnétique en dimension 3. On dé?nit les résonances comme des valeurs propres d’un opérateur non-autoadjoint obtenu par distortion complexe. Pour l’opérateur de Dirac, on majore le nombre de résonances par O(h-3) où h ? 0 est le paramètre semi-classique. Dans le cas de Schrödinger magnétique, l’opérateur de référence génère des valeurs propres de multipli- cité in?nie plongées dans le spectre continu. Dans une couronne centrée en une de ces valeurs propres et de rayons (r, 2r), on établit une borne supérieure, quand r ? 0, du nombre de résonances. Une approximation de type Breit-Wigner de la dérivée de la fonction de décalage spectral en fonction des résonances et une formule de trace locale sont obtenues pour ces deux opérateurs. De plus, on prouve une formule asymptotique de Weyl pour la fonction de décalage spectral pour l’opérateur de Dirac avec un potentiel électro-magnétique. Dans un deuxième temps, on s’intéresse à l’opérateur de Dirac semi-classique en dimension 1 avec un potentiel ayant des limites constantes mais pas nécessairement les mêmes à ±8. En utilisant la méthode BKW complexe, on construit des solutions analytiques de l’opérateur de Dirac. On étudie la théorie de la di?usion en fonction des solutions entrantes et sortantes. On obtient une asymptotique semi-classique de la matrice de di?usion dans di?érents cas, notamment dans le cas où le paradoxe de Klein apparaît. Le calcul des valeurs propres et des résonances est aussi traité pour l’opérateur de Dirac semi-classique unidimensionnel
In this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tang, Yiyu. "Topics in Fourier analysis : uncertainty principles and lacunary approximation." Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2026.

Повний текст джерела
Анотація:
Cette thèse a pour l'étude des principes d'incertitude et des problèmes d'approximation en analyse de Fourier. Elle se compose de deux parties. La première partie se concentre sur les principes d'incertitude dans l'analyse de Fourier. En utilisant une technique récemment inventée par Avi Wigderson et Yuval Wigderson, nous donnons une nouvelle preuve du principe d'incertitude de Heisenberg, répondant ainsi positivement à plusieurs questions posées par Wigderson & Wigderson. Nous obtenons également des nouvelles généralisations du principe d'incertitude, qui illustre la puissance de la nouvelle méthode. La deuxième partie concerne l'approximation sur les espaces séquentiels pondérés. Nous généralisons un ancien résultat dû à Douglas, Shapiro et Shields sur les vecteurs cycliques de l'opérateur de décalage dans les espaces séquentiels. L'esprit général du théorème affirme que si un élément dans les espaces séquentiels l^2 a un spectre clairsemé, alors ses décalages ne peuvent pas être concentrés sur un sous-ensemble, ils doivent donc se répandre dans tout l'espace. Ce phénomène peut également être considéré comme un principe d'incertitude, et il est également vrai pour p supérieur à 2 et faux pour 1
This thesis is devoted to the study of uncertainty principles and approximation problems in Fourier analysis. It consists two parts.The first part focus on uncertainty principles in Fourier analysis. Using a technique recently invented by Avi Wigderson and Yuval Wigderson, we give a new proof of the classical Heisenberg uncertainty principle, hence answering several questions affirmatively posed by Wigderson & Wigderson. Also, we obtain some other new generalization on uncertainty principle, which illustrates the power of the new method.The second part is about approximation on weighted sequence spaces. We generalize an old result due to Douglas, Shapiro and shields on cyclic vectors of shift operator in sequence spaces, which asserts that if an element in l^2 spaces has a ``sparse" spectrum, then its shifts can not be concentrated on a proper subset, hence they must spread out in the whole space. This phenomenon can also be roughly considered as an uncertainty principle, and it is also true for p greater than 2 and false for 1
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Assal, Marouane. "Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0586/document.

Повний текст джерела
Анотація:
Dans ce travail, nous nous intéressons à l’analyse spectrale des systèmes d’opérateurs pseudodifférentiels semi-classiques. Dans la première partie, nous étudions la généralisation du théorème d’Egorov en temps longs dans le cas où l’Hamiltonien quantique qui génère l’évolution en temps et l’observable quantique initiale sont deux opérateurs pseudodifférentiels semiclassiques associés à des symboles à valeurs matricielles. Sous une condition d’hyperbolicité sur le symbole principal de l’Hamiltonien qui assure l’existence des projecteurs semi-classiques, et pour une classe d’observables "semi-classiquement" diagonales par blocs par rapport à ces projecteurs, nous démontrons un théorème de type Egorov valable pour un temps long d’ordre log(h-1) connu comme le temps d’Ehrenfest. Ici h 0 est le paramètre semi-classique. Dans la deuxième partie, nous nous intéressons à la théorie spectrale et la théorie de la diffusion pour des systèmes d’opérateurs pseudodifférentiels auto-adjoints. Nous développons une approche stationnaire pour l’étude de la fonction de décalage spectral associée à une paire d’opérateurs de Schrödinger semi-classiques à potentiels matriciels. Une asymptotique de type Weyl avec reste optimal sur la fonction de décalage spectral est établie, et sous l’hypothèse d’existence d’une fonction fuite scalaire, un développement asymptotique complet en puissancesde h au sens fort sur sa dérivée est obtenu. Ce dernier résultat est une généralisation au cas matriciel d’un résultat de Robert et Tamura établi dans le cas scalaire près des énergies non-captives. Notre méthode indépendante du temps nous permet de traiter certains potentiels avec des croisements des valeurs propres
In this work, we are interested in the spectral analysis of systems of semiclassical pseudodifferentialoperators. In the first part, we study the extension of the long time semiclassical Egorovtheorem in the case where the quantum Hamiltonian which generates the time evolution andthe initial quantum observable are two semiclassical pseudodifferential operators with matrixvaluedsymbols. Under an hyperbolicity condition on the principal symbol of the Hamiltonianwhich ensures the existence of the semiclassical projections, and for a class of observable thatare "semi-classically" block-diagonal with respect to these projections, we prove an Egorov theoremvalid in a large time interval of order log(h-1) known as the Ehrenfest time. Here h & 0is the semiclassical parameter.In the second part, we are interested in the spectral and scattering theories for self-adjointsystems of pseudodifferential operators. We develop a stationary approach for the study of thespectral shift function (SSF) associated to a pair of self-adjoint semiclassical Schrödinger operatorswith matrix-valued potentials. We prove a Weyl-type asymptotics with sharp remainderestimate on the SSF, and under the existence of a scalar escape function, a pointwise completeasymptotic expansion on its derivative. This last result is a generalisation in the matrix-valuedcase of a result of Robert and Tamura established in the scalar case near non-trapping energies.Our time-independent method allows us to treat certain potentials with energy-level crossings
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Poisat, Julien. "Modèle d’accrochage de polymères en environnement aléatoire faiblement corrélé." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10056/document.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l’étude du modèle d’accrochage en environnementfaiblement corrélé. Le modèle d’accrochage s’applique à de multiples situationstelles que la localisation d’un polymère au voisinage d’une interface unidimensionnelle,la transition de mouillage ou encore la dénaturation de l’ADN, le pointcommun étant la présence d’une transition entre une phase localisée et une phasedélocalisée.Nous commençons par donner un aperçu des résultats disponibles sur lescourbes et exposants critiques pour le modèle homogène puis pour le modèledésordonné lorsque le désordre est une suite de variables aléatoires indépendanteset identiquement distribuées (i.i.d.). Dans ce dernier cas, nous donnons égalementune borne sur la courbe critique quenched à haute température, dans un régimeoù le désordre est dit pertinent.Nous étudions ensuite le modèle d’accrochage désordonné dans le cas où ledésordre est gaussien et les corrélations ont une portée finie, à l’aide de la théoriedes processus de renouvellement markoviens. Nous donnons dans ce cas une expressionde la courbe annealed à l’aide de la plus grande valeur propre d’une matricede transfert ainsi que l’exposant critique annealed. Nous généralisons ensuite lescritères de pertinence et de non pertinence du désordre prouvés dans le cas i.i.d.Nous nous intéressons ensuite à des désordres dont les corrélations ont uneportée de corrélation infinie. Dans un premier temps, nous généralisons la démarcheutilisée dans le cas d’une portée de corrélations finie et obtenons le comportementcritique annealed dans le cas d’un désordre gaussien sous des hypothèses dedécroissance forte des corrélations. Nous utilisons pour cela les propriétés spectralesdes opérateurs de transfert pour des décalages sur des suites d’entiers etdes potentiels à variations sommables. Dans un deuxième temps, nous donnonsquelques résultats dans le cas où le désordre est donné par une chaîne de Markov
In this dissertation we study the pinning model with weakly correlated disorder.The pinning model applies to various situations such as localization of a polymernear a one-dimensional interface, wetting transition and DNA denaturation, whichall display a transition between a localized phase and a delocalized phase.We start by giving a survey of the available results concerning critical pointsand exponents, first for the homogeneous setup and then for the inhomogeneousone, in the case when disorder is given by a sequence of independent and identicallydistributed (i.i.d.) random variables. In the latter case, we also provide a hightemperaturebound on the quenched critical curve in a case of relevant disorder.We then study the random pinning model when disorder is gaussian and hascorrelations with finite range, using the theory of Markov renewal processes. Weexpress the annealed critical curve in terms of the largest eigenvalue of a transfermatrix and we give the annealed critical exponent. We then generalize the criteriafor disorder relevance/irrelevance that were proved for the i.i.d. case.Next we are interested in disorder sequences with infinite range correlations.At first we generalize the method used to deal with finite range correlations andobtain the annealed critical behaviour in the case of gaussian disorder assumingfast decay of correlations. We use to this end the spectral properties of transferoperators for shifts on integer sequences and potentials with summable variations.Secondly we provide some results when disorder is a Markov chain
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії